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ABSTRACT
Tracing the closure of oceans with irregular margins and the formation of an orocline are crucial for
understanding plate reconstruction and continental assembly.The eastern Central Asian Orogenic Belt,
where theMongol-Okhotsk orocline is situated, is one of the world’s largest magmatic provinces. Using a
large data set of U-Pb zircon ages, we updated the timing of many published igneous rocks, which allowed
us to recognize tightly ‘folded’ linear Carboniferous-Jurassic magmatic belts that wrap around the
Mongol-Okhotsk suture and their migrations both sutureward and suture-parallel. The new successive
magmatic belts reveal a rollback, scissor-like (or zipper-like) closure of the Mongol-Okhotsk Ocean that
was fundamentally controlled by coeval subduction rollback and rotation of the Siberian and
Mongolian-Erguna blocks.This study also demonstrates the complex mechanisms and processes of the
closure of an ocean with irregular margins and the formation of a consequent orocline.
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INTRODUCTION
There aremanymodern and ancient curved arcmar-
gins and/or oroclines in oceans and continents. Un-
derstanding how such curved, geological structures
(mountain belts and orogens) form and evolve is a
first-order problem in the Earth sciences [1], and
consequently they have been well studied for their
structure, composition and formation [2–10].How-
ever, the style (and fate) of their development, the
methods of final closure of the oceans and, partic-
ularly, the closure–(suture)–orocline relationships
are still not well understood. Diagnosing an ancient
suture zone that was derived from a well-defined
paleo-ocean, is a key problem. In consequence, trac-
ing and restoring the closure of paleo-oceans and the
formation of ancient oroclines are useful constraints
that can improve our understanding of plate recon-
struction and continental assembly [11].

The Central Asian Orogenic Belt (CAOB;
[12,13] including the Altaids [14]) is the world’s
largest Phanerozoic accretionary orogen that con-

tains several suture zones and oroclines such as the
Mongol-Okhotsk orocline in the eastern CAOB
[14–21], thus the CAOB is a promising orogen for
investigating ancient suture–orocline relationships.
In spite of innumerable publications on most
aspects of Earth sciences in the CAOB, there have
been few studies on the relationships between the
formation of sutures (closure of oceans) and the
creation of oroclines. Nevertheless, the abundant,
well-dated magmatic rocks in the eastern CAOB,
particularly in eastern Mongolia, Trans-Baikalia in
Russia and the Great Xing’an region in NE China,
constitute one of the world’s largest Phanerozoic
felsic magmatic provinces (>5 500 000 km2 with
>6000 igneous bodies, which occupy 60% of the
outcrop area [12,22]). This magmatic province
provides an invaluable databank for the study of
magmatism–suture–orocline relationships.

Building on the geochemical data [23], we have
produced a geochronological database of more
than 2660 U-Pb zircon ages (446 are our data
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Figure 1. Tectono-magmatic map of the CAOB showing Cambrian-Jurassic granitic and related rocks. The major tectonic
units are modified after Refs [14,18]. MOO=Mongol-Okhotsk orogen; MOS=Mongol-Okhotsk suture; Є= Cambrian; O=
Ordovician; S = Silurian; D = Denonian; C = Carboniferous; P = Permian; T = Triassic; J = Jurassic; Pz = Paleozoic. The
numbers 1, 2 and 3 that follow P, C, T, J represent early, middle and late phases, respectively.

including 267 new unpublished ages), which we
present in a series of digital maps of the magmatic
rocks in the eastern CAOB. This enables us to de-
fine a series of tightly ‘folded’ magmatic belts that
delineate the Mongol-Okhotsk orocline, to demon-
strate the successive magmatic migrations, and to
reconstruct the closure mechanism of the Mongol-
Okhotsk Ocean as well as the formation of the oro-
cline [15]. This paper presents a case study that
demonstrates relationships between magmatism-
sutures (closure of oceans) and oroclines.

