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Tactile sensory input of surgeons is severely limited in minimally invasive surgery,

therefore manual palpation cannot be performed for intraoperative tumor detection.

Computer-aided palpation, in which tactile information is acquired by devices and relayed

to the surgeon, is one solution for overcoming this limitation. An important design factor

is the method by which the acquired information is fed back to the surgeon. However,

currently there is no systematic method for achieving this aim, and it is possible that

a badly implemented feedback mechanism could adversely affect the performance

of the surgeon. In this study, we propose an assistance algorithm for intraoperative

tumor detection in laparoscopic surgery. Our scenario is that the surgeon manipulates a

sensor probe, makes a decision based on the feedback provided from the sensor, while

simultaneously, the algorithm analyzes the time series of the sensor output. Thus, the

algorithm assists the surgeon in making decisions by providing independent detection

results. A deep neural network model with three hidden layers was used to analyze the

sensor output. We propose methods to input the time series of the sensor output to the

model for real-time analysis, and to determine the criterion for detection by the model.

This study aims to validate the feasibility of the algorithm by using data acquired in our

previous psychophysical experiment. There, novice participants were asked to detect a

phantom of an early-stage gastric tumor through visual feedback from the tactile sensor.

In addition to the analysis of the accuracy, signal detection theory was employed to

assess the potential detection performance of the model. The detection performance

was compared with that of human participants. We conducted two types of validation,

and found that the detection performance of the model was not significantly different from

that of the human participants if the data from a known user was included in the model

construction. The result supports the feasibility of the proposed algorithm for detection

assistance in computer-aided palpation.
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INTRODUCTION

Surgical skills involve manipulation and palpation.
Manipulations such as a needle insertion, making incisions,
or suturing a wound, are based on the surgeon’s sensory-
motor control for achieving the desired movements of surgical
instruments, or handling of target tissue. Palpation is also based
on sensory-motor control, but ultimately it is aimed at obtaining
information about the target tissue, or detecting hard masses
such as tumors in soft tissue. Thus, these skills rely on sensory
inputs from visual, auditory, and tactile channels (Okamura
et al., 2011), and a surgeon efficiently integrates these sensory
inputs. However, in certain medical fields there are situations
where the sensory input is restricted. For example, minimally
invasive surgery such as laparoscopic surgery substantially limits
the tactile sensory input of the surgeon, therefore there are
difficulties in dexterous manipulation and palpation.

Computer-aided surgery is one solution to overcome these
difficulties owing to the lack of tactile feedback. Robotic
technologies can assist and enhance the manipulation ability of
a surgeon, by facilitating high precision and multiple degrees of
freedom within a small working area. Moreover, autonomous
surgery by robots has attracted attention. Surgical robots
with active constraints (Bowyer et al., 2014), and robots for
autonomous suturing (Pedram et al., 2017), are both examples of
achieving a high level of autonomy. Some research studies have
also tried to achieve a high level of autonomy in computer-aided
palpation. For instance, Hui and Kuchenbecker (2014) evaluated
the ability of BioTac R© for the detection and characterization
of lumps in soft objects, as a step toward the development of
an automatic palpation tool. McKinley et al. (2015) developed
a disposable palpation probe that is mounted on the tip of a
da Vinci R© tool, and Garg et al. (2016) achieved autonomous
tumor localization by using this probe. Konstantinova et al.
(2017) achieved autonomous tumor detection with robotic
manipulation of a sensor probe, on the basis of human palpation
strategies. However, it was only successful under controlled
conditions such as using known target tissues, and autonomous
palpation is still challenging owing to the complex and variable
sensing environments. For practical applications, direct control
of the sensing device by a surgeon is preferable, to ensure the
safety of the patient. Moreover, ethical and legal issues will be
significant hurdles to overcome before widespread application
is achieved. Non-autonomous computer-aided palpations are
still advantageous, because they can be considered as natural
extensions of current surgical procedures. In these palpations,
the surgeons make the decision based on information given by
the systems and the operation. Thus, the method by which the
acquired information is fed back to a surgeon is an important
design factor (Culmer et al., 2012).

There are many research works on non-autonomous
computer-aided palpation. For instance, there are hand-held
devices that are directly manipulated by a surgeon to acquire
information about the target tissue (Ottermo et al., 2004;
Schostek et al., 2006; Beccani et al., 2014; Escoto et al., 2015;
Solodova et al., 2016). Moreover, master–slave surgical systems
with a force/tactile sensor (Tavakoli et al., 2006; Talasaz and Patel,

2013; Meli et al., 2016; Pacchierotti et al., 2016; Li et al., 2017)
or force estimation by a state observer (Gwilliam et al., 2009;
Yamamoto et al., 2012; Schorr et al., 2015) have been developed.
In addition, a training simulator for femoral palpation and
needle insertion was developed (Coles et al., 2011). Among
the above-mentioned systems it is common to provide visual
feedback, such as by displaying a color map (Schostek et al., 2006;
Talasaz and Patel, 2013; Beccani et al., 2014; Escoto et al., 2015;
Solodova et al., 2016; Li et al., 2017), a graphical bar (Gwilliam
et al., 2009; Schorr et al., 2015), a sequential lamp (Tavakoli
et al., 2006), or a color map overlaid on an endoscopic image
(Yamamoto et al., 2012). As an additional approach for sensory
feedback, a tactile display (Ottermo et al., 2004; Coles et al., 2011;
Schorr et al., 2015; Pacchierotti et al., 2016), or force feedback
through a master console (Tavakoli et al., 2006; Gwilliam et al.,
2009; Schorr et al., 2015; Meli et al., 2016) have either been
developed or implemented.

