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Abstract: A longstanding challenge for accurate sensing of biomolecules such as proteins concerns
specifically detecting a target analyte in a complex sample (e.g., food) without suffering from
nonspecific binding or interactions from the target itself or other analytes present in the sample.
Every sensor suffers from this fundamental drawback, which limits its sensitivity, specificity, and
longevity. Existing efforts to improve signal-to-noise ratio involve introducing additional steps
to reduce nonspecific binding, which increases the cost of the sensor. Conducting polymer-based
chemiresistive biosensors can be mechanically flexible, are inexpensive, label-free, and capable of
detecting specific biomolecules in complex samples without purification steps, making them very
versatile. In this paper, a poly (3,4-ethylenedioxyphene) (PEDOT) and poly (3-thiopheneethanol) (3TE)
interpenetrating network on polypropylene–cellulose fabric is used as a platform for a chemiresistive
biosensor, and the specific and nonspecific binding events are studied using the Biotin/Avidin and
Gliadin/G12-specific complementary binding pairs. We observed that specific binding between
these pairs results in a negative ∆R with the addition of the analyte and this response increases with
increasing analyte concentration. Nonspecific binding was found to have the opposite response,
a positive ∆R upon the addition of analyte was seen in nonspecific binding cases. We further
demonstrate the ability of the sensor to detect a targeted protein in a dual-protein analyte solution.
The machine-learning classifier, random forest, predicted the presence of Biotin with 75% accuracy in
dual-analyte solutions. This capability of distinguishing between specific and nonspecific binding
can be a step towards solving the problem of false positives or false negatives to which all biosensors
are susceptible.

Keywords: vapor-phase polymerization (VPP); conducting polymers; chemiresistive biosensors;
machine learning

1. Introduction

Due to the ever-growing need to detect different biomolecules such as proteins or
enzymes, the advancement of biosensing technology has become an interdisciplinary area
of research, bringing together biologists, physicists, chemists, and engineers. The medical
field, food industry, and environmental monitoring are a few areas where biosensors are
used [1–3]. A typical biosensor consists of the detected analyte, a bioreceptor which binds
specifically to the detected analyte, and a transducer that converts the binding event into
a measurable signal [4]. Sensing platforms such as enzyme-linked immunosorbent assay
(ELISA) and surface plasmon resonance (SPR) are based on immunoassays and plasmon
generation, respectively. However, ELISA suffers from a relatively long sample preparation
and high costs, which limits it to laboratory applications [5] and SPR suffers from low
sensitivity to low molecular weight molecules since it is mass-sensitive [6].
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All these platforms work on the principle that sensing occurs when a targeted analyte
specifically attaches to a capture molecule anchored on a substrate. However, exposure to
other non-targeted analytes for example, in complex samples such as blood, will result in
nonspecific binding events, producing a signal that obscures the signal from the analyte
of interest, essentially adding noise to the measurement. Nonspecific binding also occurs
when the targeted analyte binds to sites other than the capture molecule. Every sensing
platform suffers from this fundamental drawback, which limits its sensitivity, specificity,
and longevity. Existing efforts to improve signal-to-noise ratio involve introducing steps
to reduce nonspecific binding by imposing a blocking layer to shield unoccupied binding
sites [7,8]. This blocking layer reduces analyte adsorption onto the unoccupied sites
without interfering with the capture molecule and targeted analyte chemistries. Three
main types of blocking agents used are detergent blockers, protein blockers, and polymer-
based blockers, each one with their own advantages and disadvantages [9,10]. Another
way to improve signal to noise is to engineer materials for a sensing platform capable of
detecting/distinguishing between the two binding events.