TECTONIC SETTING OF THE
MONGOL-OKHOTSK SUTURE
The CAOB [13], which contains the younger and
smaller Altaids [14], is a system of collages of
many accretionary complexes, magmatic arcs, arc-
related basins, ophiolites, seamounts and continen-
tal fragments. The CAOB is bounded by the Siberia
Craton to the north, the Tarim-North China Cra-
ton to the south and the Baltica (East European)
Craton to the northwest (Fig. 1) [14,18,24]. The
CAOB is a typical accretionary orogen that records
the long-lived accretion of the Paleo-Asian Ocean
(PAO) and subsequent collisions of terranes and
microcontinents during 1000–250 Ma [12,13,18].
The younger Altaids developed from ∼600 Ma to
250 Ma [14,15,18]. Two large oroclines are the
Kazakhstan and Mongol-Okhotsk (or Mongolian);
theKazakhstan orocline is in thewesternCAOBand
its formation was related to the Paleozoic closure
of the Paleo-Asian Ocean. The Mongol-Okhotsk

orocline is in the eastern CAOB (Fig. 1); formation
of the western part of the orocline led to the Paleo-
zoic closure of the Paleo-Asian Ocean, but the east-
ern part (core) was related to the Mesozoic closure
of the Mongol-Okhotsk Ocean [18,20].

TheMongol-Okhotsk suture, located in the core
of this eponymous orocline, extends for ∼3000 km
from the Khangai Mountains in central Mongolia
eastwards to Uda Bay in East Okhotsk [23,25,26].
To the north of the orocline is the Siberian Craton,
to the south is the southern Mongolian Massif and
to the east is the Pacific plate. The formation of the
Mongol-Okhotsk suture played an important role in
the final construction of the East Asian continent
[16,18,27,28] from the late Paleozoic to late Meso-
zoic. The initiation of the active continental margin
of the Mongol-Okhotsk Ocean may have been as
early as Silurian-Devonian [29–31], but the mature,
slightly curved, active margin began to form in the
Carboniferous to early Permian [32–34]. The clo-
sure of the ocean started at the western end in the
late Paleozoic, then closed progressively eastwards,
terminating in the lateMesozoic in a scissor-likemo-
tion not far from the present-day Okhotsk Sea [25].
As a whole, the Mongol-Okhotsk Ocean closed by
double-sided subduction [26,35]. The time of ter-
minal closure is controversial: Early-Middle Juras-
sic [25,36], Late Jurassic (based on paleomagnetic
data; [37]) or earliest or Middle-Late Cretaceous
[28]. The progressive development of the Mongol-
Okhotsk oroclinewith respect to theocean closure is
still not understood in detail. This study helps to re-
solve these issues by tracing the magmatic evolution
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Figure 2. U-Pb zircon age distributions of Carboniferous-Jurassic granitic and related igneous rocks in the Mongol-Okhotsk
orogen and adjacent areas. The red, blue and brown dotted lines mark the distribution limits of the Carboniferous-Permian,
Triassic, and Jurassic magmatic rocks, respectively. The upper left inset diagram shows these U-Pb zircon age distributions
within the Mongol-Okhotsk oceanic domain (green) and Paleo-Asian oceanic domain (red). The three inset diagrams at the
bottom show the age variations along and around the sutures, which indicate magmatic migration. For abbreviations see
Fig. 1. The ages, including our new data, are listed in Table S1.

of the orogen in relation to formationof theMongol-
Okhotsk orocline.

MAGMATIC BELTS AROUND
THE MONGOL-OKHOTSK SUTURE
AND THEIR MIGRATION
Many different magmatic rocks occur in and around
the Mongol-Okhotsk suture (Fig. 1). We have de-
termined the zircon U-Pb ages of 350–145 Ma
calc-alkaline granitic rocks mostly in the west-
ern and southern parts of the Mongol-Okhotsk
orogen (Fig. 2). These newly dated rocks, com-
bined with previously determined, coeval magmatic
rocks in the northern, western and southern parts
[26,29,33,34,38–47] enable us to follow the sequen-

tial and continuous development of three magmatic
belts that wrap around the Mongol-Okhotsk suture
(Figs 2 and 3).

