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In hemophilia A (HA) patients, F8 gene-defects as genetic risk-factors for developing

inhibitors to Factor VIII have been extensively studied. Here we provide estimates of

inhibitor-risk associated with the patient’s Human Leukocyte Antigen (HLA). We used next

generation sequencing for high-resolution HLA Class II typing of 997 HA patients. Using

inhibitor prevalence reports from the My Life Our Future (MLOF) research repository, we

calculated Odds Ratios (OR) for inhibitor development in a multivariate model considering

HLA-DRB1/3/4/5, HLA-DPB1, HLA-DQB1, race, F8 pathogenic variant type, and age.

Participants with 1 HLA variant (DPB1∗02:02) had developed inhibitors at a higher

rate while participants with 2 HLA variants (DRB1∗04:07; DRB1∗11:04) had developed

inhibitors at a lower rate. Additionally, patients with missense variants had developed

inhibitors at a lower rate and participants with large structural changes (>50 bp) had

developed inhibitors at a higher rate (both compared to Intron 22 inversion). Using a

cohort of participants with a distribution of HLA-DRB1 alleles comparable to that in the

North American population we show that the HLA repertoire of a HA patient can be a

risk-factor for inhibitor development.

Keywords: inhibitors, factor VIII, HLA-type, statistics, hemophilia, ATHN, MLOF

1. INTRODUCTION

An unmet need in the management of hemophilia-A (HA) is the lack of clinically validatedmarkers
associated with the development of inhibitors, i.e., neutralizing antibodies to Factor VIII (FVIII).
Approximately 20% of HA patients and 30% of severe HA patients develop inhibitors which
represent an impediment to the effective management of HA (1, 2). The availability of markers
for immunogenicity would prove useful for more efficient clinical care and personalization of the
treatment of HA patients. Inhibitors are also the key safety concern during drug development and
licensure; the absence of non-clinical markers means that immunogenicity assessments can only be
made as part of phase three studies; the most expensive phase of drug development.

There is broad recognition that genetic factors play a role in determining which patients develop
inhibitors and which do not (3–8). However, identifying the genetic markers of immunogenicity
is challenging. For instance, there is evidence that CD4+ T-cell response is essential for eliciting
inhibitors (9). It is a reasonable assumption that presentation of the peptides by the MHC-class-II
(MHC-II) molecules [human leukocyte antigens (HLA), in humans] is a necessary step in the
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immune cascade that results in inhibitory antibodies. There
have been several studies to identify HLA variants potentially
associated with inhibitors, however no consistent correlates
were found between studies (10–14). These studies were all
performed with small sample sizes ranging from 57 to 176
participants. These sample sizes are inadequate for making
meaningful, statistically powered, assessments, considering that
the MHC region, containing 164 HLA genes is the most
polymorphic in the human genome with over 11,000 variants
reported (15).

The HLA is not the only genetic risk-factor implicated with
inhibitors to FVIII. HA is caused by variants in the F8 gene that
range from missense variants to large deletions (5). An earlier
meta-analysis (of 30 independent studies and 5,383 participants)
showed that larger gene disruptions (e.g., deletion of multiple
exons) were associated with a higher OR of developing inhibitors
(5). Although the meta-analysis did provide a considerably larger
total cohort than any individual study, the approach suffers
from some disadvantages. Meta-analyses often fail to control for
the fixed effects attributable to different testing centers and the
number of participants in each study. One possible outcome
of this is Simpson’s Paradox in which trends identified in the
individual studies cannot be found in the pooled data (16). In
addition, different studies often target participants with specific
variants (e.g., Intron 22 Inversion) or specific populations. The
differing baseline risks for these groups will further lead to
heterogeneous population groups which require careful analysis
to avoid biases. Furthermore, meta-analyses relies solely on
previously published studies and will suffer from publication
bias and possibly exaggerate results by not considering the
unavailable, unpublished data (17). Consequently, meta-analyses
are often consideredmore suitable for hypothesis generation than
for hypothesis testing (18).

A large cohort of HA patients who are genotyped using
consistent methods and for whom clinical information is
available is a clear unmet need. The My Life, Our Future (MLOF)
project [a collaboration between the American Thrombosis and
Hemostasis Network (ATHN), National Hemophilia Foundation
(NHF), Bloodworks Northwest and Bioverativ] provided free
hemophilia genotype analysis for participants in the United
States. As the MLOF collaboration did not HLA type the
participants, we have HLA typed 1,000 participants for whom
F8 genotype and clinical and demographic information was
available. This data set is at least four-times larger than those
used in published studies and is adequate to assess the association
between HLA type and inhibitors. We found the HLA variant
DPB1∗02:02 is associated with higher odds of eliciting inhibitors
to FVIII. The HLA variants DRB1∗04:07 and DRB1∗11:04
are associated with lower odds of developing inhibitors. With
respect to pathogenic F8 variants, our results are consistent
with the previous conclusion from a meta-analysis. Compared
to participants with the intron-22-inversion, those with missense
variants have significantly lower odds of inhibitor formation.
Conversely, participants with large structural changes (>50 bp)
show significantly higher odds of developing inhibitors. We
also show that Hispanic participants had a higher prevalence
of inhibitors.