We have focused on temporal information-based palpation, in
which time series of outputs from a tactile sensor are fed back to
the user, to enable intraoperative tumor detection in laparoscopic
surgery. A major advantage of temporal information-based
palpation systems is that they can be simple, as they use of a
single sensing element. For our system, we developed a forceps-
type tactile sensor using an acoustic sensing principle (Tanaka
et al., 2015). This sensor has important advantages for surgical
applications: there are no electrical elements within the portion
inserted into the patient’s body, it can be sterilized, and it
is disposable. Moreover, we investigated the effects of visual
and tactile feedback from the sensor, which was being directly
manipulated by the user for laparoscopic tumor detection
(Fukuda et al., 2018). A line graph showing the time series
of the sensor output was provided as the visual feedback. We
have developed a tactile display that presents a force to the
upper side of the foot of the user to provide tactile feedback.
The foot was chosen because it is an unclean area of the
surgeon, therefore the display does not need sterilization. It
was found that the visual feedback significantly enhanced tumor
detection. The tactile feedback had a positive effect of reducing
the scanning speed during detection, but it did not significantly
enhance the detection sensitivity. We speculate that after further
improvement, tactile feedback will be an effective tool for tumor
detection. Currently, visual feedback is an informative approach
for detection, because users can discriminate a tumor based on
the shape of the line graph. However, visual feedback can be
problematic, as it requires an extra monitor which would occupy
valuable space in the operating room. Further, a major concern
is the possibility of visual sensory overload (Richard and Coiffet,
1995), because primarily the surgeon must concentrate on the
laparoscopic image.

In this study, we propose an assistance algorithm for
computer-aided palpation. Our scenario is that the surgeon
manipulates a sensor probe and makes a decision based on
the temporal sensory feedback given by a tactile display, and
simultaneously the assistance algorithm performs detection
based on the time series of the sensor output. Thus, the
algorithm assists in the decision making process of the
surgeon, by providing independent detection results. This
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method is advantageous because the reliability and safety of the
manipulation are ensured by a human operator, but a more
effective detection might be expected from the collaboration
between a human operator and the algorithm. In our temporal
information-based palpation, if the detection performance of
the algorithm could achieve a level comparable with that of the
human operator, then it would imply that visual feedback could
be replaced by the algorithm. This would avoid any possible
sensory overload. Moreover, decision support systems, where
clinical information analyzed by a computer is provided to the
surgeon, can reduce clinical error and improve patient outcomes
(Jia et al., 2014). Thus, our proposed algorithm has the advantages
of enhancing detection performance, improving the confidence
of the surgeon, and removing visual feedback.

To achieve the proposed algorithm, we focused on deep neural
network (DNN) techniques. In recent years, DNNs have achieved
remarkable results in medical image analyses. For example,
annotation (Shin et al., 2016), segmentation (Dou et al., 2016;
Kleesiek et al., 2016; Pereira et al., 2016; Setio et al., 2016; Havaei
et al., 2017), and diagnosis (Shen et al., 2015; Suk et al., 2015;
Cheng et al., 2016) of medical images were developed by using
DNNs. These studies aimed to assist in diagnosis or planning
before a surgical procedure, based on preoperatively acquired
medical images. Through using DNN, some of these studies
detected changes in the mechanical properties of tissue, such as
cerebral microbleeds, brain tumors, breast lesions, lung nodules,
and pulmonary nodules.Moreover, analysis techniques have been
developed where laparoscopic images are used to classify surgical
events (Varytimidis et al., 2016; Pestscharing and Schoffmann,
2017), and track (Wang et al., 2017) or classify (Zhao et al.,
2017) surgical instruments. These studies targeted postoperative
objectives, such as assisting in medical training, analyses, and
compiling databases of recorded endoscopic images. These
studies exhibit the effectiveness of applying DNN techniques
to information from a visual channel. However, there are
fewer studies that intraoperatively analyze temporal information
from a tactile sensor for laparoscopic tumor detection. For
intraoperative analysis, a method for inputting the time series
of the sensor output into a DNN model should be developed, to
maintain both sufficient performance of the model outcome, and
adequate refresh rates.

