
High-Resolution Crystal Structure of Endoplasmic Reticulum
Aminopeptidase 1 with Bound Phosphinic Transition-State
Analogue Inhibitor
Petros Giastas,† Margarete Neu,‡ Paul Rowland,‡ and Efstratios Stratikos*,†

†National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
‡Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K.

*S Supporting Information

ABSTRACT: Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intra-
cellular enzyme that helps generate peptides presented by Major Histocompat-
ibility Complex Class I (MHC class I) molecules and is an emerging target for
immunotherapy applications. Despite almost two decades of research on ERAP1,
lack of high-resolution crystal structures has hampered drug-development efforts.
By optimizing the protein construct, we obtained a high-resolution (1.60 Å)
crystal structure of the closed-conformation of ERAP1 with a potent phosphinic
pseudopeptide inhibitor bound in its active site. The structure provides key insight
on the mechanism of inhibition as well as selectivity toward homologous enzymes
and allows detailed mapping of the internal cavity of the enzyme that
accommodates peptide-substrates. Bis-tris propane and malic acid molecules,
found bound in pockets in the internal cavity, reveal potential druggable secondary
binding sites. The ability to obtain high-resolution crystal structures of ERAP1 removes a major bottleneck in the development
of compounds that regulate its activity and will greatly accelerate drug-discovery efforts.
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Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an
intracellular enzyme that helps generate antigenic peptides

that are presented to the immune system by Major
Histocompatibility Complex Class I molecules (MHC-I).1 It
affects qualitative and quantitative aspects of the cellular
immunopeptidome and influences cytotoxic responses and has
thus been termed a “quintessential editor” of antigenic
peptides.2−5 ERAP1 is polymorphic and several coding
missense single nucleotide polymorphisms in its gene have
been associated with predisposition to human diseases, most
notably human leukocyte antigen (HLA)-associated inflam-
matory autoimmunity but extending to viral infections and
cancer.6−8 The importance of ERAP1 in regulating immune
responses has attracted interest in drug-discovery, aiming to
modulate its activity for applications in cancer immunotherapy
or the control of autoimmunity.9 First generation active-site
inhibitors for ERAP1 have been reported and shown to have
activity in regulating immune response in model systems
opening opportunities for clinical applications.10,11

Previous crystallographic analysis of ERAP1 has been limited
to medium-to-low resolution structures (2.7−3.0 Å) that
however have provided much insight on function.12 It has been
crystallized in two distinct conformations, an open and a closed
one, and it has been hypothesized that cycling between these
two conformations is necessary during catalytic turnover.13−15

Four distinct domains (I−IV) have been identified, with
domain II being the catalytic one, domain IV shielding the

catalytic site upon its closure, domain III acting as a hinge that
allows for the open-close-open transition, and domain I
stabilizing the closed conformation through its interactions
with both domains II and IV. Despite the growing interest in
the development of small MW compounds that regulate
ERAP1 activity as part of drug-discovery efforts, little structural
information exists on complexes of ERAP1 with known
inhibitors. The first two structures of ERAP1 contain bestatin,
a broad-range aminopeptidase inhibitor that is a very weak
inhibitor of ERAP1, in the active site, determined however
with relatively weak electron density.14,15 No other ERAP1-
inhibitor structures have been reported during the last 7 years,
highlighting crystallographic analysis as an important bottle-
neck on the preclinical development of compounds that
modulate ERAP1 activity. In this study, we present the first
high-resolution crystal structure of ERAP1 determined at 1.60
Å. ERAP1 was cocrystallized with a potent, nanomolar affinity,
phosphinic pseudotripeptidic inhibitor (IC50 of 86 nM, Figure
S1, compound 14 in ref 16, henceforth named DG046) that
was found bound in the active site and stabilized by an unusual
extensive network of π-stacking interactions. This high-
resolution structure allows detailed mapping of protein−
inhibitor interactions that can guide optimization efforts as well
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as mapping of the internal peptide binding site of ERAP1. Two
buffer components, bis-tris propane and malic acid molecules,
were found bound in pockets of the internal cavity that might
constitute opportunities for modulating peptide selectivity.
ERAP1 was found in the closed conformation, adopting an

overall architecture considerably similar to the previously
solved structure of ERAP1 bound with bestatin15 and to a
lesser extent similar to the closed structures of ERAP2 and
IRAP (50% sequence identity), the other members of the
oxytocinase subfamily of M1 aminopeptidases, when cocrystal-
lized with other phosphinic pseudotripeptides.10,17 However,
the present structure being in remarkably high resolution for a
protein molecule of that size, allows an unprecedentedly
detailed structural analysis of an enzyme of the family. This
high resolution was achieved by using an optimized ERAP1
construct that is described in detail in the Supporting
Information. This construct features a removable C-terminal
purification tag and has a 28-amino acid sequence (amino acids
486−513), encoded by exon 10 and part of exon 11 of the
ERAP1 gene, substituted by a short loop consisting of a GSG
sequence. While this short sequence has been reported to be
important for interactions with an ER chaperone ERp44 via
mixed disulfide formation,18 it was not visible in previous
ERAP1 structures and presumed to be unstructured.14,15