2. MATERIALS AND METHODS

2.1. Study Design
This is a retrospective case-controlled study. Data from the
ATHNdataset was merged with HLA-typing data obtained
by us for 997 participants. Phenotypic and genetic features
were compared to the prevalence of inhibitor development in
these participants. Statistical analysis was performed as a series
of univariate logistic regression model that would determine
inclusion of a variable in a multivariate logistic regression model.

2.2. Data Sources
The MLOF program is the result of a collaboration between
the ATHN, NHF, and Bloodworks Northwest, with support of
Bioverativ through June 2018. Participants and/or their parents
gave written informed consent for inclusion of their samples
and data in the MLOF Research Repository. Phenotypic data on
MLOF Research Repository participants was abstracted from the
ATHNdataset collected from participating hemophilia treatment
centers around the United States, including demographic,
phenotypic, and genomic data. Participants self-reported their
race and ethnicity (19).

The background distribution of HLA-DRB1 Alleles was
obtained using a population weighted according to US Census
estimates of population demographics from July, 2018 (20).

2.3. Determinations of Hemophilia Severity
and Inhibitor Development
Hemophilia Severity was identified based on reported FVIII
baseline activity (percent of normal) in the ATHNdataset based
on the following criteria: FVIII activity ≤1%, Severe; FVIII
activity ≤5% but >1%, Moderate and FVIII activity >5%, Mild.
Factor VIII activity was tracked using the lowest value that can be
historically tracked. The assays were run in independent clinical
laboratories and were primarily one-stage assays.

2.4. HLA Testing for Class II Loci Using
Next Generation Sequencing
We used Next Generation Sequencing (NGS) as it offers robust
HLA testing by increasing typing resolution vis–vis Sanger
sequencing methods. DNA barcoding and single molecule
sequencing were used to allow for better efficiency and economies
of scale (21). LabCorp designed a test to sequence participant
samples concurrently for Class II HLA loci DRB1/3/4/5, DQB1,
and DPB1 by NGS. The validation was conducted using an
open-platform and Illumina MiSeq analyzers. The gene coverage
for the targeted NGS assay represents the Antigen Recognition
Domain which is encoded in exon 2 for the MHC Class II (22).

2.5. Determining the Size of the Cohort
Used for HLA Typing
No hard-and-fast rule exists for the selection of sample sizes
for multivariate logistic regression; a general rule of thumb
is that 10–30 samples are adequate to test the impact of a
particular factor with sufficient statistical power (23). However,
due to the heterogeneous distribution of alleles, some alleles,
would easily be found with a frequency of 30, other alleles [e.g.,
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HLA-DRB1∗04:38 (0.0005%)] (20), would never be found in
sufficient numbers for adequate statistical analysis regardless of
the cohort size.

A list of 38 MHC-DRB1 alleles (20) was chosen to
represent 99% of the North American Population and create
a reasonable pool of alleles that would be found in the
MLOF Research Repository cohort. A simulation was run
generating 100 cohorts each of various sizes by randomly
assigning alleles based on their frequencies in the North
American population. We counted both the number of alleles
that would be found in at least 30 participants as well as
the population coverage of those alleles. Cohorts of sizes from

100 to 1,500 were generated and the population coverage
of alleles which occurred in 30 or more individuals was

recorded.

2.6. Filtering the Data
As it was not feasible to HLA type the entire cohort of 7,151

donors, a subset of 1,000 participants were chosen for HLA
typing. Donors were filtered out for the following reasons

(Figure 1):
Sex: Only participants who were listed as male were included

in this analysis. The gene coding for the FVIII protein is located
on the X chromosome, thus inclusion of female participants

would have introduced confounding factors such as genetic
carriers as well as introduce another confounding variable into
the analysis.

Available DNA: Only participants with DNA available for
HLA typing were considered.

Medication type, treatment type, dosage information,
comprehensive care information, and pathogenic variant:
We included only individuals for who clinical and genetic
information was available.

After filtering the list of participants for inclusion in our HLA
typed cohort, 1,213 participants remained: 958 without inhibitors
and 255 with inhibitors. In order to enrich the population
of inhibitor positive participants to match the proportion of
inhibitor positive participants in the HA population (30%)
we used stratified sampling (24). This method samples from
different strata with different frequencies. We split the remaining
participants into two strata based on inhibitor status. We carried
out HLA typing on 1,000 participants, prioritizing selection of
the inhibitor positive participants. This method was used to help
bring the proportion of inhibitor positive samples to the desired
30%. As this is a case-controlled study, and our analysis relies
on odds-ratios rather than relative risk or prevalence, we decided
on this method to increase the frequency of observing inhibitor
development. With this increase in frequency of inhibitor

FIGURE 1 | Selection of participants for HLA typing. The 7,151 participants in the entire ATHNdataset were filtered to select participants suitable for further analysis.

We have filtered out participants for sex, availability of DNA for HLA-typing, and lack of clinical or genetic information. There were 1,213 participants which met all our

criteria. One thousand of these participants’ DNA were sent for HLA typing.
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development observed, we stand a greater chance of observing
events in conjunction with rare alleles.

2.7. Missing Data
Of the 1,000 participants sent for HLA typing: three participants
had missing HLA type data (0.3%), 6 (0.6%) had missing data for
race, and three participants had missing data for FVIII variant
type. In total <5% of data was missing.

