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Abstract

Background: Plasmids that encode certain subtypes of the botulinum neurotoxin type B have recently been detected in
some Clostridium botulinum strains. The objective of the present study was to investigate the frequency with which plasmid
carriage of the botulinum neurotoxin type B gene (bont/B) occurs in strains of C. botulinum type B, Ab, and A(B), and
whether plasmid carriage is bont/B subtype-related.

Methodology/Principal Findings: PCR-Restriction fragment length polymorphism was employed to identify subtypes of the
bont/B gene. Pulsed-field gel electrophoresis and Southern blot hybridization with specific probes were performed to
analyze the genomic location of the bont/B subtype genes. All five known bont/B subtype genes were detected among the
strains; the most frequently detected subtype genes were bont/B1 and /B2. Surprisingly, the bont/B subtype gene was
shown to be plasmid-borne in .50% of the total strains. The same bont/B subtype gene was associated with the
chromosome in some strains, whereas it was associated with a plasmid in others. All five known bont/B subtype genes were
in some cases found to reside on plasmids, though with varying frequency (e.g., most of the bont/B1 subtype genes were
located on plasmids, whereas all but one of the bont/B2 subtypes were chromosomally-located). Three bivalent isolates
carried both bont/A and /B genes on the same plasmid. The plasmids carrying the bont gene were five different sizes,
ranging from ,55 kb to ,245 kb.

Conclusions/Significance: The unexpected finding of the widespread distribution of plasmids harboring the bont/B gene
among C. botulinum serotype B strains provides a chance to examine their contribution to the dissemination of the bont
genes among heterogeneous clostridia, with potential implications on issues related to pathogenesis and food safety.
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Introduction

Botulinum neurotoxins (BoNTs) are zinc-dependent metallo-

proteases that inhibit the release of the neurotransmitter

acetylcholine from peripheral cholinergic synapses. Through this

mechanism of action, they can cause the flaccid paralysis of

botulism in humans exposed through foodborne intoxication or

intestinal and wound toxemias, thus representing a serious

pathogenic and biodefense threat. However, when properly

administered they can also provide therapeutic and cosmetic

benefits in conditions characterized by excessive cholinergic

activity [1].

Seven structurally similar but serologically distinct BoNT

variants (A to G) have been identified: of these, BoNT/A and /

B are the most frequent causes of human botulism worldwide, and

both are used as therapy against a wide variety of involuntary

muscle disorders [1,2]. Recently, comparison of the available

BoNT gene and protein sequences has revealed that a certain

variability exists within individual BoNT serotypes [3,4]. In

particular, for six of the seven BoNT serotypes (all but serotype

G), subtypes that diverge at the amino-acid level by at least 2.6%

have been defined: for example, BoNT/A has four distinct

subtypes which differ from each other at the amino-acid level by

up to 16% (BoNT/A1, /A2, /A3, and /A4), and BoNT/B has five

subtypes, differing by up to 6% (BoNT/B1, /B2, /B3, non-

proteolytic B, and bivalent B) [4].

All BoNT serotypes and subtypes are encoded by specific bont

genes that may reside in the genome of six heterogeneous

clostridia groups, comprising at least four distinct species (i.e.,

Clostridium botulinum, C. argentinense, C. barati, and C. butyricum) [2].

The bont/C and /D genes are located on distinct bacteriophages

[5,6], and the bont/G gene is located on a plasmid [7,8], whereas

the bont/A, /B, /E and /F genes have long been assumed to be

chromosomally located. The genome sequencing of the BoNT/

A1-producing C. botulinum strain Hall (ATCC 3502) confirmed the

chromosomal location of the bont/A1 subtype gene [9]. However,

unexpectedly, the bont/A3 and bont/A4 subtype genes of the only

two BoNT/A3- and /A4-producing strains identified to date (i.e.,

Loch Maree and 657) were recently shown to reside on large

molecular weight plasmids (,267 kb and 270 kb, respectively)
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[10]. Strain 657 forms greater amounts of bivalent BoNT/B than

of BoNT/A4 and is thus regarded as C. botulinum type Ba [11]: its

bivalent bont/B subtype gene was shown to reside on the same

270 kb plasmid that carries the bont/A4 subtype gene [10].

Nucleotide sequencing confirmed these results and also showed

that the bont/B1 subtype gene of the C. botulinum strain Okra was

located on a ,149 kb plasmid; the plasmids described in strains

Loch Maree, 657, and Okra have been designated as ‘‘pCLK’’,

‘‘pCLJ’’, and ‘‘pCLD’’, respectively (GenBank Accession numbers

CP000940 and CP000963) [12]. A ,48 kb plasmid (pCLL) from

strain Eklund 17B (ATCC 25765) containing the non-proteolytic

bont/B subtype gene has been sequenced by the Los Alamos

National Laboratory of the United States (GenBank Accession

number CP001057), but has not been published to date.

These findings challenge the previous assumption of a

chromosomal location of the bont/A and /B genes and raise

questions as to whether plasmid-borne bont genes are rare or

widespread among botulinum neurotoxigenic clostridia.