Materials that exhibit a change in electrical response due to a change in chemical envi-
ronment are termed chemiresistors and sensors which use these materials as transducers
are called chemiresistive sensors. These sensors are label-free, highly sensitive and require
little to no sample preparation time [11–13]. Specifically, chemiresistive biosensors made
from conducting polymers are low cost, operate at room temperature, and can be made
flexible due to the non-brittle nature of polymers. The signal-to-noise ratio in conducting
polymer sensors can be improved by a higher conducting polymer film. This also provides
an increase in the sensitivity of the sensor [14]. Another advantage of using conducting
polymers is being able to modify the sensor surface with receptors to specifically target cer-
tain molecules while keeping the sensor platform the same. Poly (3,4-ethylenedioxyphene)
(PEDOT) is one of the most widely used conducting polymers due to its optical trans-
parency, mechanical flexibility, high electrical conductivity, and chemical and physical
stability. It is typically copolymerized with other polymers to harness their functional
groups for attaching different capture molecules. PEDOT-based sensors have been used in
the detection of a selective ligand for human influenza A virus (H1N1) by copolymerizing
the monomer EDOT with another EDOT bearing oxylamine group. This served as a unit
for introducing sialyllactose to the side chain of the copolymer which was used in the
detection of H1N1 [15]. Similarly, the copolymer, PEDOT and poly (3-thiopheneethanol)
(P3TE), deposited on a high surface area electro-spun nylon fiber mat, was used to immobi-
lize avidin for the detection of Biotin [14]. Using the high surface area substrate, a 6-fold
increase in sensor response time was observed as opposed to a flat substrate.

In this work, our sensor architecture is similar to the sensor prepared by Bhat-
tacharyya et al. [14]. We, however, use vapor-phase polymerization (VPP) to deposit
the polymer layer onto a high surface area polypropylene–cellulose fabric. This layer is
made from the copolymerization of EDOT and 3TE into an interpenetrating network (IPN)
of PEDOT and P3TE [14]. Iron (III) p-toluenesulfonate (Fe(PTS)3) is used to polymerize
EDOT, while P3TE weaves through the initially deposited PEDOT to form an IPN. This IPN
structure increases interfacial area, allowing for increased binding of the analyte capture
molecules. This in turn increases the sensitivity of the device. Due to their high affinity for
each other, the biomolecule pair of Biotin and Avidin are chosen as the test analyte and cap-
ture molecules, respectively, to observe specific binding events. Gliadin, a protein found in
wheat and Casein, a protein found in milk are chosen to study nonspecific binding events.
This work goes a step further using machine learning to decouple signals from specific and
nonspecific binding events. Classification techniques are applied to the measured response
of the sensor and predicted the presence of the test analyte (Biotin) with accuracies up
to 75%.
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2. Materials and Methods
2.1. Reagents and Materials

3,4-Ethylenedioxythiophene (EDOT) (97%), 3-thiopheneethanol (3TE) (98%), Iron(III)
p-toluenesulfonate hexahydrate (Fe(PTS)3), (3-Glycidyloxypropyl)trimethoxysilane (GOPS),
phosphate buffer solution (PBS) and α-Casein were obtained from Sigma-Aldrich. Bovine
serum albumin (BSA), avidin and Biotin were obtained from Thermo Fisher Scientific.
Gliadin was received from the Prolamin Work Group (PWG). All chemicals were used
as received.

2.2. Vapor-Phase Polymerization of P(EDOT-3TE)

The VPP technique used here for preparing the polymer films has been described
in detail in a previous report [16]. A schematic of the VPP process is shown in Figure 1.
A polypropylene–cellulose fabric was first soaked in a 40 wt.% solution of Fe(PTS)3 in
butanol. This oxidant coated fabric was then placed in a sealed jar containing the monomer
EDOT. The EDOT polymerization occurred in a furnace at 70 ◦C for 1 h. The PEDOT coated
fabric was then rinsed in ethanol for 1 h to remove any unreacted monomer and oxidant.
The fabric was then placed in another sealed jar containing 3TE and again polymerization
occurred at 70 ◦C for 1 h.

Figure 1. Schematic of vapor-phase polymerization (VPP) process for synthesis of PEDOT films on polypropylene–cellulose
fabric. (A) The oxidant solution is a mixture of iron(III) p-toluenesulfonate hexahydrate (Fe(PTS)3) in butanol. The fabric is
coated by soaking in the oxidant solution. (B) The oxidant coated fabric is placed in a sealed container with the monomer.
(C) Heating the container in a furnace causes the monomer to vaporize and polymerization occurs on the fabric.