2.8. Statistical Analysis
All HLA-DRB1/3/4/5, HLA-DPB1, HLA-DQB1, race, ethnicity,
disease severity, and pathogenic variant type were analyzed
using univariate logistic regression models. For each of the HLA
variants, a participant was considered as having that variant if
at least one of the alleles matched. For race and variant type,
ORs were calculated compared to reference levels; White for
race and intron-22 inversion for variant type. Variables with
some degree (p < 0.25) of significant correlation to the odds
of inhibitor development were included in a multivariate model
using Hosmer and Lemeshow’s guidance on “purposeful variable
selection” (23).

Log likelihood analysis was used to determine the
appropriateness of adding age into the explanatory model
as both a linear variable and a third-degree polynomial. The log
likelihood looks at the difference between a model including age
as a linear predictor as well as age-squared and age-cubed and
a model with age only as a linear predictor. This difference is
compared to a χ

2 distribution with degrees of freedom equal
to the number of additional variables. While the addition of
additional variables will necessarily increase the likelihood of
a model, the χ

2 test helps to only include variables which are
adding significant increases to the goodness-of-fit of the model.

P-values from the multivariate model were adjusted using the
Benjamini-Hochberg method (25) for controlling the rate of false
discoveries. The adjusted p-value reported represents the strictest
false discovery rate for which a particular hypothesis will be
rejected using the Benjamini-Hochberg method as used in the R
(26) function “p.adjust” (27). An adjusted p-value presented here
can be directly compared to using a desired false discovery rate of
0.05 as an acceptance criterion for a hypothesis test and will yield
equivalent results to calculating individual p-value thresholds for
each of multiple hypotheses.

This procedure was also repeated for a subset of the study
cohort which had severe hemophilia omitting the variable coding
for disease severity. This subset of only severe HA participants
was used for our primary analysis.

All statistical analysis was done using the R programming
language (26) and all graphics were produced using ggplot2 (28).
All tables were produced using kable (29) and LaTeX (30).

2.9. Predicted Binding Affinity of “Foreign
Sequences” at the Location of Missense
Mutation in the F8 Gene of Study
Participants
For all study participants with a missense mutation, a list of
FVIII sequences that would be foreign for each participant was

generated. This is the wild type sequence (found in the infused
FVIII drug) at that location and is foreign to a participant with
the missense mutation. We then used netMHCIIpan version
3.2 (31) to estimate the binding affinities of all foreign peptides
in the region of the missense mutations to the HLA-DRB1
alleles identified in that participant. The binding affinities were
reported as percentile ranks. The minimum percentile rank
(highest affinity) for each participant was used in determining
if binding affinities are significantly higher for those individuals
with inhibitors. We used the Shapiro-Wilk test and the results
were compared using a one-sided Mann–Whitney U-test testing
the hypothesis that the percentile rank scores of participants who
had developed an inhibitor would be lower than participants who
had not developed inhibitors.

3. RESULTS

3.1. Selecting a Representative Cohort Size
Per our simulation, a sample size of 1,000 participants provides
adequate coverage of HLA variants in all 100 runs. In these runs,
97.3% of the allele population of North America was expected to
be found in sufficient numbers for analysis.

3.2. Participant Characteristics
We have presented a detailed breakdown of participant
characteristics for the entire ATHNdataset (N = 7,151), The
subset of HLA-typed participants with Severe HA (N = 612),
and the HLA-typed subset (N = 997) (Tables 1–3). We have
additionally compared the characteristics of the HLA-type group
as a whole with the entire ATHNdataset to ensure that there
was no bias in the cohort selection other than the enrichment of
inhibitor positive cases (Supplementary Table 1).

The entire cohort studied was 7,151 Hemophilia A
participants. Of these participants, 1,123 (15.7%) had
developed inhibitory antibodies. In the subset of 612 severe
HA participants, 217 (35.5%) had developed inhibitors. In
the subset of 997 HLA-typed participants, 252 (25.28%) had
developed inhibitory antibodies.

3.3. HLA Typing of Participants
We obtained 1,000 DNA samples from MLOF. The samples
were subjected to high resolution (4-digit) HLA typing. The
complete data set is presented in Supplementary Table 2. Each
HLA variant in our study occurs at a frequency that is comparable
to its respective frequency in the North American population
(Figure 2). Moreover, the HLA-DRB1 alleles identified in the 997
participants cover 99.5% of the allelic variation inNorth America.
Additionally, 18 alleles representing 82% of the North American
population were found at or>30 times. The distribution of HLA-
DRB1 and HLA-DQB1 alleles in the cohort is comparable to the
distribution of alleles in the North American Population.

3.4. Univariate Analysis of Severe HA
Participants
Each variable was first analyzed using a univariate logistic
regression model (see section 2) and those determined to be
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TABLE 1 | Participant characteristics, the ATHNdataset.