BoNT/B is the most frequent cause of human botulism in

Europe (including Italy) and the second leading cause of botulism

in North America [13,14]. The purpose of the present study was to

evaluate the genomic location of subtypes of the bont/B gene in a

panel of C. botulinum strains of different origins. We also

investigated the association between certain subtypes of the bont/

B gene and plasmid carriage. The results are the first evidence that

all five known bont/B subtype genes can reside on plasmids that

vary considerably in size, and they clearly indicate that plasmid-

borne bont/B genes are more widespread among C. botulinum

serotype B isolates than previously known.

Results

PCR-Restriction Fragment Length Polymorphism (RFLP)
subtyping of the bont/B gene

Based on the alignment of sequences of the bont/B gene

(3876 bp) present in the GenBank database, the region encom-

passing nucleotides 920 to 3727 was selected for PCR amplifica-

tion because it has shown a certain degree of nucleotide

polymorphism. This region mainly encodes the transmembrane

and receptor binding domains of the neurotoxin, where most of

the amino-acid differences among the BoNT/B subtypes have

been reported [3]. Analysis of the 2807 bp region from the five

distinct bont/B subtypes using the restriction mapper program

Webcutter 2.0 (http://rna.lundberg.gu.se/cutter2/) allowed for

the selection of four endonucleases (HindIII, SacI, BamHI and

EcoRV) that were likely to generate distinct RFLP patterns among

the different bont/B subtypes.

This approach was tested with 4 C. botulinum strains whose bont/

B subtype was known and which were included in these

experiments as references (Table 1): specifically, CDC-1758 for

bont/B1 (GenBank Accession number: EF033127); CDC-1828 for

bont/B2 (GenBank Accession number: EF051571); CDC-4848

(ATCC 25765) for non-proteolytic bont/B (GenBank Accession

number: X71343); and CDC-1436 for bivalent bont/B (GenBank

Accession number: AF295926) [4]. Once the PCR products from

these strains were cut with the four restriction enzymes, each bont/

B subtype was characterized by a specific restriction profile that

was consistent with the one expected from the theoretical analysis

(Figure 1). We lacked a reference for the bont/B3 subtype because

the single C. botulinum strain that has been shown to harbor the

bont/B3 subtype (strain CDC-795, GenBank Accession number:

EF028400) [4] was not in our panel of strains. However, the

theoretical restriction map analysis revealed an EcoRV restriction

site at position 1828 of the 2807 bp region of the bont/B3 gene,

which was absent from the analogous region of the other bont/B

subtypes. It was therefore deduced that the PCR-RFLP strategy

could be used for subtyping the bont/B gene.

All five bont/B PCR-RFLP subtypes were detected among the

63 C. botulinum strains that were tested (Table 2). Bont/B1 and /B2

were the most frequent PCR-RFLP subtypes and were identified

in, respectively, 23 (36.5%) and 22 (34.9%) strains of the total 63

tested. Bont/B1 predominated among the US strains (22/43

strains), whereas bont/B2 was predominant among the Italian

strains (18/20 strains). To date, the bivalent bont/B subtype has

only been described in C. botulinum bivalent strains, which are

designated as ‘‘bivalent’’ because they harbor two distinct bont

genes [3,4]. In this study the bivalent bont/B PCR-RFLP subtype

was identified in 7 of the 9 bivalent C. botulinum strains tested: of

these, 5 were C. botulinum type A(B) strains which only produce

BoNT/A because their bont/B gene remains unexpressed [15], and

2 were C. botulinum type Ab strains which concomitantly produces

both BoNT/A and /B, the latter in minor amounts [16].

Furthermore, the bivalent bont/B PCR-RFLP subtype was

atypically detected in 7 C. botulinum type B strains that were non-

bivalent, that is, negative for bont genes other than B when tested

by PCR (data not shown). Hence, a total of 14 strains (22.2% of

the 63 tested) displayed the bivalent bont/B PCR-RFLP subtype.

Surprisingly, the remaining two bivalent C. botulinum type Ab

strains (ISS-87 and ISS-92), both from Italy, displayed a bont/B1

and a bont/B3 PCR-RFLP subtype, respectively, rather than the

expected bivalent bont/B subtype: since both strains had previously

been shown to contain a bont/A2 gene [17], they represent two

novel A2/B1 and A2/B3 bivalent variants. The bont/B3 PCR-

RFLP subtype was detected in an additional C. botulinum type B

strain, whereas the non-proteolytic bont/B PCR-RFLP subtype

was only identified in the reference strain and one additional

nonproteolytic C. botulinum type B strain.