2.3. Anchoring Avidin to the Sensor

Avidin is covalently attached to the polymer coated fabric via the linker molecule
GOPS. A total of 50 µL of GOPS was placed in a sealed container along with the coated
fabric at 120 ◦C for 2 h. A soak in ethanol for 1 h removed any excess GOPS molecules.
Two subsequent washes in a 1:1 ratio of BSA to PBS was done for an hour each to minimize
protein adsorption onto unoccupied binding sites of the sensor surface. The attachment
of avidin took place overnight in a 10 mL PBS solution with 1 mg avidin. The coated
fabric was then soaked in a pure PBS solution for 10 min to remove unattached avidin
molecules. Finally, the completed sensor was stored in a pure PBS solution. This was also
the environment in which the testing took place.

2.4. Characterization

The VPP polymer films were characterized by Fourier transform infrared (FTIR)
spectroscopy using a Thermo Fisher Scientific (Waltham, MA, USA) iS50 spectrometer.
Scanning electron microscopy (SEM) images were recorded using a FEI Quanta 600 FEG
SEM. The response of the sensor was measured using a biologic Sp-150 potentiostat.

2.5. Resistance Measurement of Sensor

After the avidin attachment, the sensors were submerged in PBS and alligator clips
were then attached. The measurements were done by adding different analytes which
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included plain PBS and different concentrations of biomolecules in PBS to the container
which housed the submerged sensor. To evaluate the response of the sensors a constant
DC current of 950 µA was used. The resistance was monitored over a span of 30 min with
the first 15 min being the time necessary for the steady state resistance to be attained then
at the 15 min mark the analyte is added. The percent change in resistance is given by

∆R(%) =
R0 − R1

R1
× 100, (1)

where R1 is the resistance before the analyte is added (at 15 min) and R0 is the resistance at
the end of the experiment (after 30 min). Two analytes, Biotin and Gliadin were tested at
concentrations of 50 µM, 5 µM, 500 nM, and 50 nM.

2.6. Machine Learning

The first step in our approach is the exploratory data analysis (EDA). In the EDA
step, the variation of voltage with time was carefully observed and features were extracted
manually from the dataset. Signal processing techniques were also applied to extract
information such as peak-to-peak difference (difference between minimum and maximum
values of voltage), max signal (maximum voltage) and Kurtosis. These features were used
as input to predict the presence of Biotin. The data considered in this analysis comprised
of the voltage signal after the analyte was added.

Four common machine-learning algorithms were used to evaluate classification accu-
racies: support vector machines (SVM), random forest (RF), K-nearest neighbors (KNN)
and logistic regression (LR). SVM perform well on the high-dimensional data and are less
prone to overfitting. However, it does not offer interpretability from the algorithm. Opti-
mizing the hyperparameters that give the best performance is a difficult task. RF is capable
of reduction in overfitting as it aggregates information from an ensemble of decision trees.
This algorithm is suitable for all types of data. However, it is computationally expensive.
LR is easier to implement, interpret, and very efficient to train. However, it constructs
linear boundaries and fails in cases where there is a nonlinear boundary. The model is
prone to overfitting. Finally, KNN is computationally inexpensive and easier to train but
does not work very well with large datasets and high-dimensional data.

Python, with the Scikit-learn package was used to code the SVM, RF, KNN, and LR.
The dataset was split into 80% training data and 20% test set data on which the predictions
were made. As a result, the total 73 data points were split into 58 train and 15 test datapoints.
A 5-fold cross validation was done to minimize the variance ensuring that model accuracies
obtained were more reliable.

3. Results and Discussion

In the VPP process, an oxidant in the liquid phase is directly deposited onto the
fabric substrate. It is then exposed to the monomer vapor in a sealed container where the
polymerization of the conducting polymer occurs. Typical oxidants used in this process are
iron(III)chloride, copper(II)chloride and iron (III) PTS. Iron (III) PTS was chosen here
because PEDOT films produced with this oxidant has the highest reported electrical
conductivity of ~1300 S/cm [17,18]. A schematic of the device structure is shown in
Figure 2. The capture molecules are immobilized onto the polymer surface by the functional
groups of the polymer and the analyte binding to the capture molecules occurs because
they have a strong affinity for each other. To immobilize the molecules responsible for
capturing the analyte, linker molecules must be first bound to the conducting polymer
surface. Due to the lack of appropriate functional groups, the capture molecule, in this
case avidin, cannot bind directly to the polymer surface. Linker molecules such as GOPS
act as a bridge between the polymer layer and the capture molecule. Figure 3 shows the
steps taken for attachment. GOPS is a silane coupling agent which contains two different
reactive groups bonded to the silicon molecule. One end of this molecule is the methoxy
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group while the other end is the epoxy group. The methoxy group binds with the hydroxyl
group from the P3TE while the epoxy group binds to the capture molecule.