Carboniferous-Permian magmatic belt
A belt of Carboniferous-Permian magmatic rocks
occurs in the northern (Trans-Baikalia), western
and southeastern sides of the Mongol-Okhotsk
orogen (Figs 2 and 3; [26,29,33,34,38–47]). The
rocks of the belt in the northern (Trans-Baikalia)
and western sides comprise granodiorites, biotite
granites, leucogranites, monzonites, quartz syenites,
syenites and mafic rocks [33,44]. Their rock asso-
ciations and geochemical affinities are typical of an
active continental margin. For instance, the mafic
rocks are depleted in Nb, Ta and Ti and enriched in
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Figure 3. Maps of the (a) Carboniferous-Jurassic, (b) Carboniferous-Permian, (c) Triassic and (d) Jurassic granitic and related intrusive rocks in the
Mongol-Okhotsk orogen showing their distribution limits (dotted lines) and migration directions.

Sr, Ba and Pb [33]. Alkaline-peralkaline rocks (280–
275 Ma) have A2-type granitic geochemical affini-
ties and were probably formed in an (extensional)
active continental margin [33,34].

The constituent rocks in the southeastern sides
of the Mongol-Okhotsk orogen are mostly gran-
odiorites, monzogranites and minor syenogranites
[44,45]. They belong to the calc-alkaline, high-K
calc-alkaline series and are mostly metaluminous
to weakly peraluminous (A/CNK = 0.90–1.10)
I-type granites, characterized by negative correla-
tions between P2O5 and SiO2 [45]. Some mon-
zogranite and syenogranite exhibit strong negative
Nb-Ta Ti and Sr anomalies, and light rare Earth el-
ement (LREE)-enriched chondrite-normalized rare
Earth element (REE) patterns with moderate Eu
anomalies (Eu∗ = 0.16–1.03) [44]. Locally, per-
aluminous (mostly A/CNK = 1.10–1.28) S-type

granites in northeastern Mongolia are considered
to have been emplaced in an active margin re-
lated to the subduction of the Mongol-Okhotsk
oceanic plate [44]. Recently, Li et al. [48] reported
310–280 Ma igneous rocks in the Jiamusi Mas-
sif, northeastern China, and speculated that these
rocks formed in a subduction setting of theMongol-
Okhotsk oceanic plate, rather than the Paleo-Pacific
oceanic or the Paleo-Asian oceanic plates.

Furthermore, we provide two other lines of ev-
idence that the Carboniferous-Permian magmatic
belt formed by subduction of the Mongol-Okhotsk
Ocean rather than the Paleo-Asian Ocean. First, the
belt is curved and distinctly different from the lin-
ear EW-trending magmatic belts in the Paleo-Asian
Ocean domain (Fig. S1). The curved belt wraps the
Mongol-Okhotsk suture, whereas themagmatic belt
in the southern CAOB of the Paleo-Asian Ocean
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domain extends in a straight line westward to the
Altai-Junggar, thus constituting a>900-km-long, gi-
ant magmatic belt that contains abundant alkaline
rocks and A-type granites (Fig. S1; [49]). Second,
we can identify two belts with opposite magmatic
migration directions though they are parallel and
trend WSW–ENE in southeast Mongolia. The mag-
matic belt belonging to theMongol-OkhotskOcean
regime migrated northwards towards the Mongol-
Okhotsk suture. In contrast, the magmatic belts be-
longing to the Paleo-Asian Ocean regime migrated
southwards towards the Solonker-Xilamulun suture
along the border between China and Mongolia
(Fig. S1). This movement was controlled by south-
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ward accretion and final closure of the Paleo-Asian
Ocean along the suture [20].

The above relations indicate that the
Carboniferous-Permian magmatic belt around
the Mongol-Okhotsk suture formed in a single
active continental margin. This means that a fully
fledged active margin of the Mongol-Okhotsk
Ocean was probably initiated at least prior to ca.
350Ma [33].