Genomic localization of the bont/B and /A subtype genes
Previous studies have demonstrated that Southern blot analysis

of pulsed-field gels containing undigested genomic DNA from

bacterial cells can be used to establish whether a certain gene is

chromosomally or extra-chromosomally located [18,19]. The

same strategy, based on pulsed-field gel electrophoresis (PFGE)

and subsequent hybridization with bont/A and /B specific gene

probes, has also been applied to show plasmid carriage of the bont/

A3, /A4, and bivalent bont/B subtype genes [10]. We used this

PFGE Southern blot approach to define the genomic location of

the bont/B genes for the total 63 C. botulinum strains included in this

study (Table 1); the genomic location of the bont/A gene in the 4

type Ab and 5 type A(B) C. botulinum strains was analyzed as well.

Three of the 63 C. botulinum strains (CDC-7827, displaying the

bont/B1 PCR-RFLP subtype; ISS-310, displaying the bont/B2

PCR-RFLP subtype; and CDC-2312, displaying the bivalent bont/

B PCR-RFLP subtype) repeatedly produced DNA smears after

PFGE, presumably due to enhanced DNAse activity: consequent-

ly, they were not suitable for the subsequent hybridization

experiments, and the genomic location of their bont genes could

not be determined by this technique.

The bont/B probe hybridized to the chromosomal band of 28 C.

botulinum strains (47% of the total 60 PFGE-typeable strains tested).

In the remaining 32 C. botulinum strains (53%), the bont/B probe

hybridized to an extra-chromosomal band (Table 3). In particular,

extra-chromosomal location was found for: 21/22 (95%) of the

bont/B1 PCR-RFLP subtypes; 2/2 (100%) non-proteolytic bont/B

subytpes; 7/13 (54%) bivalent bont/B subtypes, of which 6

atypically detected in non-bivalent C. botulinum strains (Table 1);

1/2 (50%) bont/B3 subtypes, the latter atypically detected in a

Plasmid-Borne Bont/B Genes
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Table 1. C. botulinum strains analyzed in this study, and genomic location of their bont/B and /A PCR-RFLP subtype genes.

Strain no1 Toxin type State Year Source2 bont/B subtype3
bont/B genomic
location

bont/A
subtype

bont/A genomic
location

plasmid
size (kb) 4

CDC-555 B OH 1976 corn B1 plasmid 245

CDC-620 B PA 1976 IB B1 plasmid 245

CDC-628 B CT 1976 uB B1 plasmid 217

CDC-661 B TN 1976 IB B2 chromosome

CDC-668 B TN 1976 IB B1 plasmid 245

CDC-7065 B AK 1976 salmon Bnp plasmid 55

CDC-816 B MI 1977 peppers B3 chromosome

CDC-1588 B AZ 1977 IB Bbv plasmid 170

CDC-1632 B PA 1977 IB B1 chromosome

CDC-1758 B OR 1977 IB B1 plasmid 245

CDC-1828 B MO 1978 IB B2 chromosome

CDC-1852 B CO 1978 FB Bbv plasmid 245

CDC-1872 B MD 1978 IB B1 plasmid 139

CDC-2064 B PA 1978 IB B1 plasmid 139

CDC-2094 B MA 1978 AB B1 plasmid 245

CDC-2113 B NJ 1978 IB B1 plasmid 245

CDC-2292 B PA 1978 IB B1 plasmid 245

CDC-2306 B NJ 1978 IB B1 plasmid 245

CDC-2312 B PA 1978 IB Bbv n.d.6

CDC-2329 B DE 1978 IB B1 plasmid 245

CDC-2358 B MA 1978 uB Bbv plasmid 245

CDC-2586 B KY 1979 IB B2 chromosome

CDC-2589 B KY 1979 FB B1 plasmid 139

CDC-2593 B KY 1979 AB B1 plasmid 245

CDC-2746 B NY 1979 IB B1 plasmid 245

CDC-2978 B CO 1979 IB Bbv plasmid 170

CDC-48485 B ATCC 25765 Bnp plasmid 55

CDC-5078 B HI 1983 IB Bbv plasmid 245

CDC-5153 B IN 1984 IB B1 plasmid 139

CDC-5168 B HI 1984 IB Bbv plasmid 245

CDC-5250 B LA 1984 IB B1 plasmid 245

CDC-5281 B OK 1984 IB B2 chromosome

CDC-5323 B DE 1985 IB B1 plasmid 245

CDC-7699 B LA 1990 FB B1 plasmid 245

CDC-7827 B NV 1991 IB B1 n.d.6 245

MDb02 B - - - B1 plasmid 245

ISS-BC1 B I 2000 olives B2 chromosome

ISS-BC2 B I 2000 olives B2 chromosome

ISS-BC3 B I 2001 truffles B2 chromosome

ISS-251 B I 2003 chickpea B2 chromosome

ISS-257 B I 2002 FB B2 chromosome

ISS-267 B I 2003 IB B2 chromosome

ISS-274 B I 2004 FB B2 chromosome

ISS-276 B I 2002 honey B2 chromosome

ISS-306 B I 2004 FB B2 chromosome

ISS-310 B I 2004 FB B2 n.d.6

ISS-331 B I 2004 IB B2 chromosome

ISS-333 B I 2004 FB B2 plasmid 245

Plasmid-Borne Bont/B Genes
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bivalent C. botulinum type Ab strain (ISS-87); and 1/21 (5%) bont/

B2 subtypes.

