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ABSTRACT
Background  The efficacy of immune checkpoint 
inhibitors (ICIs) depends on the tumor immune 
microenvironment (TIME), with a preference for a T cell-
inflamed TIME. However, challenges in tissue-based 
assessments via biopsies have triggered the exploration 
of non-invasive alternatives, such as radiomics, to 
comprehensively evaluate TIME across diverse cancers. 
To address these challenges, we develop an ICI response 
signature by integrating radiomics with T cell-inflamed 
gene-expression profiles.
Methods  We conducted a pan-cancer investigation into 
the utility of radiomics for TIME assessment, including 
1360 tumors from 428 patients. Leveraging contrast-
enhanced CT images, we characterized TIME through 
RNA gene expression analysis, using the T cell-inflamed 
gene expression signature. Subsequently, a pan-cancer 
CT-radiomic signature predicting inflamed TIME (CT-
TIME) was developed and externally validated. Machine 
learning was employed to select robust radiomic features 
and predict inflamed TIME. The study also integrated 
independent cohorts with longitudinal CT images, baseline 
biopsies, and comprehensive immunohistochemistry 
panel evaluation to assess the pan-cancer biological 
associations, spatiotemporal landscape and clinical utility 
of the CT-TIME.
Results  The CT-TIME signature, comprising four radiomic 
features linked to a T-cell inflamed microenvironment, 
demonstrated robust performance with AUCs (95% CI) 
of 0.85 (0.73 to 0.96) (training) and 0.78 (0.65 to 0.92) 
(external validation). CT-TIME scores exhibited positive 
correlations with CD3, CD8, and CD163 expression. 
Intrapatient analysis revealed considerable heterogeneity 
in TIME between tumors, which could not be assessed 
using biopsies. Evaluation of aggregated per-patient CT-
TIME scores highlighted its promising clinical utility for 
dynamically assessing the immune microenvironment 
and predicting immunotherapy response across diverse 
scenarios in advanced cancer. Despite demonstrating 
progression disease at the first follow-up, patients within 
the inflamed status group, identified by CT-TIME, exhibited 
significantly prolonged progression-free survival (PFS), 
with some surpassing 5 months, suggesting a potential 
phenomenon of pseudoprogression. Cox models using 

aggregated CT-TIME scores from baseline images revealed 
a statistically significant reduction in the risk of PFS in 
the pan-cancer cohort (HR 0.62, 95% CI 0.44 to 0.88, 
p=0.007), and Kaplan-Meier analysis further confirmed 
substantial differences in PFS between patients with 
inflamed and uninflamed status (log-rank test p=0.009).
Conclusions  The signature holds promise for impacting 
clinical decision-making, pan-cancer patient stratification, 
and treatment outcomes in immune checkpoint therapies.

BACKGROUND
The emergence of immune checkpoint inhib-
itors (ICIs) has transformed the treatment 
landscape for advanced cancers by leveraging 
the immune system to selectively target tumor 
cells. Despite these advancements, the overall 
response rates to ICI remain modest, with less 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Traditional biopsies face challenges in assessing the 
immune microenvironment, prompting the search 
for non-invasive alternatives like radiomics to eval-
uate it across different cancers.

WHAT THIS STUDY ADDS
	⇒ This study introduces a new method, CT-tumor im-
mune microenvironment (TIME), which combines 
radiomics and gene expression to assess the im-
mune microenvironment across diverse cancers. It 
also reveals significant variations in the microenvi-
ronment between tumors and highlights potential 
pseudoprogression in certain patients.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The CT-TIME method has the potential to im-
pact treatment decisions, patient categorization, 
and treatment outcomes in immune checkpoint 
therapies. It may also redefine our understand-
ing of treatment response, particularly in cases of 
pseudoprogression.
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than 15% of patients experiencing positive responses,1 
alongside instances of severe treatment-related toxicities.2 
This underscores the urgent need in oncology for the 
development of precise predictive response biomarkers 
tailored to ICI therapies.