Inhibitor Inhibitor

negative positive ever

Number % Number %

Number of participants 6,028 1,123

Disease severity

Mild 2,229 36.98 73 6.50

Moderate 922 15.30 86 7.66

Severe 2,877 47.73 964 85.84

Primary treatment type

Episodic 1,665 27.62 175 15.58

Immune tolerance induction 6 0.10 36 3.21

Prophylaxis 2,065 34.26 555 49.42

Unknown 2,292 38.02 357 31.79

Race/Ethnicity

American Indian or Alaska 71 1.18 6 0.53

Native

Asian 226 3.75 58 5.16

Black or African American 520 8.63 189 16.83

non-hispanic

Hispanic 1,028 17.05 208 18.52

Mixed race 58 0.96 12 1.07

Native Hawaiian or other 21 0.35 3 0.27

Pacific Islander

White non-hispanic 4,032 66.89 636 56.63

None reported 72 1.19 11 0.98

Age (years)

<5 366 6.07 95 8.46

5–14 1,462 24.25 340 30.28

15–24 1,427 23.67 279 24.84

25–39 1,403 23.27 236 21.02

40–64 1,042 17.29 136 12.11

≥65 328 5.44 37 3.29

Variant type

5′ Upstream 11 0.18 0 0.00

Frameshift 491 8.15 112 9.97

Intron 1 inversion 48 0.80 17 1.51

Intron 22 inversion 1,089 18.07 440 39.18

Large structural changea 148 2.46 85 7.57

Small structural changeb 33 0.55 2 0.18

Missense 2,595 43.05 162 14.43

Nonsense 301 4.99 108 9.62

Splice site change 151 2.50 33 2.94

Synonymous 172 2.85 2 0.18

Untranslated region 2 0.03 0 0.00

None reported 987 16.37 162 14.43

adenotes ≥50 bp.
bdenotes <50 bp.

significant with a p-value of <0.25 were included in the final
multivariate model.

Univariate analysis identified the following HLA alleles
(p < 0.25) for inclusion in the multivariate model: 9

TABLE 2 | Participant characteristics, HLA typed participants with severe

hemophilia A.

Inhibitor Inhibitor

negative positive ever

Number % Number %

Number of participants 395 217

Primary treatment type

Episodic 43 10.89 35 16.13

Immune tolerance induction 0 0.00 5 2.30

Prophylaxis 352 89.11 177 81.57

Race/Ethnicity

American Indian or Native 6 1.52 0 0.00

Alaskan

Asian 22 5.57 12 5.53

Black or African American 48 12.15 35 16.13

non-Hispanic

Hispanic 40 10.13 39 17.97

Mixed race 5 1.27 2 0.92

Native Hawaiian or other 2 0.51 1 0.46

Pacific Islander

White non-hispanic 270 68.35 127 58.52

None reported 2 0.51 1 0.46

Age (years)

<5 1 0.25 16 7.37

5–14 98 24.81 77 35.48

15–24 115 29.11 50 23.04

25–39 119 30.13 46 21.20

40–64 54 13.67 28 12.90

≥65 8 2.03 0 0.00

Variant type

5′ Upstream 0 0.00 0 0.00

Frameshift 71 17.97 30 13.82

Intron 1 inversion 8 2.03 7 3.23

Intron 22 inversion 154 38.98 104 47.92

Large structural changea 12 3.03 21 9.68

Small structural changeb 4 1.01 1 0.46

Missense 93 23.54 15 6.91

Nonsense 42 10.63 32 14.75

Splice site change 11 2.78 7 3.23

Synonymous 0 0.00 0 0.00

adenotes ≥50 bp.
bdenotes <50 bp.

HLA-DRB1 alleles; HLA-DRB1∗01:01, HLA-DRB1∗01:03,
HLA-DRB1∗04:04, HLA-DRB1∗04:05, HLA-DRB1∗04:07,
HLA-DRB1∗08:01, HLA-DRB1∗11:04, HLA-DRB1∗15:01, and
HLA-DRB1∗15:03; 4 HLA-DQB1 alleles; HLA-DQB1∗03:01,
HLA-DQB1∗05:01, HLA-DQB1∗05:02, and HLA-DQB1∗06:02;
3 HLA-DPB1 alleles; HLA-DPB1∗02:02, HLA-DPB1∗18:01,
and HLA-DPB1∗19:01; As well as HLA-DRB3∗01:01 and HLA-
DRB5∗01:01 (Supplementary Table 3). No HLA-DRB4 alleles
met the criterion for inclusion in the multivariate model.

Both Hispanic and Black or African American/Not Hispanic
participants, compared to white participants, met the univariate
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TABLE 3 | Participant characteristics, HLA typed participants.

Inhibitor Inhibitor

negative positive ever

Number % Number %

Number of participants 745 252

Disease severity

Mild 231 31.01 18 7.14

Moderate 119 15.97 17 6.75

Severe 395 53.02 217 86.11

Primary treatment type

Episodic 333 44.70 60 23.81

Immune tolerance induction 0 0.00 7 2.78

Prophylaxis 412 55.30 185 73.41

Race/Ethnicity

American Indian or Native 7 0.94 0 0.00

Alaskan

Asian 29 3.89 14 5.56

Black or African American 66 8.86 40 15.87

non-hispanic

Hispanic 102 13.69 39 15.48

Mixed race 7 0.94 2 0.79

Native Hawaiian or other 2 0.27 1 0.40

Pacific Islander

White non-hispanic 527 70.74 155 61.51

None reported 5 0.67 1 0.40

Age (years)

<5 2 0.27 17 6.75

5–14 181 24.30 82 32.54

15–24 212 28.46 61 24.21

25–39 184 24.70 55 21.83

40–64 122 16.38 33 13.10

≥65 44 5.91 4 1.59

Variant type

5′ Upstream 2 0.27 0 0.00

Frameshift 75 10.07 31 12.30

Intron 1 inversion 9 1.21 7 2.78

Intron 22 inversion 160 21.48 107 42.46

Large structural changea 13 1.74 22 8.73

Small structural changeb 4 0.54 1 0.40

Missense 394 52.89 45 17.86

Nonsense 44 5.91 32 12.70

Splice site change 16 2.15 7 2.78

Synonymous 25 3.36 0 0.00

None reported 3 0.40 0 0.00

adenotes ≥50 bp.
bdenotes <50 bp.

criterion of p < 0.25 to be included in the multivariate model
(Supplementary Table 4).