Triassic magmatic belt
Themagmatic belt of Triassic rocks, surrounded by
the peripheral Carboniferous-Permian magmatic
belt, is located nearer to the Mongol-Okhotsk
suture (Figs 2 and 3b). Our newly dated Trias-
sic granitic rocks (250–200 Ma) occur on the
southern side and especially at the western end
of the suture (Fig. 2). Combined with previously
determined Triassic granitic rocks, these rocks
constitute a continuous magmatic belt that wraps
around the whole Mongol-Okhotsk suture and
were formed at an active margin (Fig. 3b). These
rocks are largely granodiorites, monzogranites and
syenogranites, most of which have metaluminous
to weakly peraluminous I-type signatures, char-
acterized by negative correlations between P2O5
and SiO2 [41]. Compared with other Triassic
granitoids in the Paleo-Asian Ocean domain, these
Triassic rocks around the Mongol-Okhotsk suture
have more arc signatures [41,43,44]. In the Rb
vs. Y+Nb diagram (Fig. 4), most of the Triassic
granites with depletions of high field strength
elements such as Nb and Ta fall in the volcanic
arc granitic field. An arc setting is also supported
by the presence of Late Triassic (230–200 Ma)
to Early Jurassic (200–178 Ma) arc-type, por-
phyry copper-molybdenum deposits [38,50,51].
Some Triassic igneous rocks far away from the
Mongol-Okhotsk suture formed in a back-arc
environment by southward subduction of the
Mongol-Okhotsk oceanic plate, such as the
appinite-granites in Duobaoshan, south of the
ErgunaMassif [52].

These arc characteristics of Triassic magmatic
rocks are different from those of coeval magmatic
rocks that formed in a post-orogenic setting in
Tianshan-Beishan-Xilamulun and in an intraplate
setting in Altai within the Paleo-Asian Ocean do-
main (Fig. 4) [53,54]. Importantly, the Triassic
magmatic belt shows sutureward younging from the
Early to Late Triassic; this is obvious in the north-
ern and western segments of the Mongol-Okhotsk
suture (Figs 2 and3c) [33], thus revealing important
rollback subduction.
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Many alkaline-peralkaline plutons (220–
210 Ma) occur mainly in the hinge zone and
adjacent areas. These plutons were probably em-
placed in an active continental margin [33] and/or a
post-accretionary extensional margin. Significantly,
some plutons (220–210 Ma) were intruded into
the western segment of ophiolite zone of the
Mongol-Okhotsk accretionary complexes and can
be considered as local stitching plutons (Fig. 5).
This indicates that the Mongol-Okhotsk Ocean was
mostly consumed here before emplacement of the
217 Ma plutons. However, at this time an ocean
still existed farther east, and consequently the ocean
closed from west to east in a scissor/zipper-like
fashion.

Jurassic magmatic belt
A belt of Jurassic magmatic rocks occurs mainly
in the eastern Mongol-Okhotsk orogen where it
extends along its whole length (Figs 2 and 3c).
Early Jurassic rocks in the belt consist mainly
of granodiorites-granites and calc-alkaline volcanic
rocks (basalt-basaltic andesite-andesite), which ex-
hibit continental arc signatures, as in the Erguna
Massif and Xing’an region [45,56]. These rocks
are also associated with coeval arc-type porphyry
Cu-Moore deposits [38,50,51]. SomeMiddle Juras-
sic (170–160 Ma) granitoids in Erguna are peralu-
minous and have S-type and high Sr/Y ratios, prob-
ably suggesting an initial collisional setting related
to the closure of the Mongol-Okhotsk Ocean [56].
A late collision may have given rise to a magmatic
gap between 155 and 145 Ma [57], which would be
in accord with the ambient regional compressional
background of NE Asia, i.e. the Yanshan movement
that generated giant folds and thrust belts in north-
ern China andMongolia [58]. Recent studies of de-
trital zircons from stratigraphic sections of the cen-
tral East Basin of the Mongol-Okhotsk suture zone
suggest the initiation of a Middle Jurassic collisional
foreland basin, the development of which is assigned
an age of ∼165–155 Ma [59], and some of the lat-
est Jurassic alkaline-peralkaline rocks are associated
with Early Cretaceous magmatic rocks (see below).