When the Southern blots of the PFGE gels containing the

genomic DNA from the bivalent C. botulinum strains included in this

study were stripped and rehybridized with a bont/A specific gene

probe, a hybridization signal was observed at the same blot location

that reacted with the bont/B specific gene probe, indicating that the

bont/A and /B genes share the same genomic location in these

strains. Specifically, both bont/A and /B probes hybridized to the

chromosomal band of 6 bivalent C. botulinum strains, including all 5

C. botulinum type A(B) strains and 1 of the 4 C. botulinum type Ab

strains (CDC-588): all 6 strains exhibited the bivalent bont/B PCR-

RFLP subtype and had previously been shown to possess the bont/

A1 subtype [17,20]. In the remaining 3 bivalent C. botulinum type Ab

strains (CDC-1436, ISS-87, and ISS-92), both bont/A and /B

probes hybridized to the same extra-chromosomal blot location: the

3 strains exhibited bont/B1, /B3, and bivalent/B PCR-RFLP

subtypes, respectively, and had previously been shown to possess the

bont/A2 subtype [17,20] (Table 1).

Figure 2 shows a PFGE gel stained with ethidium bromide and

its Southern blot membrane after hybridization with a non-

radioactive bont/B gene probe.

Table 1. cont.

Strain no1 Toxin type State Year Source2 bont/B subtype3
bont/B genomic
location

bont/A
subtype

bont/A genomic
location

plasmid
size (kb) 4

ISS-338 B I 2002 honey B2 chromosome

ISS-342 B I 2004 tuna fish B2 chromosome

ISS-360 B I 2005 peppers B2 chromosome

ISS-372 B I 2005 beans B2 chromosome

ISS-378 B I 2006 mushrooms B2 chromosome

ISS-388 B I 2006 FB B2 chromosome

CDC-588 Ab OH 1976 FB Bbv chromosome A1 chromosome

CDC-1436 Ab UT 1977 IB Bbv plasmid A2 plasmid 245

ISS-87 Ab I 1995 FB B3 plasmid A2 plasmid 245

ISS-92 Ab I 1993 FB B1 plasmid A2 plasmid 245

CDC-1634 A(B) PA 1977 IB Bbv chromosome A1 chromosome

CDC-1727 A(B) AK 1977 whale oil Bbv chromosome A1 chromosome

CDC-1807 A(B) CO 1977 beans and franks Bbv chromosome A1 chromosome

CDC-4893 A(B) IL 1983 FB Bbv chromosome A1 chromosome

CDC-5277 A(B) WV 1984 IB Bbv chromosome A1 chromosome

1CDC (Centers for Disease Control and Prevention, USA); ISS (Istituto Superiore di Sanità, Italy).
2IB (infant botulism); FB (foodborne botulism); AB (animal botulism); uB (unknown botulism).
3Bnp (non-proteolytic B); Bbv (bivalent B).
4The size of the closest molecular standard bands are indicated.
5Non-proteolytic C. botulinum.
6n.d. = Not determined, because of DNA degradation.
doi:10.1371/journal.pone.0004829.t001

Figure 1. BamHI, HindIII, SacI and EcoRV restrictions of the bont/B PCR products obtained from strains CDC-1758 (lanes 1, 5, 9, 14);
CDC-1828 (lanes 2, 6, 10, 15); CDC-1436 (lanes 3, 7, 11, 16); CDC-4848 (lanes 4, 8, 12); CDC-816 (lane 13). M.S. (Molecular standard, 1 kb
Promega).
doi:10.1371/journal.pone.0004829.g001
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Characterization and size determination of the extra-
chromosomal bands

The PFGE Southern blot assay can also be used to estimate the

size of extra-chromosomal hybridization bands, when present;

however, large circular DNA molecules can exhibit anomalous

migration during PFGE [21,22]. As shown in Figure 3a, the DNA

preparations from several C. botulinum isolates displayed double

bands after hybridization with the bont/B gene probe: this could

indicate either that these isolates carry multiple copies of the bont/

B gene on two distinct extra-chromosomal elements of different

sizes or that the same extra-chromosomal element harboring the

bont/B gene exists as variable forms whose mobility differs under

PFGE conditions. The latter hypothesis is consistent with the

diverse mobility of the isoforms of large (.100 kb) circular

plasmids: i) open circular forms, which remain trapped in the

sample wells of pulsed-field gels; ii) closed supercoiled forms, which

move slowly under PFGE conditions; and iii) linear forms, which

migrate at rates that allow the size of the plasmids to be accurately

determined [22]. Based on these considerations, the double extra-

chromosomal bands that we observed in some DNA samples

might correspond to the linear and supercoiled forms of the same

plasmids. To test this hypothesis, the PFGE plugs were treated

with S1 nuclease, which enzymatically converts all plasmid forms

into linear forms [22]. The S1 nuclease treatment caused the

disappearance of the slower of the two bands present in the DNA

samples, indicating that this band was probably the supercoiled

plasmid; the mobility of the faster band was not affected by S1

nuclease treatment, which is consistent with the behavior expected

for the linear plasmid [22]. Whether or not linear and supercoiled

plasmid forms are present depends on the age of the culture [22],

which is consistent with the appearance of the double hybridiza-

tion bands in some, but not all, of our DNA samples: in fact, the

DNA preparations that we used were obtained from bacteria

collected from overnight cultures, whose growth phases were not

uniform (see the Materials and Methods section). Other DNA

samples displayed single extra-chromosomal bands after hybrid-

ization with the bont/B gene, which presumably corresponded to

the linear plasmid forms; indeed, their mobility did not change

after S1 nuclease treatment.