The efficacy of ICI is intricately tied to the tumor 
immune microenvironment (TIME).3 4 However, charac-
terizing the TIME is complex, given the variability in T 
cell reactivity within tumors and the nuanced response of 
tumour-reactive T cells to immunotherapy. Recent investi-
gations revealed key attributes of a T cell-inflamed tumor 
microenvironment, including active IFN-γ signaling, cyto-
toxic effector molecules, antigen presentation, and T cell-
active cytokines.5 The T-cell-inflamed gene-expression 

profile (GEP),5 serving as an indicator of the activity and 
condition of the TIME rather than the specific abundance 
of immune cell types, has demonstrated associations with 
ICIs response across diverse cancer types and clinical trial 
settings.6 7

However, the assessment of TIME through tissue 
sampling presents logistical challenges in clinical prac-
tice, primarily due to the invasive character of the proce-
dure. Furthermore, tissue biopsies, limited to small 
tumor fragments, are susceptible to sampling biases 
and inherently fail to capture the broader spatiotem-
poral dynamics of the microenvironment. In contrast, 
radiomics, a non-invasive approach extracting semi-
quantitative features from medical images, offers a 

Figure 1  Data and study overview. (A) Dataset overview with demographics and treatment information. Note that patients were 
treated with a single agent (mono IT) or a combination of immunotherapy agents. Cohort 1 was used for signature development 
and model training, Cohort 2 for external signature validation, cohort 3 for exploring biological associations, and cohort 4 
for analyzing the clinical utility of the signature. (B) Step-by-step study overview with colors corresponding to the analyzed 
datasets (A). Biopsies and CT images from the training cohort underwent analysis using genomics and radiomics. Robust 
feature selection was conducted through machine learning, with various models fitted to predict the T cell-inflamed GEP score. 
The best-performing model was chosen during validation. Biological associations of CT-TIME were explored, along with an 
investigation into the clinical utility of the aggregated CT-TIME score. AUC, area under the curve; FFE, formalin-fixed paraffin-
embedded; GEP, gene-expression profile; IHC, immunohistochemistry; PFS, progression-free survival; RF, random forest; ROC, 
receiver operating characteristic; SVM, support vector machine; TIME, tumor immune microenvironment.
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comprehensive view of tumor heterogeneity, enabling 
the characterization of an individual patient’s tumor 
phenotype’s spatiotemporal landscape to guide person-
alized treatments.

Radiomic signatures are patterns or profiles derived 
from radiomic features that can be correlated with 
specific disease characteristics, treatment responses, 
or patient outcomes. Initial studies demonstrated the 
potential of radiomics in characterizing the abundance 
of CD8+tumor-infiltrating lymphocytes and predicting 
treatment outcomes.8–11 However, these studies have 
shown limited reproducibility across different cancer 
types and have lacked external validation and signature 
explainability.12–14

To address these challenges, we propose a novel 
approach—integrating radiomics with T cell-inflamed 
GEP to develop an ICI response signature. Our objec-
tives encompass: (1) developing and validating a robust 
radiomic signature for the T cell-inflamed tumor micro-
environment using machine learning, (2) studying the 
biological relevance of identified radiomic signature in 
relation to TIME, (3) analyzing spatiotemporal evolu-
tion of CT-TIME, and (4) exploring the clinical utility of 
the radiomic signature as a non-invasive tool for guiding 
personalized immunotherapy decisions, allowing for 
extended analysis compared with current techniques 
based on tissue sampling.

We anticipate that our radiogenomics signature holds 
the potential to advance personalized digital health 
solutions. CT-TIME not only serves as a novel imaging 
biomarker to assess the inflamed TIME but is also able 
to predict immunotherapy responses. This facilitates 
patient-centric care and contributes to tailored treatment 
strategies, ultimately improving clinical outcomes for 
patients with advanced cancer undergoing ICI treatment.