Specific activity of this ERAP1 construct was measured to be
0.34 ± 0.02 mol/s mol for the L-AMC assay, which is similar
and possibly slightly higher than reported value for previous
ERAP1 constructs, suggesting that the substitution did not
have any deleterious effects on ERAP1 activity.19,20

DG046 is coordinated to the zinc ion via its phosphinic
group with a geometry that imitates a transition state analogue
(Figure 1). The phosphinic group preserves its active site
position compared to the previously described phosphinic
pseudotripeptide ligands bound on ERAP2 or IRAP10,17 and

the amine group forms hydrogen bonds with the carboxyl
oxygens of Glu183, Glu320, and Glu376. However, the
homophenylalanine side chain (A), which is buried deep into
the S1 cavity, adopts a different orientation forming a T-shaped
π−π interaction with Phe433 from domain II. The propargyl
group which points toward the S1′ site adopts a spatial
conformation that optimizes its π−π interactions with the
aromatic cloud of the zinc coordinating histidine His353, while
the main chain carbonyl group forms a hydrogen bond with
the glycine amide of the juxtaposed GAMEN motif (Figure 1).
Despite the clear ligand binding in the present study,
compared to the previously reported closed structure of
ERAP1,15 the enzyme does not present ligand-induced
rearrangements, unlike in the homologous IRAP.17 The phenyl
moiety (B) of the phenylalanine residue of DG046 interacts via
T-shaped aromatic interactions both with Tyr438 of ERAP1
and intramolecularly with the phenyl group (A) of the
homophenylalanine. The later interaction is probably causing
the altered conformation of homophenylalanine when bound
into the S1 cavity. It appears that the lack of an aromatic
residue at S2′ of ERAP1, contrary to ERAP2 and IRAP
(Ser869 in ERAP1 vs Tyr892 in ERAP2 and Tyr961 in IRAP),
releases the P2′ site of the ligand from being stacked in a
parallel mode with any aromatic group from domain IV,
adopting a totally different rotamer (Figure 2). This altered

conformation results in a more distant placement of its C-
terminal carbonyl group, which in DG046 is located by ∼3 Å
farther from the metal ion, compared to the corresponding
group of DG013A when bound on ERAP2. This network of
π−π interactions greatly limits the conformational freedom of
the ligand and appears optimized for the active site of ERAP1
(see Figure S2 for a depiction of the B-factors of the atoms of
the inhibitor). This probably contributes to the potency of this
inhibitor, which is comparable to the larger compound
DG013A.16

Figure 1. (A) Chemical structure of the phosphinic pseudopeptide
DG046. (B) DG046 bound in the ERAP1 active site. The inhibitor is
shown in yellow sticks and the main residues in ERAP1 that make
interactions are shown in green. Oxygen atoms are in red, nitrogen in
blue, phosphorus in orange. The active site zinc(II) is shown as a gray
sphere. 2Fo-Fc electron density map is shown in blue mesh (contour
level 2.0 sigma). The approximate location of the active site specificity
pockets S1, S1′, and S2′ are indicated.