The Jurassic magmatic belt in the eastern
Mongol-Okhotsk orogen is different from the
Jurassic magmatic belt along the margin of the
Paleo-Pacific Ocean. The former is concentrated
only in the eastern Mongol-Okhotsk orogen and
extends to the northeast, whereas the latter extends
in a NE direction from the Erguna-Great Xing’an
Range to the Taihang Mountains and to SE China
[57].

Early Cretaceous (145–120Ma) felsic-
intermediate rocks and mafic lavas are widespread
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and related igneous rocks in the Mongol-Okhotsk orogen.
See explanations in the text and data in Table S1.

across the whole of the Mongol-Okhotsk orogen,
as well as in much of NE Asia [22,33,56,60]. They
have bimodal affinities and most of the felsic-
intermediate rocks are associated with alkaline
and/or A-type granites, suggesting an extensional
setting [57]. All these Early Cretaceous magmatic
rocks, together with associated coeval extensional
structures (such as metamorphic core complexes
[34,61] and extensional or rift basins [62]) in-
dicate a large-scale post-collisional extension of
the Mongol-Okhotsk orogen [61] followed by
lithospheric thinning/delamination [35]. This
is consistent with the terminal closure of the
Mongol-Okhotsk Ocean at ca. 160–150Ma.

Figure 6 shows a summary of the zircon ages
and areal distribution of these magmatic rocks.
The zircon ages record semi-continuous magma-
tism from 350 to 150 Ma with only two ma-
jor weak peaks at 310–290 Ma and 240–230 Ma,
and with gaps at 270–260 Ma and 230 Ma. Alka-
line magmatism mainly occurred near the end of
each peakmagmatism.These relations suggest semi-
continuous phases of oceanic subduction. The areal
distribution demonstrates that the Carboniferous-
Permian igneous rocks are far more voluminous
than the Triassic-Jurassic igneous rocks, particu-
larly in the northern and western sides of the
Mongol-Okhotsk suture. From this, we speculate
that the Mongol-Okhotsk Ocean was large (wide)
in the Carboniferous-Permian and small in the
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Triassic-Jurassic.This is consistent with recent pale-
omagnetic data [63–65].

RESTORING CLOSURE OF THE
MONGOL-OKHOTSK OCEAN: MAGMATIC
PERSPECTIVE
The Mongol-Okhotsk orogen is a collage of differ-
ent tectonic units (accretionary complexes, terrenes
andmassifs), and themargins of the oceanwere vari-
able in shape and composition. Consequently, the
development of the magmatic rocks during the for-
mation of the orogen was likely complex and irreg-
ular. Nevertheless, from a statistical viewpoint the
Carboniferous-Jurassic magmatic belts have regular
migration trends.

The Carboniferous-Triassic magmatic migration
towards the Mongol-Okhotsk suture reflects ocean-
wardmigration.These relationships, combined with
the alkalinemagmatism, reveal retreating or rollback
subduction or extensional accretion of the Mongol-
Okhotsk oceanic plate. An oceanward migration
of magmatism caused by successive rollbacks is a
known tectonic process as in the formationof thePa-
leozoicLachlanorogen in easternAustralia [66–68],
and theCretaceousmagmatic belt along thewestern
Pacific plate margin [69]. Moreover, several other
oroclines have been recognizedby alignment of their
magmatic rocks, such as the earlyPermian granitoids
in the New England orogen of eastern Australia [6].
Nevertheless, our study is the first not only to iden-
tify a tight orocline by two isoclinal, parallel-contact
magmatic belts, but also to restore rollback subduc-
tion fromoroclinalmagmatic belts arounda fossil su-
ture zone.