METHODS
Patient data
This study involved 428 patients (1360 evaluated tumors) 
from four independent patient cohorts (figure  1). 
Cohorts 1 was used for signature development and 
model training, cohort 2 for external signature valida-
tion, cohort 3 for biological associations and cohort 4 to 
analyze clinical utility of the signature. Cohorts 1, 3 and 4 
consisted of patients with contrast-enhanced CT acquired 
no more than 4 weeks before the start of the immuno-
therapy (baseline) and before tissue sampling. Cohorts 
1, 3 and 4 included patients treated with ICIs at the Vall 
d’Hebron Hospital in Barcelona, with data retrieved from 
digital clinical records. Cohort 3 was from an ongoing 
prospective study (PREDICT), while others were collected 
retrospectively. Cohort 2 data were obtained from the 
radiogenomics the Cancer Imaging Archive (TCIA) 
repository,15 including presurgical intervention patient 
CT images. Online supplemental S1 provides details on 
relevant patient characteristics .

Gene expression analysis
For the training cohort (cohort 1), NanoString computed 
gene expressions were analyzed as in Frigola et al.3 16 Clin-
ical and immune characteristics of evaluated patients are 
presented in online supplemental S2. Univariate and 
multivariate regression analysis of immune variables with 
clinical benefit at 5 months were conducted. Only the 
T-cell-inflamed GEP, reflecting the TIME’s activity and 
state rather than the abundance of specific immune cell 
types, achieved statistically significant associations with 
clinical outcome (online supplemental S3 and S4).

For cohort 2, RNA sequencing and data processing were 
performed as in Bakr et al15 and summarized in online 
supplemental S5. T-cell-inflamed GEP scores from cohort 
2 were harmonized by adjusting normal distribution 
parameters to match cohort 1. A GEP status (inflamed/
uninflamed) was computed using median T-cell-inflamed 
GEP score and was used as the prediction target to guide 
development of the radiomics signature in subsequent 
sections.

Radiomic analysis
A robust radiomics methodology and computational 
pipeline were implemented in adherence to best-practice 
procedures. The Radiomics Quality Score (RQS)17 
assessed the study quality online supplemental S6, and 
guidelines from the Image Biomarker Standardization 
Initiative18 for reporting imaging protocols and feature 
extraction were followed.

Contrast-enhanced CT images were identified, down-
loaded as Digital Imaging and Communication in Medi-
cine (DICOM), anonymized and converted to NIFTI 
format using DICOM for Quantitative Imaging library.19 
Image acquisition and reconstruction parameters are 
summarized in table 1.

All measurable lesions according to the Response Eval-
uation Criteria 1.120 were segmented using semiautomatic 
delineation tools from 3D Slicer V.4.1121 by a radiologist 
with more than 10 years of experience in oncological 
imaging (RP-L).

A total of 107 radiomic features describing lesion 
location, size, shape, first-order and high-order texture 
features were extracted using the PyRadiomics package.22 
Images were processed in the same way across studied 
cohorts. Details on image processing and feature 
extraction parameters used are provided in table  2. 
Additionally, two aggregated features of total tumor 
volume and total surface were computed by considering 
all segmented tumors in a patient. Thus, a total of 109 
features were analyzed per tumor online supplemental 
S7. Feature selection was carried out in three steps to 
find robust, non-redundant and informative radiomic 
features. Details are provided in online supplemental S8 
and S9. Groups of highly correlated radiomic features 
were identified via hierarchical clustering and reduced to 
a single archetypal feature per cluster.

As detailed in table  2, 74% of images from cohort 2 
were reconstructed using a sharp imaging kernel. To 
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minimize the differences from imaging protocols, we 
applied feature harmonization using ComBat correc-
tion, as previously studied in Orlhac and Eertink23 24 and 
detailed in online supplemental S10.