Four variant types (compared to intron 22 inversion) were
selected for inclusion in themultivariate model: frameshifts, large
structural changes (>50 bp), missense variants, and nonsense
variants (Supplementary Table 4).

Age, as either a linear predictor or as a third-degree
polynomial, was significant for inclusion in the multivariate
model. A comparison of log Likelihoods (see section 2); p =

0.0094 with 2 degrees of freedom) showed that the third-degree
polynomial was a significant addition to the model.

3.5. A Multivariate Regression Analysis of
Severe HA Participants
Based on the variables selected using univariate analysis, a
final multivariate model was fit including 18 HLA alleles, one
variable for race, four different variant types, and three variables
for age (age, age-squared, and age-cubed). P-values for the
variables were adjusted and results with a false discovery rate
of <0.05 were considered significant (Figure 3, Table 4). It
was found that controlling for age was extremely important
in explaining the higher incidence of inhibitor development in
younger participants independent of other factors.

One HLA allele was found to be significantly correlated
with the increased odds for having developed an inhibitor:
HLA-DPB1∗02:02 [OR = 16.5, 95% CI (2.87,94.78), adjusted-
p= 9.35∗10−3].

Two HLA alleles were found to be associated with decreased
odds for having developed inhibitors: HLA-DRB1∗04:07
[OR= 0.17, 95% CI (0.048, 0.58), adjusted-p = 0.0174];
and HLA-DRB1∗11:04 [OR = 0.18, 95% CI (0.048, 0.67),
adjusted-p= 0.0334].

Missense variants were found to be correlated with decreased
odds for inhibitor development [OR = 0.18, 95% CI (0.09,
0.35), adjusted-p= 1.42∗10−5]. Large structural variants affecting
>50 base pairs were associated with increased odds of inhibitor
development [OR = 2.85, 95% CI (1.21, 6.67), adjusted-
p= 0.045].

The effect of age was significant for each of the three
variables for age with adjusted-p values of 4.1∗10−4, 3.3∗10−3,
and 1.1∗10−2. The polynomial allows for a steep decrease in OR
from 0 to 20 years, a relatively flat OR from 20 to 60 and slight
decreases in OR after age 60. The effect of age is a decreasing odds
of inhibitor development generally as participants get older.

3.6. Univariate Analysis in All HLA-Typed
Participants
Each variable was first analyzed using a univariate logistic
regression model (see section 2) and those determined to be
significant with a p-value of <0.25 were included in the final
multivariate model.

Univariate analysis identified the following HLA alleles
(p < 0.25) for inclusion in the multivariate model: 12
HLA-DRB1 alleles; HLA-DRB1∗01:01, HLA-DRB1∗01:03,
HLA-DRB1∗04:04, HLA-DRB1∗04:05, HLA-DRB1∗04:07,
HLA-DRB1∗08:01, HLA-DRB1∗11:01, HLA-DRB1∗11:04,
HLA-DRB1∗12:01, HLA-DRB1∗12:02, HLA-DRB1∗15:01, and
HLA-DRB1∗15:03; 4 HLA-DQB1 alleles; HLA-DQB1∗03:01,
HLA-DQB1∗05:01, HLA-DQB1∗05:02, and HLA-DQB1∗06:02;
7 HLA-DPB1 alleles; HLA-DPB1∗02:02, HLA-DPB1∗03:01,
HLA-DPB1∗05:01, HLA-DPB1∗10:01, HLA-DPB1∗11:01, HLA-
DPB1∗18:01, and HLA-DPB1∗19:01; and HLA-DRB3∗01:01 and
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FIGURE 2 | HLA frequencies in the study cohort. HLA frequencies of the 997 participants are compared to the expected frequencies of the North American

sub-population. (A) The frequencies of HLA-DRB1 alleles in the study cohort (green) closely match the background distribution of alleles in the whole North American

population. (B) The frequencies of HLA-DQB1 alleles in the study cohort (green) closely match the background distribution of alleles in the whole North

American population.

HLA-DRB5∗01:01 (Supplementary Table 5). No HLA-DRB4
alleles met the criterion for inclusion in the multivariate model.

Both severe HA and moderate HA diagnoses, as compared to
mild HA, met the criterion of a p < 0.25 for inclusion into the
multivariate model (Supplementary Table 6).

Similarly, only one race/ethnicity (compared to White),
Black or African American/Not Hispanic, met the univariate
criterion of p < 0.25 to be included in the multivariate model
(Supplementary Table 6).

Four variant types (compared to intron 22 inversion) were
selected for inclusion in the multivariate model: intron 1
inversions, large structural changes (>50 bp), missense variants,
and nonsense variants (Supplementary Table 6).