Many Late Triassic (ca. 220–200 Ma) plutons
(some are alkaline) that were emplaced discor-
dantly into the western segment of the Mongol-
Okhotsk suture were post-accretionary stitching
plutons (Fig. 3c). This indicates that the Mongol-
Okhotsk Ocean closed and the western suture
formed by Triassic (pre∼220 Ma) time. Further-
more, the eastward-younging Triassic-Jurassic mag-
matism along the suture zone (Fig. 2) indicates a
continuous eastward suturing in a scissor- or zipper-
like style. The magmatic evolution from Middle
Jurassic calc-alkaline granitic rocks to Early Creta-
ceous alkaline rocks, which was associated with a
tectonic transition from contraction to extension at
ca. 150 Ma [61], strongly suggests that ca. 160–
150 Ma was the most likely time for the terminal
closure of the ocean in the Far East. This conclu-
sion is in accordance with ophiolite isotopic ages
[26], paleomagnetic data [37], seismic tomogra-
phy andnumericalmodeling [70].Accordingly, after
integrating all the above information,wepropose the

following sequential relationships in a new tectonic
model (Fig. 7).

(i) A continuous linear or slightly curved, mature
active margin of the Mongol-Okhotsk Ocean
started at least by Carboniferous time. The
northern segment was an Andean-type conti-
nental margin, but the southern segment was
a juvenile, Japanese-type, accretionary complex
that contained only a few ancient massifs such
as the Erguna Massif. These relations are indi-
cated by granitoid isotopic mapping (Fig. 8)
that shows more positive εNd (0 − +6) values
with younger model ages (1.5–0.6 Ga), which
are more widespread in the southern than in
the northern margin. A comparable analogue
is the modern plate regime in Alaska, which
has a single arc with a continental signature on
one side and a subduction/accretion belt with
an oceanic signature on the other [71]. The
Mongol-Okhotsk orocline contains all these re-
lationships. Significantly, the orocline has pre-
served the juvenile crust well.

(ii) The active margin began to be deformed and
curved after at least the Permian.The ocean be-
gan its scissor/zipper-like closure by the Trias-
sic (pre∼230Ma), which was completed in the
east by the Late Jurassic (ca. 160–150Ma).The
hinge of the orocline is at the junction between
thenorthern and southern segments at thewest-
ern end (present coordinates). The junction
resembles the inflection point of the modern
eastern Philippine plate subduction zone. Some
global reconstruction models have suggested
that the Mongol-Okhotsk Ocean was large and
extended westward (present coordinates) to
connect with the Paleo-Tethyan Ocean in Tri-
assic time [70]. Our study, however, does not
include such models.

(iii) The curved margin of the Mongol-Okhotsk
Ocean underwent rollback subduction. The
subduction direction was toward the outer of
the curves in a direction like that of other
oroclines in Kazakhstan [15,17], the Mediter-
ranean [7] and the Andes [1,9], but differ-
ent from the curved subduction system in
SE Asia, where the subduction direction is
towards the interior [72]. Interestingly, the
outer (western) part of the Mongol-Okhotsk
orocline was formed by inner suture subduc-
tion of the Paleo-Asian Ocean (PAO) [18],
and consequently the orocline was formed by
two oceanic plate dynamics. Additionally, re-
garding the bending of the orocline, some
extensional basins developed outside the hinge
zone, accommodating the ‘folding’ [18,30].
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Figure 7. A schematic model showing rollback and scissor/zipper-like closure of the Mongol-Okhotsk Ocean. (a–c) Ocean-
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migration along the suture. The black dashed lines show sutured or closure areas of the ocean. NCC = North China Craton.
Paleogeographic reconstructions are modified from Ref. [25].

(iv) Oroclines with contorted/folded magmatic
belts are known in other orogens [6,73]. How-
ever, in the Mongol-Okhotsk orogen we can
identify not only the two tightly ‘folded’ parallel
magmatic belts that make up the tight orocline,
but also both sutureward (oceanward) and
suture-parallel magmatic migrations.