We propose to use a DNN model with three hidden layers to
segment whether the sensor output at each sampling included
the information on the tumor and a method for inputting
the sensor output to the DNN model considering real-time
analysis. Moreover, the method of determining the detection
criterion is proposed, by investigating the relationship between
accuracy and various detection criteria. In this paper, we
aim to investigate the feasibility of the proposed algorithm
by using the data acquired in our previous psychophysical
experiment (Fukuda et al., 2018). In this experiment, 12
novice participants were asked to detect a phantom of an
early-stage gastric tumor, under various conditions of sensory
feedback. We used the obtained sensor outputs, which were
not analyzed in the previous study, as a dataset. In addition
to the accuracy, the potential detection performance of the
model was analyzed by employing signal detection theory. Then,

we conducted two types of cross-validation: within-participant
and across-participant validation. The accuracy and potential
detection sensitivity of the DNN model were compared with
the performance of the participants, which was analyzed in our
previous study.

DATA PREPARATION

In our previous study, we conducted a psychophysical
experiment to investigate the effect of using sensory feedback
on tumor detection performance and manipulation behavior
(Fukuda et al., 2018). Twelve participants without any medical
background participated in the experiment, and they gave
their written informed consent before participation. The
experimental procedure was conducted in accordance with the
ethical standards of the Helsinki Declaration, and approved
by the Ethical Committee of Nagoya Institute of Technology.
The participants were asked to discriminate a phantom of the
stomach wall with/without a tumor, by scanning with a sensor
probe and receiving sensory feedback from the sensor in a
simulated laparoscopic environment. Four conditions for the
method of feedback were set: no feedback, visual feedback, tactile
feedback, and a combination of visual and tactile feedback.
Under the no feedback condition, the participants did not
receive any feedback from the sensor. Under the visual feedback
condition, a line graph of the sensor output on a monitor
was provided to the participants. Under the tactile feedback
condition, our developed tactile display provided a force against
the upper side of the participant’s foot according to the sensor
output. Under the combination condition, the participants
received both visual and tactile feedback simultaneously. It was
shown that the visual feedback was significantly effective in the
tumor detection. The details were provided in our previous paper
(Fukuda et al., 2018). In this study, we used the data acquired
under the condition of visual feedback, because we aimed to
replace the participants’ decision through visual channel with
the algorithm. The following paragraph presents how the sensor
output was collected under the visual feedback condition.

The experimental setup is shown in Figure 1. The participants
manipulated a long, thin tactile sensor that was previously
developed (Tanaka et al., 2015). The sensor only detected a
single force applied on the side of the sensor tip. The sensor
output was filtered by a low-pass filter with a 10Hz cut off
frequency. This data was then presented on a laptop PC as a
line graph, for a time series of 5 s. The laptop PC was placed
next to a monitor that displayed the camera image inside the
laparoscopic training box. The participants scanned a phantom
of the stomach wall, using the sensor in a rotational direction.
There were no restrictions on either the force exerted to the
phantom or the scanning speed of the sensor. The rectangle in
Figure 1 shows the typical visual feedback when a participant
appropriately scanned the phantom with/without a tumor. The
participants could distinguish the presence or absence of a tumor
based on the shape of the line graph, when they appropriately
scanned the phantom. The difference in the sensor output for
the two types of the phantom can also be found in the video
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50 mmSensing area
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Tactile sensor

Laparoscopic training box
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With tumor Without tumor

Typical visual feedback

Three-axis force sensor

FIGURE 1 | Setup of the psychophysical experiment conducted in our previous study (adapted from Fukuda et al., 2018). Participants scanned the phantom by the

forceps-type tactile sensor in a rotational direction, (shown by a black bold arrow), and determined the presence of a tumor in the phantom. The rectangle shows two

typical line graphs provided as visual feedback when a participant scanned a phantom with/without the tumor.

attached as supplementary material. Before the detection trials,
the participants were asked to practice the manipulation of the
sensor probe, and to memorize the differences in visual feedback
when scanning the phantom with/without the tumor. Then, the
participants conducted 40 detection tasks comprising 20 of each
scenario (presence/absence of the tumor) which were randomly
generated. The force applied on the phantom was measured by
a three-axis force sensor placed under the phantom, and the
position and orientation of the sensor weremeasured by amotion
capture system using a maker set attached to the sensor. The
sensor output and the applied force were recorded at sampling
frequencies of 1 kHz, and sensor movements were recorded at
120Hz.

Figure 2 shows the details of the phantom stomach wall with
a tumor used in the experiment. The target tumor was a 0-
IIc (superficial ulcerative) type tumor (Japanese Gastric Cancer
Association, 2011), which is the most common type of early-
stage gastric cancer. The geometry of the phantom and the

tumor were based on the typical features of the actual stomach
wall and tumor. Whereas the stiffness of the phantom was
within the stiffness range of the actual stomach wall and tumor
(Fukuda et al., 2018), the anatomical structures and boundary
conditions were not completely the same. The tumor has a
toroidal shape, therefore the sensor output typically responded
with two peaks that corresponded to the two edges of the toroidal
tumor, as shown in Figure 1. The phantom was placed on a semi-
cylindrical sponge to simulate a stomach that does not have flat
surfaces.