Age, as either a linear predictor or as a third-degree
polynomial, was significant for inclusion in the multivariate
model. A comparison of log Likelihoods (see section 2; p =

0.0105 with 2 degrees of freedom) showed that the third-degree
polynomial was a significant addition to the model.
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FIGURE 3 | Results of the multivariate analysis. (A) Severe HA participants increased odds of inhibitor development were found for Hispanic participants (OR = 2.50,

95%CI 1.37–4.54), large structural variants (OR = 2.85, 95%CI 1.21–6.67), and HLA-DPB1*02:02 (OR = 16.50, 95%CI 2.87–94.78). Decreased odds were found for

missense variants (OR = 0.18, 95%CI 0.089–0.35), HLA-DRB1*04:07 (OR = 0.17, 95%CI 0.048–0.58), and HLA-DRB1*11:04 (OR = 0.18, 95%CI 0.048–0.67). (B)

All HLA participants increased odds of inhibitor development were found for severe HA (OR = 2.92, 95%CI 1.56–5.50), Large structural variants (OR = 4.03, 95%CI

1.82–8.89), and HLA-DPB1*02:02 (OR = 6.08, 95%CI 1.95–18.94). Decreased odds were found for missense variants (OR = 0.37, 95%CI 0.22–0.60).

3.7. A Multivariate Regression Analysis of
All HLA-Typed Participants
Based on the variables selected using univariate analysis, a final
multivariate model was fit including 25 HLA alleles, one variable
for race/ethnicity, four different variant types, two variables for
disease severity, and three variables for age (age, age-squared, and
age-cubed). P-values for the variables were adjusted and results
with a false discovery rate of <0.05 were considered significant
(Figure 3, Table 5).

Severe HA participants had a higher rate of inhibitor
formation [OR= 2.92, 95% CI (1.56, 5.50), adjusted-p= 0.0075].

One HLA allele was found to be associated with decreased
odds for inhibitor development: HLA-DPB1∗02:02 [OR = 6.08,
95% CI (1.95, 18.94), adjusted-p = 0.011]. No HLA alleles were
found to be significantly correlated with decreased odds for
having developed an inhibitor.

Missense variants were found to be correlated with decreased
odds for inhibitor development [OR = 0.37, 95% CI (0.23,
0.60), adjusted-p = 0.0018]. Large structural variants affecting
greater than 50 base pairs were associated with increased odds of
inhibitor development [OR= 4.02, 95% CI (1.82, 8.89), adjusted-
p= 0.0067].

The effect of age was significant for each of the three

variables for age with adjusted-p values of 0.0012, 0.007, and
0.023. The polynomial allows for a steep decrease in OR from
0 to 20 years, a relatively flat OR from 20 to 60 and slight
decreases in OR after age 60. The effect of age is a decreasing

odds of inhibitor development generally as participants
get older.

3.8. Comparison of Predicted Binding
Affinities of “Foreign Sequences” at the
Location of Missense Mutation in the F8

Gene of Study Participants
The median percentile rank binding affinity in participants
who had ever had an inhibitory response was 5.5 as compared
to 7.5 for participants who had never had an inhibitory
response. As the data was found to be non-Gaussian even
after transformations were applied (Shapiro-Wilk p-values of
7.67 ∗ 10−7 and ≤ 2.2 ∗ 10−16, respectively) the non-parametric
Mann–Whitney U-Test was used. This test rejected to null
hypothesis that the distributions of the two samples was similar
(Supplementary Figure 1).

4. DISCUSSION

Published work supports the postulate that genetic factors play
an important role in the development of inhibitors to FVIII drug
products (4, 5, 10–14, 19). A meta-analysis published in 2012
showed that F8 variant type influenced inhibitor development
in HA patients (5). In the study reported here involving 612
participants with severe HA who were HLA typed, we found
that the risk of inhibitor development was higher in participants
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TABLE 4 | Multivariate model results—severe HA participants.