Figure 2. Superposition of active-site residues of ERAP1 (in green) to
homologous ERAP2 (PDB code 5AB0, in cyan) and IRAP (PDB
code 5MJ6, in magenta). Catalytic zinc(II) atom is shown as a gray
sphere. Numbering of each residue is indicated in different colors
depending on the enzyme. Phosphinic inhibitor carbon atoms are
shown in yellow, oxygen atoms are in red, nitrogen in blue,
phosphorus in orange. Only residues that come within 4 Å of the
inhibitor are shown. The active site zinc(II) is shown as a gray sphere.
The approximate location of the active site specificity pockets S1, S1′,
and S2′ are indicated.
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To address selectivity of the inhibitor for the three enzymes
of the oxytocinase subfamily, we superimposed the structures
of ERAP2 and IRAP on the structure of ERAP1 and examined
the locations of active-site residues that could impact inhibitor
binding (Figure 2). DG046 has been characterized to be a
potent (nanomolar) inhibitor of all three enzymes, with similar
potency for ERAP1 and ERAP2 and a greater potency for
IRAP (43 ± 4 nM for ERAP1, 37 ± 4 nM for ERAP2, and 2 ±
1 nM for IRAP).16 In ERAP1, the inhibitor’s phenyl group B
comes in close proximity with Ser869. In both ERAP2 and
IRAP, the equivalent position has a Tyr residue (892 and 961,
respectively), which could provide favorable stacking inter-
actions. Given the network of π-stacking interactions between
Phe433, phenyl A, and phenyl B, such interactions can be
highly stabilizing in ERAP2 and IRAP. However, both ERAP2
and IRAP lack the favorable H-bonding interaction of Ser316,
present in ERAP1, which may in part ameliorate the increase in
potency due to Tyr892 and Tyr961. ERAP2 furthermore has a
bulky Trp373 that is proximal to the C-terminal end of the
inhibitor. The interplay between additional positive inter-
actions and negative ones may explain the similar levels of
potency for ERAP2. IRAP however has a hydrophobic Ile461
that could make van der Waals interactions with the propargyl
group in the inhibitor, helping in properly orienting it to stack
with His357, leading to increased potency. Regardless of small
differences in potency, however, most of the inhibitor−protein
interactions are with residues that are conserved in all of the
three enzyme’s active sites, leading to the limited selectivity of
this compound.
Additional electron density within the internal cavity of the

enzyme but away from the catalytic site was interpreted to
belong to other ligands present during the crystallization
process (Figures S3 and S4). Based on the constituents of the
crystallization conditions and the high quality of the electron
density maps we identified bis-tris propane and malic acid
bound on distinct clefts inside the enzyme. The average B-
factors of the bis-tris propane and malic acid atoms were 23.2
Å2 and 36.2 Å2, respectively, which are similar to the values of
the main chain atoms of their immediate protein environment.
Figure 3 illustrates how bis-tris propane is wedged between
domains II and IV. Trp921 of the C-terminal domain α-helix
shields the side walls of this novel binding cleft, which we term
“side pocket” and interacts extensively via van der Waals
interactions with the hydroxymethyl groups of bis-tris propane.
The buffer molecule is being stabilized further by a number of
H-bonds with residues Asp406, Glu409, Asn641, and Gln675
from the three neighboring α-helices (two from domain IV and
one from domain II) and also via an H-bond with the domain
III lysine 551, which protrudes toward the side pocket. The
side pocket is also present in the previously reported structure
of the closed ERAP1, albeit empty from any ligand. Herein, the
high resolution of the structure and the presence of a bound
ligand allowed us to trace the side chains of residues that
previously were not detected. Comparing the current ERAP1
structure with the previous “closed” ERAP1 (PDB ID 2YD0)
shows that the binding of bis-tris propane to the side pocket is
not accompanied by conformational changes in any of the
stabilizing α-helices, indicating probably that bis-tris propane is
uninvolved in the closure of domain IV. However, as the side
pocket is located between the functionally important domains
II and IV and close to the hinge domain III, its possible role as
an allosterically modulating site cannot be excluded. This
pocket is framed by four α-helices and is widely accessible for

ligands from the direction of the catalytic site. The total
volume of the side pocket, which apart from the space
occupied by bis-tris propane extends beyond toward the
limiting α-helices of domains II and IV, was calculated at 2216
Å3.
Malic acid was found bound close to the nozzle of the

domain IV channel sealing the internal cavity from the outer
environment (Figure 3). Its binding occurs via strong H-bonds
of one carboxyl group with the side chains of the domain IV
residues Lys685 and Tyr684 as well as with water-mediated H-
bonds of its other carboxyl group with Gln730. This binding
pocket is occupied on the one side by polar or charged residues
(mostly basic), which adopt an extended conformation and
converge toward the spatial position of one of the malic acid
carboxylates. Gln730, which stabilizes the second carboxylate
of malic acid via the water-mediated interaction, is one of