Radiomic T-cell-inflamed signature development and 
validation
Elastic-net penalized logistic regression, based on 10 
times repeated five-fold cross-validation, was applied to 
the training set (Cchort 1) to perform hyperparameter 
tuning and radiomic feature selection, using GEP status 
as an outcome. The receiver operating characteristic 
(ROC) curve served as the performance metric and was 
used to select an optimal model. The tuned hyperparam-
eters included α (balancing L1 and L2 regularization) 

and λ (regularization strength). The CT-TIME signature 
comprised robust, relevant and non-redundant radiomic 
features.

The radiomic signature was used to train various classifi-
cation models, encompassing a generalized linear model 
(glm) based on logistic regression, K-nearest neighbors 
(knn), feed-forward neural networks model (nnet), 
random forest (rf), regression trees (rpart) and support 
vector machine (svmRadial).

Internal validation was conducted through repeated 
fivefold cross-validation. For each fold, the dataset was 
divided into five subsets, the model was trained on four 
subsets and validated on the fifth, computing perfor-
mance metrics such as AUC, sensitivity, and specificity. 

Table 1  Imaging protocols across studied cohorts

Parameter Cohort 1 Cohort 2 Cohort 3 Cohort 4

Number of images 41 49 38 421

Tube potential (kVp) 120 120 120 120

Tube current (mA), median (IQR) 419 (311–466) 341 (231–507) 395 (306–492) 319 (230–550)

Slice Thickness (mm), median (IQR) 2 (2–3) 1.25 (1.25–1.25) 2 (2) 2.5 (2–3)

Convolution Kernel, n (%)

Soft 41 (100%) 10 (26%) 19 (100%) 421 (100%)

Sharp – 39 (74%) – –

Table 2  Image processing and radiomic feature extraction parameters

Image processing

 � Software PyRadiomics V.3.0.1, installed in Python V.3.7.10

 � Bounding box Defined by the segmentation, extended by default padding 
distance.

 � Resampled voxel spacing (mm) 1×1×1

 � Image interpolation method B-spline

 � Intensity rounding None

 � ROI interpolation method Nearest neighbor

 � Re-segmentation Intensity range (−100; 300)

Feature computation

 � Kernel radius 1 mm

 � Discretization (fixed bin size) 25 HU

 � Image filter None

 � maskedKernel True (only voxels in the kernel that were also segmented in 
the ROI were used for calculation)

 � Initvalue NaN (voxels outside ROI were considered as transparent)

 � Distance weighting for GLCM, GLRLM, NGTDM No weighting

 � GLCM Symmetry Symmetric

 � GLCM distance, GLSZM linkage distance, GLDZM linkage 
distance, NGTDM distance

Chebyshev distance δ=1

 � NGTDM coarseness Coarseness parameter α=0

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone difference matrix; ROI, region of 
interest.

https://dx.doi.org/10.1136/jitc-2024-009140
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The AUC values from all the folds were then aggregated 
to calculate the mean and SD, providing a comprehen-
sive assessment of the model’s performance. Further-
more, external validation of the models was carried out 
using cohort 2 data. The selection of the best-performing 
model was based on the AUC metric.

Both signature training and validation were imple-
mented using glmnet and caret packages. It is essential 
to emphasise that these models, trained with GEP status 
as the outcome, will produce a CT-TIME score ranging 
from 0 to 1, representing the probability of the tumor 
belonging to the T cell inflamed group. This scoring 
system provides a quantitative measure of the likelihood 
of the tumor immune responsiveness.

The CT-TIME scoring system, functioning as a dichoto-
mous variable, categorizes scores surpassing 0.5 as indica-
tive of an immune-inflamed CT-TIME status, while scores 
below 0.5 are classified as uninflamed CT-TIME status. 
This dichotomy provides a clear and clinically relevant 
distinction, facilitating the identification of tumors with 
heightened immune responsiveness.