Proportion with Odds Ratio Adjusted Significant

inhibitors (%) (95% CI) p-value

Age

Age 0.76 (0.67–0.87) 4.1e-04 Yes

Age2 1.008 (1.003–1.012) 3.3e-03 Yes

Age3 0.99 (0.99–0.99) 0.011 Yes

Race/Ethnicity

Black or African

American 35/83 (42) 1.38 (0.72–2.65) 0.44

Non-Hispanic

Hispanic 39/79 (49) 2.50 (1.37–4.54) 0.011 Yes

Variant type

Frameshift 30/101 (30) 0.54 (0.31–0.94) 0.065

Large structural 21/33 (64) 2.85 (1.21–6.67) 0.045 Yes

change

Missense 15/108 (14) 0.18 (0.09–0.35) 1.4e-5 Yes

Nonsense 32/74 (43) 1.08 (0.61–1.93) 0.81

HLA variant

DRB1*01:01 27/90 (30) 0.96 (0.55–1.69) 0.89

DRB1*01:03 2/13 (15) 0.30 (0.06–1.46) 0.29

DRB1*04:04 18/40 (45) 1.72 (0.80–3.67) 0.30

DRB1*04:05 8/14 (57) 2.30 (0.65–8.16) 0.34

DRB1*04:07 5/26 (19) 0.17 (0.048–0.58) 0.017 Yes

DRB1*08:01 3/15 (20) 0.36 (0.09–1.44) 0.30

DRB1*11:04 3/28 (11) 0.18 (0.05–0.67) 0.033 Yes

DRB1*15:01 55/122 (45) 2.22 (0.23–20.90) 0.59

DRB1*15:03 13/21 (62) 3.26 (0.34–31.33) 0.43

DRB3*01:01 43/144 (30) 0.76 (0.47–1.23) 0.38

DRB5*01:01 68/146 (47) 0.38 (0.04–3.42) 0.49

DPB1*02:02 8/10 (80) 16.50 (2.87–94.78) 9.4e-03 Yes

DPB1*18:01 10/20 (50) 1.20 (0.35–4.13) 0.81

DPB1*19:01 6/8 (75) 7.72 (1.37–43.55) 0.052

DQB1*03:01 66/205 (32) 0.91 (0.58–1.42) 0.75

DQB1*05:02 14/30 (47) 1.24 (0.47–3.24) 0.75

DQB1*05:03 5/23 (22) 0.50 (0.17–1.47) 0.34

DQB1*06:02 75/150 (50) 2.03 (0.66–6.20) 0.34

with large (>50 bp) structural variants (OR= 2.85) and lower in
patients with missense variants (OR = 0.18; Figure 3, Table 4)
which is consistent with the meta-analysis of previous studies.
However, other genetic risk factors for inhibitor development
have not been researched to the same extent as F8 variants.
One of the most important genetic variables associated with
immune responses is the HLA repertoire. The handful of studies
on the association between specific HLAs and inhibitors (10–
14) involve 57 to 176 participants which is too low for making
statistical estimates.

In this survey we have focused on the HLA-DRB1/3/4/5,
HLA-DPB1, and HLA-DQB1 genes. The generation of anti-
drug antibodies to replacement proteins is driven by CD4+
helper T cells (9). This pathway involves the HLA Class II
molecules. The HLA-DRB1 variants are the most diverse Class II

TABLE 5 | Multivariate model results—all HLA-typed participants.

Proportion with Odds Ratio Adjusted Significant

Inhibitors (%) (95% CI)p-value

Age

Age 0.83 (0.75–0.91) 0.0012 Yes

Age2 1.01 (1.002–1.008) 0.007 Yes

Age3 0.99 (0.99–0.99) 0.023 Yes

Race/Ethnicity

Black or African

American 40/106 (38) 1.14 (0.63–2.06) 0.79

non-hispanic

Variant type

Intron 1 inversion 7/16 (44) 2.28 (0.68–7.66) 0.28

Large structural 22/35 (63) 4.02 (1.82–8.89) 0.007 Yes

change

Missense 45/439 (10) 0.37 (0.23–0.60) 0.002 Yes

Nonsense 32/76 (42) 1.51 (0.88–2.59) 0.23

Hemophilia Severity

Moderate 17/36 (12) 1.41 (0.66–2.99) 0.47

Severe 217/612 (35) 2.92 (1.56–5.50) 0.008 Yes

HLA Variant

DRB1*01:01 31/150 (21) 0.88 (0.42–1.69) 0.82

DRB1*01:03 2/20 (10) 0.22 (0.04–1.18) 0.20

DRB1*04:04 24/68 (35) 2.03 (1.10–3.79) 0.08

DRB1*04:05 9/19 (47) 2.32 (0.77–6.97) 0.23

DRB1*04:07 5/45 (11) 0.27 (0.09–0.82) 0.08

DRB1*08:01 5/31 (16) 0.60 (0.21–1.76) 0.47

DRB1*11:01 38/122 (31) 1.90 (1.04–3.46) 0.11

DRB1*11:04 5/56 (9) 0.39 (0.13–1.13) 0.20

DRB1*12:01 14/41 (34) 2.22 (0.95–5.22) 0.19

DRB1*12:02 5/11 (45) 1.57 (0.39–6.37) 0.66

DRB1*15:01 61/204 (30) 4.43 (0.44–30.56) 0.23

DRB1*15:03 16/30 (53) 9.85 (1.36–71.03) 0.08

DRB3*01:01 48/240 (20) 0.71 (0.47–1.08) 0.23

DRB5*01:01 76/237 (32) 0.24 (0.04–1.63) 0.24

DPB1*02:02 9/18 (50) 6.08 (1.95–18.94) 0.011 Yes

DPB1*03:01 40/185 (22) 0.80 (0.51–1.26) 0.47

DPB1*05:01 20/62 (32) 0.91 (0.47–1.79) 0.84

DPB1*10:01 11/30 (37) 1.96 (0.82–4.71) 0.23

DPB1*11:01 9/53 (17) 0.58 (0.25–1.34) 0.30

DPB1*18:01 12/26 (46) 0.99 (0.33–3.03) 0.99

DPB1*19:01 7/14 (50) 4.14 (1.22–14.03) 0.08

DQB1*03:01 75/345 (22) 0.66 (0.41–1.06) 0.20

DQB1*05:01 54/242 (22) 1.03 (0.55–1.93) 0.96

DQB1*05:02 16/38 (42) 1.72 (0.73–4.06) 0.31

DQB1*06:02 83/241 (34) 1.21 (0.46–3.19) 0.82

molecules and are predominantly, but not exclusively, involved
in the presentation of peptides derived from protein drugs.
For instance, in a recent study of FVIII peptides identified on
monocyte-derived dendritic cells, 78% of the peptides were found
to bind HLA-DRB1 (32).
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The MLOF data set includes pathogenic F8 variant data for
7,151 participants. All samples were processed at a central facility
using the same validatedmethod (33). It was not cost-effective for
us to HLA type all 7,151 participants. We determined through
simulation that 1,000 participants were expected to provide
adequate coverage of alleles while also having enough samples of
common alleles to allow for statistical comparisons.