Figure 2. Schematic of chemiresistive sensor with capture molecule immobilization and analyte binding.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 12 
 

 

case avidin, cannot bind directly to the polymer surface. Linker molecules such as GOPS 
act as a bridge between the polymer layer and the capture molecule. Figure 3 shows the 
steps taken for attachment. GOPS is a silane coupling agent which contains two different 
reactive groups bonded to the silicon molecule. One end of this molecule is the methoxy 
group while the other end is the epoxy group. The methoxy group binds with the 
hydroxyl group from the P3TE while the epoxy group binds to the capture molecule. 

 
Figure 2. Schematic of chemiresistive sensor with capture molecule immobilization and analyte 
binding. 

 

 
Figure 3. Avidin immobilization onto conducting polymer. 

In this work, biomolecule pairs with a high affinity for each other were chosen to test 
the response of the sensor. The first pair studied was the protein pair avidin and Biotin. 
Avidin is a protein typically found in the egg whites while Biotin is a B vitamin. The large 
protein avidin, can bind 4 of the small Biotin molecules with dissociation constant on the 
order 10−8s−1 of making it one of the strongest non-covalent bonds [19,20]. This property 
of the avidin/Biotin pair makes them popular in Western blotting [21] and in 
immunoassays such as ELISA [22]. The other biomolecule pair is the antigen-antibody 
pair of G12 and Gliadin. Gliadin is a class of protein present in gluten (protein found in 
wheat) known to trigger reactions in Celiac patients, and G12 is its respective antibody. 
The G12/Gliadin pair has also been applied in immunoassays such as ELISA [23]. 

FTIR was performed to check for successful growth of PEDOT and P3TE, as well as 
successful attachment of the GOPS molecule. FTIR was performed using a silicon wafer 
as the substrate instead of the fabric. The polymer growth and GOPS attachment processes 
on the silicon wafer were identical to processes done on the fabric. Figure 4 shows the 

Figure 3. Avidin immobilization onto conducting polymer.

In this work, biomolecule pairs with a high affinity for each other were chosen to test
the response of the sensor. The first pair studied was the protein pair avidin and Biotin.
Avidin is a protein typically found in the egg whites while Biotin is a B vitamin. The
large protein avidin, can bind 4 of the small Biotin molecules with dissociation constant
on the order 10−8s−1 of making it one of the strongest non-covalent bonds [19,20]. This
property of the avidin/Biotin pair makes them popular in Western blotting [21] and in
immunoassays such as ELISA [22]. The other biomolecule pair is the antigen-antibody
pair of G12 and Gliadin. Gliadin is a class of protein present in gluten (protein found in
wheat) known to trigger reactions in Celiac patients, and G12 is its respective antibody.
The G12/Gliadin pair has also been applied in immunoassays such as ELISA [23].

FTIR was performed to check for successful growth of PEDOT and P3TE, as well
as successful attachment of the GOPS molecule. FTIR was performed using a silicon
wafer as the substrate instead of the fabric. The polymer growth and GOPS attachment
processes on the silicon wafer were identical to processes done on the fabric. Figure 4
shows the spectrum of plain PEDOT, PEDOT + P3TE and PEDOT + P3TE + GOPS. The
peak correlating with the formation of the C=C in PEDOT is seen at about 1517 cm−1

indicating the successful polymerization of EDOT. The addition of 3TE introduces –OH
functional groups which are captured in the spectrum at ~3400 cm−1. Additionally, the
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detection of silicon (~1150 cm−1) indicates the presence/successful attachment of GOPS to
the interpenetrating polymer network of PEDOT and P3TE.

Figure 4. FTIR spectrum of PEDOT, PEDOT + P3TE and PEDOT + P3TE + GOPS measured on a
silicon wafer.

SEM images of the fabric substrate before and after PEDOT growth are shown in
Figure 5. Comparing the two images, the individual fibers of the fabric seen in Figure 5B
appear rougher than the ones of the uncoated fabric indicating the presence of PEDOT. It
should also be noted that the morphology of the underlying fibers is retained, and that little
aggregation of the polymer is observed as is commonly seen when solutions are present.
The retention of the fiber morphology is important because the surface to volume ratio is
increased, creating more available binding sites for the analyte, increasing the ability of the
sensor to detect low concentrations of the analyte.