Exploration of biological correlates of CT-TIME score in a 
prospective cohort
A prospective cohort (cohort 3) of patients with matched 
baseline CT images and tumor biopsies was used to under-
stand the biological associations of the developed model. 
Biopsies were processed using next-generation immuno-
histochemistry (NGI), to characterize different aspects 
of the tumor and its microenvironment. NGI consisted 
of a multiplex immune panel that provided co-localized 
CD8, CD3, CD163 and FOXp3 markers as well as Pan-CK 
for tumor region delineation and Ki67 for proliferation 
analyses. Furthermore, standard IHC single-plex staining 
was used to quantify PDL1, PD1 and CD31 expressions. 
Stained sections were digitized on a NanoZoomer 2.0-HT 
slide scanner (Hamamatsu Photonics), and digital images 
processed using the Visiopharm Image analysis software,25 
resulting in marker expression scores expressed in densi-
ties (cell/mm2).

Spatiotemporal analysis of TIME using CT-TIME
CT-TIME was comprehensively studied in cohort 4, 
comprising 319 patients with advanced pan-solid tumors, 
with over half presenting multiple tumors. Aggregating 
per-tumor into per-patient CT-TIME scores using mean, 
median, minimum, and maximum values allowed the 
classification of patients based on their aggregated 
scores. Those exceeding 0.5 were categorized as having 
an immune-inflamed CT-TIME status, while others were 
classified as uninflamed.

Additionally, CT-TIME status was longitudinally exam-
ined in a subset of 51 patients (153 tumors) with base-
line, first follow-up and best response images acquired 
during immunotherapy treatment. A quantitative analysis 
of these transitions, including the number of cases, was 
conducted and visualized using the Sankey diagram to 

provide a comprehensive understanding of the dynamics 
within the TIME.

Clinical applications of CT-TIME
Our investigation explored two distinct CT-TIME applica-
tions: (1) enhancing the monitoring of immunotherapy 
patients and its potential role in response assessment and 
(2) predicting the response to immunotherapy based on 
the evaluation of baseline CT-TIME scores.

To explore the predictive capability of aggregated 
scores at baseline, Cox proportional hazard models were 
fitted for progression-free survival (PFS). Kaplan-Meier 
analysis, using median CT-TIME status, was performed 
both in the entire cohort and in a subgroup focusing on 
patients with lung cancer.

As a benchmark, CT-TIME was compared against 
PDL1 status and tumor burden (volume) at baseline. 
This comparative analysis was performed in a subcohort, 
comprising patients with available PDL1 status (n=42), 
providing valuable insights into the performance of 
CT-TIME relative to established biomarkers in the field.

Statistical analysis and code availability
AUC and 95% CI were determined from the ROC curve, 
and the p value was assessed by using the Mann-Whitney 
U test to assess the model performance. A p value of 0.05 
or lower was considered as statistically significant. Calibra-
tion was assessed using the Hosmer-Lemeshow goodness-
of-fit test. Statistical analyses were performed by using R 
software, version 4.2.0.26 To ensure the reproducibility of 
the signature, we made our code available on GitHub: 
(https://github.com/kingaber/CT-TIME-public.git).

RESULTS
Radiomic T-cell-inflamed signature development and 
validation
Out of 109 radiomic features, 34 were identified as 
robust to different image perturbations (see online 
supplemental S9). The repeated cross-validation process 
revealed consistent and reliable performance metrics 
across different folds, attesting to the stability of the 
selected features and the effectiveness of the elastic net 
regularization. Optimal values for λ (0.012) and α (0.55) 
were identified. 13 radiomic features were selected, and 
4 distinctive and non-redundant archetypal features 
were used in the signature: elongation, first-order 90th 
percentile, gray-level co-occurrence matrix (GLCM) 
maximum probability, and gray-level size zone (GLSZM) 
non-uniformity. Univariate and multivariate analyses of 
the signature features, with the T cell inflamed GEP score 
dichotomized to classify tumors into inflamed and unin-
flamed groups, are reported in online supplemental S11.