As illustrated in Figure 3b, PFGE resolved at least five

differently sized bont/B-carrying plasmids among the 32 C.

botulinum isolates. They ranged from ,55 kb to ,245 kb, as

determined by comparison with a molecular standard (DNA

isolated from Salmonella enterica serotype Braenderup strain H9812

and restricted with XbaI) [23]. Specifically, a plasmid greater than

the 245 kb band of the molecular size marker was detected in 23

C. botulinum strains (72% of the 32 strains harboring a plasmid-

borne bont/B gene). Of these, 16 displayed the bont/B1 PCR-RFLP

subtype, 5 displayed the bivalent bont/B PCR-RFLP subtype, and

2 displayed the bont/B2 and bont/B3 PCR-RFLP subtypes

(Table 4). A plasmid in line with the 139 kb band of the molecular

standard was observed in 4/32 (12.5%) C. botulinum strains, all of

which exhibited the bont/B1 PCR-RFLP subtype. Furthermore,

plasmids close in size to the 170 kb and 55 kb bands of the

Table 3. Plasmid-borne bont/B PCR-RFLP subtype genes
among C. botulinum strains.

bont/B PCR-RFLP
subtype

No. of PFGE-typeable
strains (n = 60)

Plasmid carriage (%)
(n = 32)

B1 22 21 (95%)

B2 21 1 (5%)

B3 2 1 (50%)

bivalent B 13 7 (54%)

nonproteolytic B 2 2 (100%)

doi:10.1371/journal.pone.0004829.t003

Figure 2. PFGE gel (a) and Southern blot membrane after
hybridization with a bont/B gene probe (b). Strains: ISS-274 (lanes
1, 8); CDC-2589 (lanes 2, 9); CDC-2306 (lanes 3, 10); CDC-1872 (lanes 4,
11); CDC-5250 (lanes 5, 12); ISS-BC2 (lanes 6, 13); CDC-5323 (lanes 7, 14).
M.S. (Molecular standard: DNA isolated from Salmonella enterica
serotype Braenderup strain H9812 and restricted with XbaI) [23].
doi:10.1371/journal.pone.0004829.g002

Table 2. Distribution of bont/B PCR-RFLP subtype genes among 63 C. botulinum strains.

bont/B PCR-RFLP subtype No. (%) of strains No. of C. botulinum strains (total)

Type B (54) Type Ab (4) Type A(B) (5)

Italy (18) USA (36) Italy (2) USA (2) Italy (0) USA (5)

B1 23 (36.5) 22 1

B2 22 (34.9) 18 4

B3 2 (3.2) 1 1

bivalent B 14 (22.2) 7 2 5

nonproteolytic B 2 (3.2) 2

doi:10.1371/journal.pone.0004829.t002

Plasmid-Borne Bont/B Genes
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molecular standard were observed in 2 C. botulinum strains each;

both ,170 kb plasmids carried the bivalent bont/B PCR-RFLP

subtype, whereas both ,55 kb plasmids carried the non-

proteolytic bont/B PCR-RFLP subtype. Finally, a unique plasmid

of approximately 217 kb was detected in a single strain displaying

the bont/B1 PCR-RFLP subtype. The plasmids harboring both

bont/A and /B genes that were detected in 3 bivalent C. botulinum

strains were .245 kb.

Discussion

Subtype diversity within BoNT serotypes can significantly

impact their receptor binding, target affinity and antibody

recognition; the latter issue may be critical for the development

of effective neutralizing antibodies [3]. However, little is known

about the distribution of the BoNT subtypes and their encoding

genes among C. botulinum strains with different origins. We

previously analyzed the bont/A gene of a set of C. botulinum strains

using a PCR-RFLP approach [17]: although this method can only

detect a few single nucleotide polymorphisms that are recognized

by specific restriction enzymes, it correctly identified the bont/A

subtype genes, as subsequently shown by the complete nucleotide

sequencing of some of those genes [24,25]. In the current study,

we adopted a similar PCR-RFLP approach for subtyping the bont/

B gene in a panel of C. botulinum strains from different origins

(clinical forms of botulism and foods), countries, and periods. Our

results revealed that the bont/B2 PCR-RFLP subtype was more

prevalent among C. botulinum strains from Italy, whereas the bont/

B1 PCR-RFLP subtype prevailed among strains from the US,

confirming earlier suggestions by Hill et al. [4]. A similar

geographic distribution has been found for bont/A subtypes, with

bont/A2 more prevalent in Italy and bont/A1 more prevalent in the

US [17]. These results could reflect a variation in the evolutionary

history of both bont/A and /B subtypes. Furthermore, no

correlation was observed between any specific bont/B subtype

and the clinical or food source of the strains or the period in which

the strains were isolated, as previously shown for bont/A subtypes

[17].