Figure 5. Scanning electron microscopy (SEM) of (A) uncoated fabric (B) fabric coated with PEDOT.

As a side note, using a polymer-based sensor, we have the added benefit of having a
low cost and mechanically flexible sensor [24]. Having such mechanical flexibility allows
for manipulating these sensors in different conformations while still being able to obtain a
viable signal (Figure 6). The resistance measurement was done using two alligator clips
and a Fluke 179 True RMS Multimeter. The resulting form factor indicates that these can be
easily adapted to technologies which can be embedded into clothing or worn as accessories.
This is an avenue to be explored in a future work.
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Figure 6. Polymer coated fabric in (A) planar: 1.096 MΩ (B) half fold: 306.1 kΩ and (C) twisted
conformations: 264.9 kΩ.

The sensor measurements from Figure 7 show a log-linear correlation between the
concentration and the change in resistance of the sensor upon the addition of analyte. At
each concentration, approximately 4 identical measurements were performed which is
indicated by multiple blue circles at one specific concentration. This change in resistance
was proportional to the analyte concentration indicating the ability of the sensor to provide
distinguishable signals for different analyte concentrations. Furthermore, similar responses
were seen for the avidin/Biotin system and the G12/Gliadin with the only difference being
the capture molecule (Figure 7B). Building upon these results, the next series of tests were
performed to investigate the response from an analyte on a sensor with (specific binding)
and without (nonspecific binding) the complementary capture molecule immobilized on
the surface of the sensor. From Figure 7C, there was no longer a negative ∆R as seen with
complementary analyte and capture molecules, but rather a positive ∆R was observed
when no capture molecule was used. These results suggest that a negative ∆R is indicative
of a specific binding event whereas a positive ∆R indicates a nonspecific binding event. This
positive ∆R had a weak inverse correlation with the analyte concentration, which was not
nearly as strong as in the case of the complementary binding pairs. Non-complementary
analytes and capture molecules such as Gliadin and avidin respectively, also showed this
behavior. Test measurements with pure PBS as the analyte were also done. There were
no changes in the resistance which indicated that geometry or volume changes due to
hydration did not influence the results.

A two-way ANOVA and Tukey’s pairwise test was performed to determine the
statistical relationship of the data. ANOVA takes the mean and compares the variances
between groups to determine if the observed effects is real or only due to chance. Tukey’s
pairwise test was used in ANOVA to create the confidence intervals. These statistical
methods considered ∆R for sensors, with and without Biotin, and the type of analyte. The
analysis returned a statistically significant interaction effect between whether there is a
protein bound to the sensor and the analyte used. These data suggests that the nonspecific
binding response in our biosensors is the opposite of the specific binding response. Since
similar results are seen in the data for Biotin and Gliadin, this also suggests that the signal
is due to the presence/absence of complementary binding pairs and not individual effects
from the bound protein to the analyte. However, further experimentation is necessary
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to support this observation. This behavior may be due to the electrical characteristics
of the protein-capture molecule bonds that occur through specific binding events. This
observation can be related to gas sensors made of conducting polymer-metal hybrids. By
coupling metal particles to the conducting polymer films, the change in work function
experienced by the metal in the presence of a gas can be translated into changes in the
electrical characteristics of the polymer film [25,26]. The sensors in this work follow
a similar architecture to the gas sensor previously mentioned which suggests that the
interaction between the analyte and the capture molecule is modulating the electronic
properties of the polymer film.

Figure 7. Change in resistance vs. concentration for (A) Biotin analyte with Avidin capture molecule (B) Gliadin analyte
with G12 capture molecule (C) Biotin analyte with and without capture molecule. The circles represent the actual data,
and the line is a linear fit to these data. The error bar represents the standard deviation from the predicted data from the
linear fit.

High surface area sensors are very important for improving sensitivity. The sensor
architecture in this work has been compared to a sensor made with avidin-functionalized
gold nanorod modified electrodes [14] which used the avidin-Biotin affinity couple for
testing as well. Although the gold nanorod sensor has a higher surface area, the conducting
polymer sensor made on the fabric has comparable detection limit of 1 ng/mL and 1 nM
concentration of Biotin, respectively. The response time of the fabric sensor has also been
reported to be <4 min. Since our sensor architecture is identical to the one in the report, we
expect similar values for detection limit and response time.