METHODS

Data Extraction
A method to input the temporal sensor output to a DNN model
is important for achieving real-time analysis. For example, the
use of the sampled sensor output individually is not sufficiently
informative to facilitate tumor detection. Therefore, a time series
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FIGURE 2 | Phantom of the stomach wall used in the previous psychophysical experiment. The phantom was placed on a semi-cylindrical sponge as shown in

Figure 1. (A) Photographs of the phantom. The serosal side (smooth side) was scanned by the sensor. (B) Structure of the phantom. The light gray arrow indicates

that the back was scanned in the direction indicated. Thus, the typical sensor output had two small peaks, owing to the toroidal shape of the tumor.

is required to compare the relative differences in sensor output.
However, waiting to obtain a certain length of sensor output
signals leads to a reduction in the refresh rate. In this study, we
propose using a region of interest to extract the sensor output,
and then shift the region so that it overlaps with the previous
extraction. Thus, more efficient detection can be expected by the
model, while maintaining a sufficient refresh rate for detection.
Figure 3 displays the procedure for data extraction. The top
panel in Figure 3 shows an example of the sensor output
acquired during the detection experiment. The sensor output was
extracted for a time width of Tw = 1.0 s, then the extraction
area was shifted so that it overlapped the previous extraction for
To = 0.9 s. Thus, the refresh rate of the estimation achieved by
the model was 10Hz, because the data was prepared every 0.1 s
and the sensor output at each sampling was included in the ten
independent extractions.

For training of the DNN model, a binary label was prepared
for the sensor output at each sampling to identify the sensor
located above the tumor. It was calculated on the basis of both
the measured position, and the orientation of the sensor during
the experiment. The label was “1” while the center of the sensing

area was in the tumor area, and “0” while in the other areas. The

binary label was also extracted in the same way as for the sensor
output. Thus, the extracted output x and the corresponding label

t had the same dimension. Moreover, the time for each scanning

was extracted according to the tangential force applied on the

phantom tumor during the experiment. The scanning times were
used in the validation of the proposed DNNmodel.

DNN Model
We used a deep neural network with three hidden layers. Input
vector x ∈ R

1000 is the extracted sensor output. Output vector
y ∈ R

1000 is the estimated tumor label corresponding to the

sensor output at each sampling. The values at each hidden layer hi
(h0, h4 ∈R

1000 and h1, h2, h3 ∈R
2000) are shown by the following

equation:

hi= σ (Wihi−1 + bi) , (i = 1, 2, 3, 4),

where W1 ∈ R
1000×2000, W2, W3 ∈ R

2000×2000, and
W4 ∈ R

2000×1000 are the weight matrices, and b1, b4∈ R
1000, and

b2, b3 ∈ R
2000 are the bias vectors. h0 is equal to x. σ indicates an

element-wise activating function (rectified linear unit Nair and
Hinton, 2010) as follows:

σ (z) = max (z, 0) .

The output vector y was derived by applying an element-wise
sigmoid function to h4 as follows:

y =
1

1+ exp (h4)
.

The sigmoid function was inserted to transform the value from
themodel to be within 0 and 1; thus, the value of each component
in the output vector can be interpreted as a probability that the
sensor output at corresponding sampling includes information
on the tumor.

Learning
Dataset (x, t), which is the pair of sensor output and correct label,
was used to optimize the model parameters (Wi and bi). We used
cross-entropy E between the correct and estimated labels for the
optimization as follows:

E = −
∑

k

tk ln yk.
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FIGURE 3 | Procedure for the data extraction. Yellow areas show the tumor

label, which was calculated on the basis of the sensor position measured by

the motion capture system. The region of interest with a time width of Tw was

shifted with the overlap time of To. The terms xk and tk are the extracted

sensor output and corresponding label, respectively. Pairs of (xk, tk ) were used

for training the DNN model.

where tk and yk are the k-th element of the correct and estimated
labels, respectively. For the initialization of the parameters,
the method proposed by He et al. (2015) was employed. The
parameters were updated to minimize the cross-entropy based
on the Adam method (Kingma and Ba, 2015) with a mini-batch
size of 100. The update was conducted for 200 epochs.

Detection Algorithm
As described in section Data Extraction, the sensor output was
extracted by a window of 1.0 s, and the window was shifted with
an overlap time of 0.9 s. Thus, the proposed algorithm could
provide the estimation score every 0.1 s. On the other hand, we
validated the proposed algorithm by using a pre-acquired dataset;
thus, we added a procedure to calculate a representative score
for each experimental trial, because the participants scanned
the phantom multiple times in each trial, and the number of
scannings varied between participants.
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FIGURE 4 | Examples of the sensor output (black lines) during a single

detection trial and the estimated score (red lines) by the DNN model. Yellow

areas show the time when the sensor scanned the tumor. Gray areas show the

scanning time that was calculated based on the applied tangential force. The

maximum estimation score within each scanning time was extracted as shown

in the upper side of the gray areas. Next, the mean of the scores was

calculated and used as a representative score for this trial. (A,B) Show the

data from participants 9 and 4, respectively.