There are two fundamentally different types of
oroclines, progressive and secondary, that are gen-
erally interpreted as stress-perpendicular and stress-
parallel [1]. Orogen-normal principal compression

(including advanced subduction), asymmetric re-
treat (or rollback) on both subducting margins,
orogen-parallel shortening and transpressional slip
are the most likely principal mechanisms responsi-
ble for the formation of an orocline [1,4,5,74].

It has been speculated that the Mongol-
Okhotsk orocline was formed by Carboniferous
E–W shortening leading to N–S tectonics before
the Late Permian to Late Triassic orthogonal N–S
shortening [24,30]. However, we have found no
evidence for such orogen-normal principal com-
pression (advanced subduction), orogen-parallel
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Figure 8. Two-stage distribution of Nd model ages of the
Carboniferous-Jurassic granitic rocks in theMongol-Okhotsk
orogen. See explanations in the text and data in Table S2.

shortening or transpressional slip, even when
retreat or rollback subduction has clearly taken
place. The rollback was apparently stronger in the
northern limb and the hinge zone of the orocline, as
demonstrated by (i) wider Carboniferous-Jurassic
magmatic belts; (ii) much stronger sutureward
migration of Carboniferous-Triassic magmatic
belts in the northern and western segments of
the Mongol-Okhotsk suture (Figs 2 and 3); and
(iii) far more igneous rocks, particularly alkaline
types, suggesting strong extensional accretion. This
symmetric rollback, i.e. stronger in the northern
and western segments of the suture, could have
driven the initial curvature of the Mongol-Okhotsk
oceanic margin. Significantly, clockwise rotation of
the Siberian craton and anticlockwise rotation of
the Mongolian-Erguna (Amuria) block took place
at this time as revealed by integration of geological
information [16,18], particularly paleomagnetic
data [30,37].This rollback could not have driven the
rotation of the too large Arctic cratons that might
have been conducive to the rotation, both of which
promoted the closure of the Mongol-Okhotsk
Ocean.This rotation was likely compressive and the
bending of the orocline was not large. Thus, there
was no large-scale extension capable of opening an
ocean like the Asgard Sea that was driven by the late
Mesoproterozoic clockwise rotation of Baltica with
respect to Laurentia [10].

Accordingly, we propose that the two indepen-
dent, but contemporaneous, rollback and rotation
factors were the fundamental mechanisms responsi-
ble for the formation of the Mongol-Okhotsk oro-
cline and the ocean closure. Our study sheds light
on the vital role played by the rotation of convergent
blocks and rollback subduction in the formation of a
tight orocline.

As discussed above, the Mongol-Okhotsk oro-
cline was formed by two oceanic plate dynamics:
the eastern core (of the Mongol-Okhotsk orogen)
caused by the Mongol-Okhotsk oceanic plate and
the western outer part (the western CAOB) by the
PAO plate. The giant curved arc systems of SE Asia
could be a modern analogue [72]: to the east is the
Pacific Ocean and to the west the Indian Ocean.
Moreover, there is a larger Kazakhstan orocline in
the western CAOB. Thus, the CAOB contains sev-
eral oroclines and orogens that were derived from
different plate dynamics. The fact that the eastern
CAOB hosts one of the world’s largest felsic igneous
provinces with more than 6000 igneous bodies (ca.
5000 intrusions) allows us to speculate that these
may represent the incipient stage in the formation of
a Large Igneous Province (LIP), which is character-
ized by an abundance of igneous intrusions.

CONCLUSIONS
Using a particularly large data set, we identi-
fied a series of tightly ‘folded’ linear (oroclinal)
Carboniferous-Jurassic magmatic belts that wrap
around the Mongol-Okhotsk suture, and we rec-
ognized both sutureward and suture-parallel mag-
matic migrations. These new findings reveal a roll-
back scissor/zipper-like ocean closure. Rollback of
subducted plates and rotation of convergent blocks
are themost likely fundamentalmechanisms respon-
sible for this kind of ocean closure and related oro-
cline formation.This studydemonstrates howcoeval
oceanward and suture-parallel magmatic migrations
can reveal a rollback and scissor/zipper-like closure
of an ocean, which make for formation and preser-
vation of so many magmatic rocks. These processes
help understand the complex closure of an ocean
with curved and irregularmargins and the formation
of an orocline. Determining the magmatism of an
ancient suture zone is a useful approach to unravel-
ing the relationships of arc folding, oroclinal devel-
opment and ocean closure/suture.
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63. Edel JB, Schulmann K and Hanžl P et al. Palaeomagnetic and structural con-
straints on 90◦ anticlockwise rotation in SW Mongolia during the Permo–
Triassic: implications for Altaid oroclinal bending. Preliminary palaeomagnetic
results. J Asian Earth Sci 2014; 94: 157–71.