Figure 3. (A) Chemical structures of malic acid and bis-tris propane.
(B) Bird’s eye view of the internal cavity of ERAP1 showing the
binding of the inhibitor DG046, malic acid (MLT), and bis-tris
propane (B3P) molecules. (C) Interactions between MLT and
ERAP1 residues. (D) Interactions between B3P and ERAP1 residues.
Domain II of ERAP1 is in orange and domain IV is in cyan. Carbon
atoms are shown in yellow, oxygen atoms are in red, nitrogen in blue,
phosphorus in orange.
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ERAP1’s polymorphic residues (Q730E) that has been
consistently shown to associate with disease predisposition
and antigen presentation.20 Our crystal structure shows that
Gln730 lies deep in the internal cavity of ERAP1 and
conceptually can interact with residues of a bound peptide.
Thus, the other common variant for this position, glutamic
acid, would alter such interactions.
This local difference of the surface electrostatic potential of

the internal cavity could contribute to changes in substrate
specificity and/or to the conformational dynamics of the
enzyme, especially since this residue lies among extended
hydrophobic patches (Figure 3C). Recently, the crystal
structure of a single chain bimodular protein comprising the
C-terminal domain of ERAP1 (residues 529−944) fused with
part of a well-known ovalbumin-derived epitope (IINFEKL)
was published, showing strong interactions of the IINFEKL
peptide with the same pocket of domain IV of a symmetry
related ERAP1 molecule.21 Interestingly, malic acid in the
present structure adopts a binding pose that partially overlaps
with the carboxyl group of the IINFEKL peptide and forms a
similar pattern of interactions. Enzymatic studies have shown
ERAP1’s allosteric activation for the hydrolysis of both
peptides and small pseudosubstrates, by small peptides such
as IINFEKL, and is believed that part of the elaborate
activation mechanism comprises binding of the C-terminus of
the modulating peptides at the site where malic acid was
bound.14,21 Although malic acid was part of the crystallization
condition and is not a known binder or regulator of ERAP1’s
enzymatic activity, its spatial coincidence with the C-terminus
carboxyl group of the IINFEKL peptide indicates a noticeable
affinity of that pocket for carboxylate-containing species.
Intriguingly, in the previously reported closed structure of
ERAP1 this region is occupied by strong electron density that
was not attributed to any compound.15 Our attempt to fit the
cacodylate ion, which was a constituent of the crystallization
buffer, was successful in eliminating the residual electron
density from the particular site and improving the refinement
statistics (Figure S5).
Examination of the internal cavity of the enzyme provides

insight on function and substrate recognition. Compared to the
open conformation of ERAP1, in the closed conformation,
domain IV moves toward domain II forming a large internal
cavity of ∼10 974 Å3 that fully occludes the catalytic site from
the external environment (Figure 4). The volume and
dimensions of the internal cavity are sufficient for the
accommodation of peptides even as long as 16-residues long,
a hallmark of ERAP1 catalytic properties.22 Using the 3 V Web
server23 and an oxygen atom as probe, three narrow channels
connecting the internal cavity with the outer environment were
detected. Two are framed by domains I, II, and IV, while the
third one threads among α-helices of domain IV (H14, H15,
H16, and H20). Notably, one of the former channels is located
above the S1 pocket and in our crystal structure is occupied by
several water molecules and one ethylene glycol, which was a
component of the cryoprotecting solution (Figure 4). The
position of this channel is such that could facilitate
postcleavage amino acid release to allow processive peptide
trimming. Although its width in the crystal structure is small
and is thus unlikely, it can accommodate larger amino acids, its
size may be larger when the enzyme is in solution, and crystal
packing restraints are not present.24

Overall, the three ligands detected in our crystal structure
occupy three distal edges of the cavity (Figure 4). Tracing from

the catalytic site where DG046 is located toward MLT or B3P
suggests possible trajectories for long peptide substrate
binding. Thus, it is very likely that the MLT and B3P ligands
reveal secondary binding pockets for long peptides. Interest-
ingly, along that path lie four ERAP1 SNPs that have been
associated with disease predisposition and have been shown to
affect peptide processing,25,26 suggesting that direct inter-
actions between these SNPs and peptides trapped in the cavity
may underlie their functional effects. Furthermore, optimiza-
tion of compounds that bind into one of those secondary sites
may affect binding of some peptidic substrates, altering the
specificity of ERAP1, something that may translate to changes
in the cellular immunopeptidome, an exciting prospect for
immunotherapy approaches that rely on modulating antigen
presentation.27

In summary, we present the first high-resolution crystal
structure of ERAP1, in complex with a potent inhibitor. The
inhibitor is found in the active site making key interactions that
explain both potency and selectivity. We also found additional
ligands bound within the enzyme’s large internal cavity that
suggest possible trajectories for the binding of large peptides
and potential druggable pockets that can regulate the
specificity of the enzyme.
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Figure 4. Substrate cavity of ERAP1 is shown in orange surface
representation. Crystallized ligands are shown in magenta, zinc(II) in
white. Common SNPs in ERAP1 that line the cavity are indicated in
green spheres. The S1 pocket narrow channel is indicated by a red
arrow.
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