Figure 4 illustrates two examples of the sensor output and the
estimation score for a single detection trial. The mean of the
ten independent outputs from the DNN model was calculated
for each sampling of the sensor output, as shown by the red
solid lines in Figure 4. The yellow areas depict the binary label,
calculated from the measured positions of the sensor. The gray
areas show the extracted scanning times, based on the tangential
force applied to the phantom. The maximum estimation score
within each scanning was calculated as shown in the upper
portion of Figure 4. Then, the mean of the maximum scores
for all the scanning was calculated, and used as a representative
estimation score for each trial. If the representative score was
larger/smaller than the detection criterion, it was considered that
the DNN model did/did not detect the tumor, respectively. This
procedure allowed us to consider that the DNNmodel outputted
a single score for each trial in a similar way to the previous
experiment, where the participant’s response was recorded for
each trial.

We used accuracy ACC ∈ [0, 1] (the ratio of the number
of correct detections to the number of total detection trials) as
an index of the detection performance. For the determination
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FIGURE 5 | Example of the relationship between the detection criterion and

accuracy. Detection criterion cth was determined on the basis of this

relationship.

of the detection criterion, we first investigated the relationship
between the accuracy and criterion for each trained DNN
model. Multiple accuracies ACCj were calculated based on the
estimated scores for multiple detection criteria cj from 0 to
1, with 0.01 increments (j = 0, . . . , 100). The relationship
between the accuracy and detection criterion was derived
as shown in Figure 5. Subsequently, the threshold detection
criterion cth was calculated on the basis of the following
equations:

ACCth = max
(

ACCj

)

−
max

(

ACCj

)

− 0.5

10
,

cth =
cu(ACCth)+ cl(ACCth)

2
,

where ACCth is the threshold of the accuracy to obtain upper
criterion cu(ACCth) and lower criterion cl(ACCth), as shown in
Figure 5. Threshold criterion cth was calculated as the mean of
the upper and lower criteria. The equation to calculateACCth was
experimentally determined. The threshold detection criterion
determined by this method leads to the maximum accuracy for
the dataset used in the model construction.

Potential Sensitivity
When investigating the detection outcomes of the proposed
DNN model, it is important to evaluate the accuracy. However,
accuracy does not explicitly reveal how a classifier has the
potential to distinguish between two situations, because the
detection criterion also affects the accuracy. Thus, we additionally
analyzed the detection results based on signal detection theory
(Macmillan and Creelman, 2005) to assess the potential
detection performance. Hit rate H ∈ [0, 1] (the number of
detections divided by the total number of trials in which the
tumor was present) and false alarm rate F ∈ [0, 1] (the

number of detections divided by the total number of trials
in which the tumor was absent) were calculated for multiple
detection criteria cj. Hence, multiple pairs of false alarm and
hit rates (Fj, Hj), (j = 0, . . . , 100) were derived. Then, a
receiver operating characteristic (ROC) curve was drawn by
plotting and connecting all the pairs of the false alarm and
hit rates for the different detection criteria on the (F, H)
space. The area under the ROC curve Ag was calculated as
follows:

Ag =
1

2

∑

j

(

Fj+1 − Fj
) (

Hj+1 −Hj

)

.

Here, Ag indicates the potential sensitivity of a
classifier, Ag lies within [0, 1], and the chance level is
0.5.

Validation
Two types of validation were conducted on the basis of a dataset
used for model training. One is within-participant validation,
where the data obtained from one participant is used for both
training and testing the model. The other is across-participant
validation, in which to perform the detection test for the data
from a single participant, the data from all other 11 participants
were used in the model construction. The details of the data
preparation for each validation are presented in the following
sections.

Within-Participant Validation

A 4-fold cross-validation was performed within the data for each
participant. Figure 6A shows the procedure for the preparation
of the data used for the within-participant validation. The data
from one participant was divided into four groups, and each
group contained the data for ten trials. The data in one group was
used for the detection test (dataset #1). The data in the remaining
three groups were used for the model construction (dataset #2).
Moreover, dataset #2 was divided into two groups: one was for the
training of the DNN model (dataset #2-1) that included 20 trials
from ten of each type of trial in which the phantom with/without
the tumor was presented, and the other was for the determination
of the detection criterion (dataset #2-2) including ten trials from
five of each. The division of dataset #2 was randomly conducted
five times, regardless of the first grouping. The within-participant
validation was independently conducted for 12 participants.