64. Zhao P, Appel E and Xu B et al. First paleomagnetic result from the Early Per-
mian volcanic rocks in northeastern Mongolia: evolutional implication for the
Paleo-Asian Ocean and the Mongol-Okhotsk Ocean. J Geophys Res Solid Earth
2020; 125: e2019JB017338.

65. Xiao WJ, Windley BF and Huang BC et al. End-Permian to mid-Triassic
termination of the accretionary processes of the southern Altaids: impli-
cations for the geodynamic evolution, Phanerozoic continental growth, and
metallogeny of Central Asia. Int J Earth Sci (Geol Rundsch) 2009; 98:
1189–287.

66. Collins WJ. Nature of extensional accretionary orogens. Tectonics 2002; 21:
6–12.

67. Cawood PA, Pisarevsky SA and Leitch EC. Unraveling theNewEngland orocline,
east Gondwana accretionary margin. Tectonics 2011; 30: TC5002.

68. Cawood PA, Kroner A and Collins WJ et al. Accretionary orogens through Earth
history. Geol Soc London Spec Pub 2009; 318: 1–36.

69. Jahn B, Valui G and Kruk N et al. Emplacement ages, geochemical and Sr–
Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of
the Sikhote-Alin Orogenic Belt, Russian Far East: crustal growth and regional
tectonic evolution. J Asian Earth Sci 2015; 111: 872–918.

70. Fritzell EH, Bull AL and Shephard GE. Closure of the Mongol–Okhotsk Ocean:
insights from seismic tomography and numerical modelling. Earth Planet Sci
Lett 2016; 445: 1–12.

71. Kusky TM, Wang J and Wang L et al. Mélanges through time: life cycle of
the world’s largest Archean mélange compared with Mesozoic and Paleozoic
subduction-accretion-collision mélanges. Earth-Sci Rev 2020; 209: 103303.

72. Li JB, Ding WW and Lin J et al. Dynamic processes of the curved subduction
system in Southeast Asia: a review and future perspective. Earth-Sci Rev 2021;
217: 103647.

73. Gutiérrez-Alonso G, Johnston TE and Weil AB et al. Buckling an orogen: the
Cantabrian Orocline. GSA Today 2012; 22: 4–9.

74. Marshak S. Salients, recesses, arcs, oroclines, and syntaxes—a review of
ideas concerning the formation of map-view curves in fold-thrust belts. In:
McClay KR (ed.). Thrust Tectonics and Hydrocarbon Systems. Tulsa: American
Association of Petroleum Geologists. 131–56.

Page 12 of 12

http://dx.doi.org/10.1016/j.jseaes.2014.07.039
http://dx.doi.org/10.1029/2019JB017338
http://dx.doi.org/10.1007/s00531-008-0407-z
http://dx.doi.org/10.1029/2000TC001272
http://dx.doi.org/10.1029/2011TC002864
http://dx.doi.org/10.1144/SP318.1
http://dx.doi.org/10.1016/j.jseaes.2015.08.012
http://dx.doi.org/10.1016/j.epsl.2016.03.042
http://dx.doi.org/10.1016/j.epsl.2016.03.042
http://dx.doi.org/10.1016/j.earscirev.2020.103303
http://dx.doi.org/10.1016/j.earscirev.2021.103647
http://dx.doi.org/https://www.geosociety.org/gsatoday/archive/22/7/abstract/i1052-5173-22-7-4.htm