The radiomic signature features were used to train 
different classification models, as summarized in online 
supplemental S12. Following cross-validation and external 
validation, a generalized linear model with logistic regres-
sion was selected as the final CT-TIME-based model, 

https://github.com/kingaber/CT-TIME-public.git
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providing CT-TIME scores from 0 to 1 for each tumor, 
representing the probability of belonging to the inflamed 
group. This model yielded an AUC (95% CI) of 0.85 (0.73 
to 0.96) and 0.78 (0.56 to 1) in training and internal 
validation, respectively. The Hosmer and Lemeshow 
goodness-of-fit test indicated good model calibration 
based on the χ2 statistics of 5.2 and p=0.74. Observed and 
expected values were similar across the groups, further 
confirming well model calibration. Additionally, the 
CT-TIME model was validated in an external and inde-
pendent cohort, demonstrating an AUC of 0.78 (0.65 to 
0.92), as illustrated in (figure 2A).

Exploration of biological correlates of CT-TIME score in a 
prospective cohort
The biological correlates of CT-TIME score were inves-
tigated within a prospective cohort of patients with 
matched baseline CT images and tumor biopsies assessed 
using immunohistochemistry. Various markers were 
examined to characterize different aspects of the tumor 
and its microenvironment, as illustrated in (figure 2B). A 
significant correlation between CT-TIME score and intra-
tumoral CD8 staining (R=0.65, p=0.005), a marker of the 
cytotoxic T cell population, was identified. Additionally, 
correlations were observed with CD163 (R=0.54, p=0.02), 

a marker of tumor-associated macrophages and the CD3 
marker of the overall presence of T cells (R=0.57, p=0.02). 
Four selected radiomic features were also explored indi-
vidually. We observed a correlation between GLSZM 
size zone non-uniformity and CD31 expression, which 
is indicative of vascular differentiation (R=0.5, p=0.034). 
Additionally, the first order 90th percentile displayed a 
negative correlation with FOXP3 expression, a marker 
associated with regulatory T cells (R=−0.49, p=0.038), as 
shown in online supplemental S13.

Spatiotemporal analysis of TIME using CT-TIME
CT-TIME score was computed in a cohort of 319 patients 
with 1314 advanced pan-solid tumors segmented. In a 
subset of 153 patients, additional CT images acquired at 
first follow-up and at best response were further analyzed. 
The examination of interpatient and intrapatient (inter-
tumor) heterogeneity of the CT-TIME score extracted 
from baseline images underscored the dynamic nature of 
immune responsiveness across diverse tumors.

Patients with multiple tumors showed moderate to high 
intrapatient heterogeneity in CT-TIME in more than 67% 
of cases as shown in online supplemental S14. Interest-
ingly, the CT-TIME score exhibited non-specificity to 
primary tumors, but a distinct pattern emerged, with 

CT-TIME signature

CT-TIME-based model validation

Regression coefficients
Intercept
Tumor Elongation
First-order 90 percentile
GLCM Maximum Probability
GLSZM Size Zone Non-Uniformity

-0.16
-0.54
2.13
1.22

-0.59

Biological associations of CT-TIME score

i_CD8: 7.9CT-TIME: 0.9

CT-TIME: 0.1 i_CD8: 1.8

A CT-TIME signature development and validation B Biological interpretability of CT-TIME 

TT  cceellll--iinnflflaammeedd  
ssiiggnnaattuurree  

ROC curve: T cell-inflamed GEP

Figure 2  Development and evaluation of the radiomic T-cell-inflamed signature (CT-TIME). (A) Upper panel: Radiomic features, 
and their corresponding regression coefficients used in computing the CT-TIME signature. Lower panel: ROC curve depicting 
CT-TIME model training performance (cohort 1) and external validation results (cohort 2). (B) Correlation of the signature 
with immunohistochemistry staining, along with examples illustrating high and low signature scores and intratumoral CD8 
expression. GEP, gene-expression profile; ROC, receiver operating characteristic; TIME, tumor immune microenvironment.
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lung tumors demonstrating a higher score and liver 
tumors showing a lower score. This observation suggests 
that lung tumors may possess a more immune-inflamed 
microenvironment (figure 3A).