First, the DNN model was trained by using a pair of (x, t)
in dataset #2-1. Then, estimated label y was obtained against
sensor output x in dataset #2-2 by the trained model. The
estimation score was calculated from estimated label y for
each trial in dataset #2-2. Accuracies ACCj for the multiple
detection criteria were calculated, and the threshold detection
criterion cth was determined based on ACCj. This procedure was
repeated five times because the random separation of dataset
#2 was conducted five times, and the mean threshold detection
criterion for the five times repetition was calculated. Estimated
label y was obtained against sensor output x in dataset #1,
and the estimation score was calculated. Accuracy ACC was
calculated by applying the mean threshold detection criterion
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FIGURE 6 | Preparation of the dataset for the two types of validations. Light and dark gray filled rectangles indicate the data acquired at a single detection trial where

the tumor was present and absent, respectively. Red, blue, and green dashed lines indicate that the data was assigned for detection test, model training, and

determination of the detection criterion, respectively. (A) Within-participant validation. Four-fold cross-validation was conducted within the data for each participant.

(B) Across-participant validation. Leave-one-out cross-validation was conducted against data for all the participants. Both validations were conducted independently,

12 times along all the participants.

to the estimation scores. Moreover, false alarm rates Fj and hit
rates Hj were calculated, then ROC curves were plotted from
(Fj, Hj). This procedure was repeated four times by changing
dataset #1 for each participant, and the mean of accuracy ACC
and the area under the curve Ag were calculated for four times
validation.

Across-Participant Validation

Leave-one-out cross-validation was conducted against the data
for all the participants. Figure 6B shows the procedure for the
data preparation. The data for all the 40 trials from a single
participant were used for the detection test (dataset #1). The
remaining data were from 11 out of the 12 participants, and
used for the model construction as dataset #2. Dataset #2 was
divided into two groups: for the training (dataset #2-1) and
for the determination of the detection criterion (dataset #2-2).
For datasets #2-1 and #2-2, 26 trials from 13 of each type of
trial, and 14 trials from 7 of each, were randomly selected from
each participant, respectively. The entire procedure (training,
determination of the criterion, detection test, and drawing of
the ROC curves) was similar to the within-participant validation.
The across-participant validation was independently conducted
12 times by changing dataset #1 along the participants.

RESULTS

Within-Participant Validation
Detection Performance

Figure 7 displays the relationship between the accuracy and
detection criterion for each participant. This result was obtained
against dataset #2; thus, it indicates the performance of the
constructed model. The black and red solid lines show the results
for four times validation and the mean, respectively. If a criterion
has ultimate values (such as 0 or 1), the accuracy has the chance
level of the detection (0.5). It can be seen that the relationship
curve was different for the participants. Dashed vertical lines
in Figure 7 represent the mean of the determined detection
criteria. A higher accuracy is obtained at a criterion closer to the
determined value.

The accuracy was compared between the human participants
and DNN model. Figure 8 shows the results of the comparison.
The accuracy for the DNN model was obtained against dataset
#1; thus, it indicates the detection performance of the model for
the unknown dataset. The accuracy for the human participants
was calculated based on the data obtained in our previous study
(Fukuda et al., 2018). Statistical tests were conducted to compare
the accuracy of the human participant and DNN model. Before
the analysis, a Shapiro–Wilk test was conducted to confirm
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FIGURE 7 | Relationship between the accuracy and detection criterion for each participant obtained in the within-participant validation. Black lines indicate each data

for the 4-fold cross-validation, and red lines indicate the mean of four data. Black vertical dashed lines indicate the mean threshold criterion.

that the all-dependent parameters were normally distributed.
Because the assumption of the normal distribution was violated,
a Wilcoxon signed-rank test was conducted to compare the
accuracy for the human participants and DNN model in the
within-participant validation. The statistical test showed no
significant difference in the accuracy of the human participants
and DNN model [W(12) = 23, p = 0.37]. This indicates that the
median of the accuracy for the human participants and proposed
DNN model were not different in the within-participant
validation.

ROC Curve

Figure 9A depicts the ROC curves obtained against dataset
#2 in the within-participant validation from all participants.
Each curve is drawn based on the estimation by the DNN
model, trained by the data from each participant. The black
and red solid lines show the ROC curves for the 4-fold cross-
validation and mean curves, respectively. If an ROC curve
approaches the top left part, the curve indicates that the
DNN model has a higher potential sensitivity. In particular,
the ROC curves based on the data from participants 2,
9, and 12 indicate that the model achieved the ultimate
potential sensitivity (Ag = 1) because the curves form a unit
square.

The potential detection sensitivity Ag was compared for
the human participants and DNN model. Figure 9B shows
the comparison of Ag. The values for the human participants
were obtained in our previous study. A Wilcoxon signed-
rank test showed no significant difference in the potential
sensitivity between the human participants and DNN model
[W(12) = 33, p = 0.21]. It indicates that the median
of the potential sensitivity for the human participants and
proposed DNNmodel was not different in the within-participant
validation.
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FIGURE 8 | Comparison of the accuracy of the human participants and DNN

model in the within-participant validation. The performance of the human

participants was calculated based on the data from our previous study

(Fukuda et al., 2018). Label n.s. indicates no significant difference at the 0.05

level with a Wilcoxon signed-rank test.