Machine learning is used to build an analytical model capable of identifying patterns
to predict the presence of Biotin in mixed analytes. Mixed analyte solutions of Casein–
Gliadin, Biotin–Gliadin and Biotin–Casein were tested with the sensor immobilized with
avidin (Figure 8). Unlike the single analyte tests, the detection of Biotin cannot be inferred
from a change in resistance only. Very poor classification accuracies were obtained when the
change in resistance of the mixed analyte solutions were used as features in the machine-
learning algorithms, as such other features were used. In Table 1, the results of the
machine-learning classifiers used to predict Biotin in mixed analyte solutions are shown.
The classification accuracies range from 67–75%. The highest accuracy for the prediction
of Biotin was 75% obtained using RF. RF was also used to identify the feature with the
highest contribution (Figure 9). Kurtosis yielded the highest contribution indicating that
the sharpness of the peak is influenced by the presence of Biotin. Kurtosis is the measure
of whether the probability distribution curve is heavy-tailed or light-tailed with respect to
a normal distribution. A higher kurtosis value corresponds to large deviations from the
mean of the curve and a lower value corresponds to values closer to the mean. When the
analyte is added, the curve’s characteristics are different with the presence and absence of
Biotin which would correspond to difference values for kurtosis. This makes kurtosis an
important indicator for the detection of Biotin.
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Figure 8. Change in resistance vs. concentration for mixed analytes all with Avidin capture molecule. (A) Biotin–Casein
(B) Biotin–Gliadin, (C) Casein–Gliadin.

Table 1. Classification Accuracies.

ML Classifiers Accuracy

Support Vector Machines 67%
Random Forest 75%

k-nearest neighbors 70%
Logistic Regression 67%

Figure 9. Feature importance based on Random Forest classification.

4. Conclusions

In this study, we developed a conducting polymer-based chemiresistive biosensor
capable of label-free sensing of biomolecules. The focus was not the detection of any
specific biomolecule but to show that this biosensing platform can detect distinct responses
from specific and nonspecific binding events. When complementary analytes and capture
molecules such as Biotin/avidin or Gliadin/G12 are measured, a negative ∆R across the
sensor is seen when the analytes are added which we correlate with a specific binding event.
On the other hand, when non-complementary analytes and captures molecules such as
Gliadin/avidin and Biotin/G12 are measured a positive ∆R is observed which we correlate
with nonspecific binding events. Since the same observation is made for two different sets
of analytes and capture molecules, we believe that for this sensor the signal is based solely
on whether the analytes and capture molecules are complementary. Furthermore, when the
analyte is composed of a mixture of complementary and non-complementary molecules,
the resistance is not a good measure (Figure 8) and machine-learning algorithms can be
used to predict the presence of Biotin specifically, in mixed analytes. Our results show
that random forests (RF) yielded the best prediction accuracy. Different feature extraction
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techniques were also used to obtain the highest possible accuracy. Based on the feature
importance of random forest, kurtosis (Appendix A) was found to be the most important.
Thus, using kurtosis as the feature and random forest as the algorithm we were able to
predict the presence of Biotin with accuracies up to 75%.
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Appendix A

Kurtosis

Kurtosis is the measure of whether the probability distribution curve is heavy-tailed
or light-tailed with respect to a normal distribution.

For a univariate data x1, x2, x3, and x4, Kurtosis of the data is given by the Formula:

∑N
i=1(xi − x)4/N

S4

where x is the mean, S is the standard deviation and N is the number of points. Kurtosis
is also known as the fourth moment of the distribution. A higher kurtosis value implies
that the data is not concentrated around the mean and in general has larger presence of
outliers. Kurtosis as a feature has been previously used in biological studies including
activity recognition [27,28], developing imaging techniques [29,30]. All these previous
studies imply the usefulness of using Kurtosis as a feature when dealing with signal data.
We treat kurtosis as a feature of the signal feature because it is expected that the signal
that corresponds to biotin will have a different distribution from the signal that does not
have biotin presence. Moreover, the feature importance plot from the machine learning
model justifies our selection of kurtosis as it describes which feature in the model was most
important when doing the classification task.
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