Unexpectedly, we found that the bivalent bont/B PCR-RFLP

subtype was not restricted to the bivalent C. botulinum strains and

Figure 3. Southern blot membrane before (a) and after (b) S1 nuclease treatment. Strains: CDC-MDb2 (lanes 1, 11); CDC-1758 (lanes 2, 12);
CDC-5078 (lanes 3, 13); CDC-1852 (lanes 4, 14); CDC-1872 (lanes 5, 15); CDC-628 (lanes 6, 16); CDC-1588 (lanes 7, 17); CDC-2978 (lanes 8, 18); CDC-706
(lanes 9, 19); CDC-4848 (lanes 10, 20). M.S. (Molecular standard: DNA isolated from Salmonella enterica serotype Braenderup strain H9812 and
restricted with XbaI) [23].
doi:10.1371/journal.pone.0004829.g003

Table 4. Molecular size of the plasmids carrying the different bont/B subtype genes.

Plasmid Size (kb)a bont/B1 bont/B2 bont/B3 bivalent bont/B Nonproteolytic bont/B

,245 16 1 1 5 2

,217 1 2 2 2 2

,170 2 2 2 2 2

,139 4 2 2 2 2

,55 2 2 2 2 2

aThe plasmid sizes were deduced by comparison with a molecular standard [23].
Slight differences between the sizes of plasmids included in the same group were observed.
doi:10.1371/journal.pone.0004829.t004
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was detected in several non-bivalent type B strains; we also found

that two bivalent C. botulinum type Ab strains exhibited the bont/B1

and /B3 PCR-RFLP subtypes. These results could indicate that

the bont/B genes of these peculiar C. botulinum strains could be

previously unrecognized subtype genes, although this would need

to be confirmed with sequencing. Alternatively, the finding that

some C. botulinum strains display bont/B subtypes other than the

expected ones could be indicative of mobilization of the bont/B

gene among strains at some point during evolution. Circumstantial

evidence that the bont/B gene is mobile and might have been

transferred among progenitor strains already exists, in particular: i)

BoNT/B can be formed by C. botulinum strains of different

clostridia groups [2]; ii) BoNT/B is produced along with another

BoNT type by some C. botulinum strains, such as those of type Ab,

Ba, and Bf [16]; iii) a silent bont/B gene is present in the genome of

C. botulinum type A(B) strains [15]; and iv) toxigenic C. botulinum

type B and its non-toxigenic derivatives have been isolated from

the same samples [26]. Although there is no direct evidence of the

mobilization of the bont/B gene, the recent demonstrations that the

gene is plasmid-encoded in certain C. botulinum strains further

support this hypothesis: indeed, plasmids may play an important

role in mediating genetic transfer within and among bacterial

genomes [27].

With regard to the genomic location of the bont/B1, /B3 and

bivalent /B subtype genes atypically detected in the C. botulinum

strains mentioned above, our results showed that the bont/B genes

were extra-chromosomally located in all of these strains, though

for one strain the bivalent bont/B subtype gene could not be

localized because of consistent DNA degradation. Analysis of the

genomic location of the bont/B genes was then extended to all C.

botulinum strains included in this study: surprisingly, extra-

chromosomal elements carrying the bont/B gene were detected

in most (53%), with no apparent relationship with their origin.

We assumed that the bont/B-carrying extra-chromosomal

elements were circular plasmids, based on the agreement between

their PFGE migration and the mobility behavior predicted for the

supercoiled and linear forms of circular plasmids [22]. Further-

more, some of the extra-chromosomal elements were similar in

size to those of the bont/B-encoding plasmids determined to date

[i.e., 270 kb for pCLJ of strain 657, 149 kb for pCLD of strain

Okra [12], and 48 kb for pCLL of strain Eklund 17B (GenBank

Accession number CP001057)], though two previously unreported

sizes were also revealed in this study. However, we predicted the

plasmid sizes by comparison with a molecular standard, whereas

an accurate size determination would require the complete

nucleotide sequencing of the plasmids.

Our results indicate that all bont/B subtypes can be located on

plasmids and that a C. botulinum strain can only carry bont/B

plasmids of a single size. Specifically, of the bont/B plasmids

identified for 32 C. botulinum strains, 24 were greater than 200 kb,

and the remaining 8 ranged from approximately ,55 kb to

,170 kb: assuming that the C. botulinum chromosome is about

3.9 Mb [9], such plasmids would constitute a variable proportion

(from 0.1% to 6%) of the genomes of the strains harboring them.