Across-Participant Validation
Figure 10A exhibits the relationship between the accuracy
and detection criterion in the across-participant validation. As
the result was obtained against dataset #2, it indicates the
performance of the constructed model. The black and red solid
lines show each curve for 12 times validation and themean curve,
respectively. The mean and standard deviation of the determined
criterion are represented as cth = 0.38 ± 0.014, for which the
detection performance of ACC = 0.95± 0.0093 was achieved.
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FIGURE 9 | Potential detection performances of the DNN model constructed in the within-participant validation. (A) ROC curves. Black lines indicate each data for

the 4-fold cross-validation, and red lines indicate the mean. (B) Comparisons of the area under the curve Ag of the human participant and DNN model. The

performance of the human participants was obtained from our previous study (Fukuda et al., 2018). Label n.s. indicates no significant difference at the 0.05 level with

a Wilcoxon signed-rank test.
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FIGURE 10 | Results of the across-participant validation. (A) Relationship between the accuracy and detection criterion. Results of 12 independent validations shown

by the black solid line, and their mean was shown by a red solid line. (B) Comparison of the accuracy for the human participants and DNN model. The accuracy for

the human participants was calculated from our previous study (Fukuda et al., 2018). Here, ** indicates p < 0.01 with a Wilcoxon signed-rank test. (C) ROC curves.

Figure 10B shows a comparison of the accuracy for the human
participants and DNNmodel in the across-participant validation.
The accuracy of the model was calculated for dataset #1; thus, it
indicates the performance of the model for the unknown dataset.
A Wilcoxon signed-rank test showed a significant difference
in the accuracy for the human participants and DNN model
[W(12) = 74, p = 0.006]. This result indicates that the median
of the accuracy for the DNN model was significantly smaller
than that for the human participants. Moreover, a one-sample
Wilcoxon signed-rank test against 0.5 (the chance level of the
detection) was conducted, and a significant difference was shown
[W(12) = 78, p = 0.002]. This indicates that the median of
the accuracy for the DNN model was higher than the chance
level.

Figure 10C shows the ROC curves obtained in the
across-participant validation. This result was obtained
against dataset #2. The black and red solid lines exhibit
the data for each independent validation and mean
of the results, respectively. The mean and standard
deviation of the area under the curve were Ag = 0.99 ±

0.0037.

DISCUSSION

The experimental results of the within-participant validation
showed no significant difference in the accuracies obtained
for the human participants and proposed DNN model. This
result indicates the possibility of replacing the detection by the
participants based on visual feedback with the DNN model.
Figure 7 shows that the relationship curve between the accuracy
and various criteria were different for the participants. This
difference might be due to a large variation in sensor output. In
Figure 4 it can be seen that the sensor output that indicates the
presence of a tumor was different for the participants, despite
the same tumor being scanned. Moreover, we discovered in the
previous study that the applied force and scanning speed varied
between participants (Fukuda et al., 2018). Thus, the variation
for the participants suggests a necessity for an appropriate
determination of the detection criterion. We proposed usage
of the relationship curve to determine the detection criterion.
Here, Figure 9B shows that the potential sensitivities for the
human participants and DNN model were similar in the within-
participant validation. Even if the trained model has a high
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potential sensitivity, a high accuracy is not obtained until the
detection criterion is not appropriate. This suggests that the
proposed method to determine the criterion was appropriate.
Moreover, Figure 7 shows that the relationship curve for
participant 12 had more peaky shape in comparison with that for
participant 9, whereas their potential detection sensitivities (ROC
curves) were similar (Figure 9A). The more peaky shape suggests
that the accuracy was more sensitive to changes in detection
criterion. Thus, the relationship curve also reveals the robustness
of the detection to a change in the detection criterion.

A comparison of Figures 8, 10B shows that the accuracy for
the DNN model in the within-participant validation tended to
have a higher value than in the across-participant validation.
Moreover, the accuracy for the model in the across-participant
validation was significantly smaller than that for the human
participants, whereas the mean potential detection sensitivity
(area under the curve) of the constructed model was 0.99. This
indicates that the model constructed in the across-participant
validation achieved inefficient detection with unknown datasets.
The inferior performance suggests that the use of data from
the same participant is more effective in the training of the
model. It could also be attributable to a variation in the
appropriate detection criterion for the participants, as discussed
in the above paragraph. In the across-participant validation,
the criterion was determined from the data obtained from the
other 11 participants. Thus, using the determined detection
criterion might not be optimal for detection by the remaining
participant, whose data was not used in the model construction.
In contrast, the accuracy for the model was significantly higher
than the chance level of the detection (0.5). Therefore, in practical
applications it might be effective to use the data from the other
users in the pre-training. This could contribute to more effective
detection with low computational cost during the model update.