To further characterize the CT-TIME score, per-
tumor scores were aggregated using mean, median, 
minimum, and maximum values. Patients with aggre-
gated scores exceeding 0.5 were classified as having an 

CT-TIME per tumor and aggregation per patient
A Distribution of CT-TIME score at baseline

B CT-TIME score changes with time

Longitudinal changes of CT-TIME status

Aggregated Score > 0.5 
CT-TIME Status iinnflflaammeedd

CT-TIME aggregation

Aggregated Score ≤ 0.5 
CT-TIME Status uunniinnflflaammeedd

Baseline First follow-up Best response

Figure 3  Spatiotemporal analysis of CT-TIME in cohort 4. (A) Exploration of CT-TIME score heterogeneity across tumor types 
and locations. Aggregation of per-tumor CT-TIME scores to the patient level and translation to CT-TIME status. (B) Longitudinal 
change in CT-TIME status. TIME, tumor immune microenvironment.
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immune-inflamed CT-TIME status. The distribution 
of aggregated scores varied based on the aggregation 
method, as depicted in figure 3A.

A dynamic fluctuation in CT-TIME status during 
immunotherapy emerged, depicted in figure  3B. Anal-
ysis of baseline and first follow-up images revealed tran-
sitions from inflamed to uninflamed in 18% (9/51) of 
patients, with only 4% (2/51) changing from uninflamed 
to inflamed. From the first follow-up to best response, 
transitions from inflamed to uninflamed occurred in 2% 
(1/51) of cases, and 12% (6/51) changed from unin-
flamed to inflamed CT-TIME status.

Clinical applications of CT-TIME
The clinical utility of the CT-TIME, revealing notable insights into its 
potential applications
Given the acknowledged limitations of current response 
monitoring, particularly in the context of iRECIST uncon-
firmed progression disease, the CT-TIME score emerged 
as a compelling complementary tool. When computed 
at the first follow-up and indicating an uninflamed 
status, it could serve as an early indicator of confirmed 
progression. In a subset of progressing patients at the first 
follow-up, significant disparities in PFS were observed 
between inflamed and uninflamed groups (p=0.047), as 
depicted in figure 4A.

Exploring the predictive capability of aggregated 
scores at baseline, Cox proportional hazard models were 
employed for PFS. Notably, aggregated scores using the 
minimum value exhibited an HR<1 with a CI that did not 
cross one in both the pan-cancer cohort and the lung 
subcohort (see figure 4B).

Survival analysis further reinforced the clinical signif-
icance of CT-TIME status derived from the minimum 
CT-TIME score, elucidating significant group separation 
through log-rank tests (p=0.0054 for pan-cancer and 
p=0.00073 for lung; figure 4B).

Lastly, within a subcohort enriched with available PD-L1 
status, benchmarking against PD-L1 status and tumor 
burden (volume) at baseline revealed CT-TIME as the 
superior predictor, demonstrating significance (p=0.018) 
in Kaplan-Meier curves (figure 4C). This comprehensive 
investigation underscores the promising clinical utility 
of CT-TIME in dynamically assessing the immune micro-
environment and predicting immunotherapy response 
across diverse advanced pan-cancer scenarios.

DISCUSSION AND CONCLUSION
In this study, we successfully developed and validated 
a robust radiomics signature for predicting the T cell-
inflamed tumor microenvironment (CT-TIME) using 
advanced machine learning techniques. Notably, our 
signature included a single shape feature (elongation) 
while omitting features related to tumor volume. Due to 
substantial heterogeneity in previously published signa-
tures,12 it is difficult to compare our signature with the 
literature. However, some overlap could be observed with 

other radiomics studies related to TIME: elongation was 
one of the selected features by Ligero et al,27 first-order 90 
percentile was selected by Katsoulakis et al28 and GLSZM 
SZN was used by Li et al.29 Nevertheless, we did not find 
GLCM maximum probability in previous publications, 
the GLCM family was frequently used. Importantly, our 
study’s assessed quality (RQS=83.33%) substantially 
exceeded the mean RQS of previously published works 
(mean RQS=33.3%, range 0%–61.1%).12