We obtained high-resolution HLA typing for 997 of the 1,000
participants. The HLA-DRB1 alleles identified represent 99% of
the allelic variation in North America. The individual HLA-
DRB1 and HLA-DPQ1 alleles in our data set occur at frequencies
comparable to those found in the North American population
(Figure 2).

Based on ORs in our analysis of participants with severe HA
from a multivariate binomial logistic regression, we determined
that only one HLA variant, DPB1∗02:02, was associated with a
higher risk of inhibitor development with anOR of 16.50 (95%CI
2.87–94.78). Two variants, DRB1∗04:07 and DRB1∗11:04, were
associated with a lower risk of inhibitor development with ORs of
0.17 (95% CI 0.048–0.58) and 0.18 (95% CI 0.05–0.67; Figure 3,
Table 4). While similar trends were found in the data examining
all HLA-typed participants, the two seemingly protective HLA-
DRB1 variants failed to reach statistical significance (Figure 3,
Table 5).

Several studies indicate that Hispanic HA patients are at
higher risk of developing inhibitors than White patients (34–36).
Using the 612 HLA typed participants with severe HA from the
MLOF Research Repository provided similar results. Hispanic
participants had an association with higher rates of inhibitor
formation (OR= 2.50, 95% CI 1.37–4.54; Figure 3, Table 4). The
differential inhibitor-risk based on race independent of HLA-
type is interesting in the context of HLA repertoires because
human sub-populations have different relative frequencies of
HLA variants (37).

An interesting aspect of our findings is that HLA variants
identified as having a significant association with inhibitor
development are relatively rare in the North American
population. Moreover, the HLA-DPB1∗02:02 allele occurred
in only 10 participants which is less frequent than most
other alleles. It is only because we HLA typed a relatively
large cohort of participants that these rare HLA alleles were
identified in sufficient numbers to obtain statistical significance
in multivariate analyses.

Our analysis failed to confirm findings in previous works
comparing HLA-type to inhibitor development (3, 7, 10–14).
Plausible reasons include the small sample sizes in previous
studies and the reliance on univariate analyses failing to control
for correlation with other cofactors. It is not possible to
determine if these studies included a representative distribution
of HLA variants or sufficient numbers of replicates of each variant
for statistical analysis. However, given the limited number of
participants in each study, 57–176, it is unlikely that these criteria
were met

A limitation of our study is the possibility of bias in the
selection of participants for HLA-typing. As this dataset involved
a post-hoc analysis of data, the data was not collected with
this study in mind. Incomplete clinical data and available DNA

for HLA-testing forced us to select for participants who could
satisfy the needs of this study. Our study is an important step
in identifying correlates with significant effects of a patient’s
risk of inhibitor development. We hope that this will help to
inform future research on the relationship between HLA-type
(independently and in association with other genetic markers)
and inhibitor positive patients with HA.

To illustrate this class of studies, we used the subset of
participants with a missense mutation in the F8 gene to explore
the hypothesis that foreign-peptide-HLA-DRB1 binding affinity
is a risk factor for inhibitor development. Based on inhibitor data
from HA participants with missense mutations, several previous
studies support this hypothesis (7, 38, 39). The hypothesis is
based on the rationale that presentation of foreign peptides
is an initial, necessary step in eliciting an immune response
to a protein therapeutic (9). Thus, for an immune response
to be elicited two conditions must be met; (a) the infused
protein must generate peptides that are foreign to the patient
and (b) these foreign peptides must be efficiently presented to
the immune system by HLA molecules. Foreign peptides that
bind with high affinity to an individual patient’s HLA with
high affinity have a lower off-rate and thus a higher probability
of eliciting an immune response. The median percentile rank
binding affinity in participants who were inhibitor positive was
5.5 as compared to 7.5 for participants who had never developed
inhibitors. As the data was found to be non-Gaussian even
after transformations were applied (Shapiro–Wilk p-values of
7.67 ∗ 10−7 and ≤ 2.2 ∗ 10−16, respectively), the non-parametric
Mann–Whitney U-Test was used. This test rejected to null
hypothesis that the distributions of the two samples was similar
(Supplementary Figure 1).

In this study we present a data set of 997 fully HLA-
typed participants with HA. The HLA typed subset is derived
from a larger set of 7,151 participants. The 997 HLA-typed
participants capture the heterogeneity of the HA participant
population with respect to F8 variants, severity of disease and
racial diversity. Moreover, the HLA-DRB1 variants identified
represent 98% of the North American Population, occur at
relative frequencies observed in the wider population and include
sufficient replicates of each HLA-DRB1 variant for meaningful
statistical analyses. Using this data set we identified 1 HLA
variant associated with an increased risk of inhibitors and 2
HLA variants associated with a reduced risk of inhibitors. The
MLOF Research Repository is an extremely useful data set for
uncovering the genetic determinants associated with inhibitor
development inHA. TheHLA repertoire represents an important
and highly variable genetic characteristic of HA patients that was
lacking. The enhanced data set can now be used to generate more
complex models to identify biomarkers for predicting inhibitor
development in HA patients.
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