The largest plasmids (,245 kb) were associated with all bont/B

subtypes, except for the non-proteolytic bont/B subtypes, which

were only associated with the smallest plasmids (,55 kb). Notably,

one of the non-proteolytic bont/B subtypes belonged to strain

CDC-4848 (or ATCC 25765), which was found to correspond to

strain Eklund 17B: this strain has plasmid sequence of ,48 kb

(GenBank Accession number CP001057), which is similar to the

,55 kb in our study. The intermediate-sized plasmids detected in

the present study were associated with either the bont/B1 or the

bivalent bont/B subtypes, suggesting that both subtypes can reside

on plasmids of different sizes. For the strains whose bont/B gene

was plasmid-borne, no chromosomal band hybridized with the

bont/B gene probe, indicating that the plasmids did not integrate

with the chromosome.

Remarkably, 95% of the bont/B1 subtypes resided on plasmids,

whereas the same percentage of the bont/B2 subtypes resided on

the chromosome. Although the biological significance of this

finding is unclear, it supports the hypothesis of diverse evolution-

ary pathways for the bont/B1 and /B2 subtypes, as hypothesized

above based on their geographic separation.

For three of the nine bivalent C. botulinum strains (all three of

type Ab), the bont/A and /B genes were located on the same

plasmid, whose size was similar to that of plasmid pCLJ (270 kb) of

the bivalent C. botulinum type Ba strain 657 [10,12]. However, for

the other 6 bivalent C. botulinum strains [one of type Ab and 5 of

type A(B)], the bont/A and /B genes were located in the

chromosome. The finding that the bont/A and /B genes share

the same genomic location (whether it was the chromosome or the

plasmid) suggests that they are structurally linked. The specific

location could be related to the bont/A subtype: in fact, all three of

the strains showing plasmid location of the genes had bont/A2 and

all 6 of the bivalent strains with chromosome location had bont/A1

[17,20]. However, this hypothesis would need to be tested with

more bivalent strains.

To determine the reasons for which the genomic location of the

bont/A and /B genes varies among the different C. botulinum strains,

the bont plasmids identified in the present study will need to be

characterized at the sequence level. Partial mobile-enabling

sequences, such as insertion sequences (IS), have been detected

downstream of the bont/B and /A genes in plasmids pCLJ, pCLD

and pCLK; when chromosomal, the bont genes are flanked by both

upstream and downstream IS-like elements, which might be

indicative of transposon integration [12]. The association between

remnants of IS elements and the bont/A and /B genes suggests that

these genes could have been mobilized and stably inserted into the

chromosome or plasmid, depending on the recipient Clostridium

ancestor strain [28]. The same mechanism might have contributed

to the dissemination of the bont genes among heterogeneous groups

of clostridia; in this respect, the ability of the BoNT-encoding

plasmids to undergo conjugation or other types of genetic transfer

should also be investigated.

Notably, many similarities have previously been reported

among the BoNT/B of C. botulinum, the BoNT/G of C. argentinense,

and the tetanus neurotoxin (TeNT) of C. tetani, which is also

plasmid-encoded [29]: in particular, these neurotoxins have a high

nucleotide and amino-acid sequence homology [4,30], and they

cleave the same presynaptic membrane protein synaptobrevin,

though at different peptide bonds [1]. Furthermore, BoNT/B and

/G recognize the same neuronal receptors [31,32]. The finding

that the bont/B gene can be plasmid-borne, like the bont/G and tent

genes, strongly supports the hypothesis that they descend from a

common ancestor.

A future challenge will be to determine whether the BoNT-

encoding plasmids play a role in the development and/or

flexibility of C. botulinum, thus potentially increasing its adaptability

to certain niches, such as specific environments and food matrixes,

and ultimately contributing to the disease of botulism.

Materials and Methods

Clostridia strains and culture conditions
A total of 63 C. botulinum strains were used in this study (Table 1).

Of these, 20 were from the culture collection of the National

Reference Center for Botulism, Istituto Superiore di Sanità (ISS),
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Rome, Italy, and had been isolated between 2000 and 2006; the

remaining 43 strains, isolated in the United States from 1976 to

1990, were generously provided by Charles Hatheway of the

Botulism Laboratory, Centers for Disease Control and Prevention

(CDC), Atlanta, GA.

Forty-six strains were of clinical origin, specifically, 45 were

from distinct cases of human botulism and 1 from animal

botulism; 1 strain (ATCC 25765) was from a marine sediment

of the West Coast of the US; 1 strain was of unknown origin; and

the remaining 14 strains were from different types of foods.

Fifty-four strains were C. botulinum type B (i.e., they produced

BoNT/B and were positive for the bont/B gene when tested by

PCR) [15]; 9 other strains had been shown to contain, in addition to

the bont/A gene, a bont/B gene in their genome, which was either

silent [C. botulinum A(B)] (CDC-1634, -4893, -5277, -1807, and

-1727) or expressed [C. botulinum Ab] (CDC-588, -1436, ISS-87, and

-92) [15,17]. Clostridia stock cultures were checked for purity on egg

yolk agar (EYA) plates (Oxoid, Basingstoke, England). Single

colonies were transferred from the plates to 10 ml of TPGY broth

(5% Trypticase, 0.5% peptone, 0.4% glucose, 2% yeast exctract,

1% L-cysteine hydrocloride monohydrate) and grown overnight at

37uC, under anaerobiosis (GasPack jars, Oxoid).