Next, we will discuss the future works toward clinical
applications. Experiments with expert surgeons are necessary to
investigate the applicable range and conditions of the proposed
assistance algorithm at the next stage. Herein, the stiffness of the
phantom used in the experiment lies within the stiffness range
of the actual stomach wall and tumor (Fukuda et al., 2018);
however, it did not have exactly the same anatomical structures
and boundary conditions found in reality. In the experiment,
it was shown that the novice participants could discriminate
the phantom with/without the tumor after sufficient practice.
Further, some participants achieved a complete detection
performance. Thus, the experiment with expert surgeons in
the current setup might not bring valuable discussion toward
practical applications. In future work, we will investigate the
applicable range and conditions of the algorithm through the
sensor manipulation by expert surgeons in an in-vivo setup. In
addition, it is important to consider the method of generating
the tumor label for model training. In this paper, the label
was calculated according to the measured positions of the
phantom tumor and sensor. However, in surgical situations,
it would be difficult to make the label in the same way,
because the correct position of the tumor is not available during
surgery. One solution is to record the time when the surgeon
intraoperatively finds a tumor, according to feedback from the

tactile sensor. If it is found in the postoperative examination
that the position intraoperatively indicated by the surgeon is
correct, then the label can be generated based on the recorded
time and used for model training. Moreover, tumors vary in
dimensions and stiffness, therefore it might be effective to input
the preoperatively acquired features of the tumor to achieve more
robust detection, regardless of tumor differences. In future work,
we will develop a methodology for data acquisition considering
surgical applications.

In our scenario, the user manipulates the tactile sensor
and make a decision according to tactile feedback from the
sensor, and the DNN model conducts the detection according
to the sensor output in real-time. Thus, the proposed assistance
algorithm is collaborative, and the surgeon should appropriately
manipulate the sensor to scan the target tissue so that the effective
detection by the model is achieved. Thus, it is necessary to
optimize the tactile feedback of the sensor output to the surgeon,
for more effective detection by both the surgeon and DNN-
based assistant. Although our previous study showed that tactile
feedback was only effective for a safer manipulation, effective
tumor detection could be achieved by introducing the proposed
assistance algorithm. We will also continue to improve the tactile
display for sensory feedback, to improve decision making and
sensor manipulation by the surgeon. Moreover, an important
design factor for the data-driven assistant is the interaction
between the surgeon and assistant. A possible method to realize
this is by using an audio channel that is independent from the
visual and tactile channels. Furthermore, the use of an audio
channel would imitate the interaction between a surgeon and
human assistant. Therefore, we will consider different approaches
for achieving this interaction. Moreover, we will investigate
the effect of this interaction on decision making and sensor
manipulation by the surgeon.

CONCLUSION

We proposed an assistance algorithm using a deep neural
network for laparoscopic tumor detection. The algorithm
uses the temporal output from a tactile sensor that is
directly manipulated by a surgeon. Thus, safe and dexterous
manipulation of the sensor is ensured by the surgeon, and
the decision of the surgeon is assisted by the algorithm
that performed the tumor detection simultaneously with and
independently from the surgeon. This study was motivated
by our previous psychophysical experiment, in which the
participants had to detect a phantom of the stomach wall
with/without a tumor based on visual feedback (a line graph
based on the temporal sensor output). It was determined that
providing visual feedback to an operator significantly enhanced
the detection performance. However, using a visual channel for
the sensory feedback was problematic because of the possibility
of sensory overload, and of using valuable space in the operating
room by the extra monitor. Thus, the proposed assistance
algorithm in this study was intended to replace visual feedback.

A DNN model with three hidden layers was used to segment
the sensor output, to identify whether the output included
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information on the tumor at each sampling. We proposed
methods to input the temporal sensor output to the model
considering real-time analysis, and to determine the detection
criterion based on the relationship between accuracy and the
various detection criteria. Moreover, signal detection theory was
employed to assess the potential detection sensitivity of the
model. Subsequently, two types of validation (within-participant
and across-participant validation) were conducted to assess the
effectiveness of the proposed model. Further, the detection
performances were compared for the DNN model and human
participants, which were obtained in our previous study. The
results of the within-participant validation showed no significant
differences in the accuracy and potential sensitivity for the
human participants and DNN model. Thus, the possibility of
replacing the detection by a user with a DNN-based algorithm
was shown. Although the results in the across-participant
validation showed that the accuracy of the DNN model was
significantly less than that of the human participants, the
performance was significantly higher than the chance level of the
detection. Thus, this suggests that the data obtained from other
users might be used in pre-learning of the model.

In future work, we will investigate the applicable range and
conditions of the proposed algorithm.Moreover, we will consider
a method for data collection in surgical situations. We will also
develop an effective method to interact with the DNN-based
assistant, and investigate the effects of the assistant on decision
and sensor manipulation by the surgeon.
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