For the PCR experiments, 1 ml from each overnight broth-

culture was centrifuged and washed with 1XTE buffer (10 mM

Tris, pH 7.4, 1 mM EDTA); the pellets were re-suspended in 1 ml

of sterile distilled water, and 5 ml of the cell suspensions was used

as DNA template in each PCR reaction mixture. Nine milliliters of

the overnight TPGY broth-cultures was used for the PFGE

experiments.

PCR restriction fragment length polymorphism (RFLP)
subtyping of the bont/B gene

Primers BS1 (59 AGTTTGCATATCAGATCCTAA 39) and

BS2 (59 AACGATGAATACCAATCAATCC 39) were selected in

conserved regions of the aligned bont/B gene sequences available

from the GenBank database, to generate a PCR product

encompassing nucleotides 920 to 3727. PCR products were

amplified in a programmable thermal cycler (M.J. Research,

model PTC100, Waltham, MA) using the Expand High Fidelity

PCR System (Roche Diagnostics, Penzberg, Germany) according

to the manufacturer’s instructions with the following amplification

parameters: 1 cycle of 2 min at 94uC; 30 cycles consisting of 15 sec

at 94uC, 30 sec at 50uC, 4 min at 68uC with 5 sec of increment/

cycle; and a final cycle at 68uC for 7 min. The PCR products were

resolved by TAE gel electrophoresis, purified by a DNA gel

extraction kit (Montage, Millipore Corporation, Bedford, MA,

USA), and digested separately with 10 units of BamHI, HindIII,

SacI and EcoRV (New England Biolabs, Ipswich, MA). All

restrictions were performed at least twice.

Pulsed-field gel electrophoresis (PFGE) and S1 nuclease
treatment of plugs

Agarose plugs containing the genomic DNA from the bacterial

cultures were prepared as previously described [17]. The DNA

isolated from the Salmonella enterica serovar Braenderup strain

H9812 and restricted with XbaI (Roche Diagnostics) served as the

molecular standard [23].

For the treatment with S1 nuclease, single slices of some agarose

plugs were washed twice in S1 nuclease buffer (50 mM NaCl,

30 mM sodium acetate [pH 4.5], 5 mM ZnSO4) and incubated

with 1 unit of Aspergillus oryzae S1 nuclease (MBI Fermentas,

Vilnius, Lithuania) in 200 ml of S1 buffer for 10 min at 37uC.

PFGE of undigested or S1-digested DNA was carried out in a

contour-clamped homogeneous electric field apparatus (CHEF

Mapper apparatus, BioRad Laboratories, Hercules, CA). A

constant temperature of 14uC was used, and the electrophoresis

parameters were as follows: voltage of 6 V/cm, an angle of 120,

and switch times of 4 to 40 sec (linear ramping factor), for 22 h.

Gels were stained with ethidium bromide and visualized in a

GelDoc 2000 apparatus (Bio-Rad Laboratories).

Probes preparation and Southern hybridization
A 592 bp fragment of the bont/B gene and a 268 bp fragment of

the bont/A gene were PCR labeled with digoxigenin (DIG), using

primers described elsewhere [10] and a non-radioactive DNA

probe labeling kit (PCR DIG Probe Synthesis Kit, Roche

Diagnostics GmbH, Mannheim, Germany). The DNA was

transferred from PFGE gels to positively charged nylon mem-

branes (Hybond-N+, Roche) by overnight capillary transfer with

buffer 206 SSC (3.0 M sodium chloride, 0.3 M sodium citrate,

pH 7.0). After transfer, nylon membranes were hybridized with

either bont/B or bont/A gene probes at 42uC for 18 h in a DIG

Hyb Solution (Roche).

A chemiluminescence-based method was used to detect probe-

target hybrids, according to the manufacturer’s instructions

(Roche). Briefly, the membranes were blocked for 30 min; 20 ml

of anti-digoxigenin-AP Fab-fragments (15 U/20 ml) (Roche) were

added to the blocking solution; and the membranes were

incubated for 30 min at room temperature. After equilibration

in detection buffer, the membranes were incubated with

chemiluminescent substrate CSPD in a Hypercassette (Amersham

Pharmacia Biotech, Milan, Italy) and exposed to CL-XPosure film

(Pierce Chemical, Rockford, IL).

For membrane stripping and rehybridization, a previously

hybridized membrane was rinsed with distilled water and then

soaked three times for 30 min in 0.2 M NaOH containing 0.1%

sodium dodecyl sulfate at 37uC, to remove the bound probe. The

membrane was washed for 15 min in 26SSC and then hybridized

with a second probe.
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