The biological relevance of the identified radiomic 
features comprising our signature was explored in rela-
tion to the TIME. The CT-TIME signature demonstrated 
correlations with CD8, consistent with findings from 
prior studies.8 12 Notably, we also observed correlations 
with CD163, a marker associated with macrophages, 
and CD3 lymphocytes. Furthermore, our study revealed 
a novel correlation between signature radiomic features 
and CD31 (a vasculature marker) and FOXP3, suggesting 
potential regulatory T cell (Treg) activity. The negative 
correlation with FOXP3 implies that CT-TIME has the 
potential to identify a more inflamed microenvironment 
characterized by heightened T-cell activity. The asso-
ciation with CD31 expression suggests potential links 
between specific radiomic features and vascularity within 
the tumor microenvironment. Although these findings 
are promising, establishing causal relationships will 
require further investigation through functional studies 
or animal models.

We demonstrated the utility of radiomics as a potent 
tool to study the spatiotemporal landscape of a patient’s 
immune tumor microenvironment. Patients with multiple 
tumors exhibited substantial intrapatient heterogeneity 
in TIME, emphasising the need for tools capable of 
capturing TIME across different patient locations beyond 
current techniques relying on tissue sampling. This aligns 
with other studies investigating TIME using RNA expres-
sion or histology.30 31 Interestingly, the CT-TIME score 
was independent of the primary tumor type, but it was 
higher in lung tumors than in liver tumors. Lung metas-
tases were previously reported as highly immunogenic in 
several transcriptomic studies.32 33

In the longitudinal analysis of CT-TIME, we observed 
transitions between inflamed and uninflamed statuses, 
and vice versa. Patients initially classified as having uncon-
firmed progression by iRECIST at the first follow-up 
exhibited an uninflamed CT-TIME status at the same 
follow-up, followed by rapid progression. This observa-
tion suggests the potential involvement of a resistance 
mechanism to immunotherapy treatment. CT-TIME 
proves to be a valuable complementary tool for guiding 
response assessments in clinical trials and facilitating 
the optimal submission of samples for laboratory anal-
ysis of immuno-resistant tumors. Moreover, early detec-
tion of progression enables the exploration of different 
treatment options, such as therapies that transform cold 
tumors into hot ones.34 35

Patients with uninflamed CT-TIME status at base-
line were more likely to progress, pointing to CT-TIME 
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Figure 4  Clinical utility of CT-TIME signature in cohort 4. (A) Aggregated CT-TIME status for response assessment. (B) CT-
TIME status as a predictor of immunotherapy response. (C) Comparative analysis of CT-TIME status with PDL1 status and 
tumor burden. TIME, tumor immune microenvironment.
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potential for predicting immunotherapy response. We 
found that the signature performance was better in lung 
cancer patients than across diverse advanced pan-cancer 
scenarios. Considering the evolving landscape of immu-
notherapy biomarkers, a combination of CT-derived 
signatures (eg, CT-TIME+CT TMB + CT-PDL1) promises 
accurate immunotherapy response prediction, offering 
broad accessibility and spatio-temporal insights for 
oncologists.

While our study explores the clinical utility of the 
CT-TIME signature and highlights potential advantages, 
we acknowledge inherent limitations. The need for fast 
and automatic radiomics analysis requires the implemen-
tation of automatic segmentation tools, an aspect beyond 
the scope of this work. However, recent advancements in 
AI, particularly automatic segmentation models, are antic-
ipated to enhance workflow implementation.36 Feature 
harmonization is crucial for generalizing radiomics pipe-
lines, and standardizing reference datasets across studies 
could alleviate inconsistencies. Additionally, using an 
immune score derived from tumor samples for CT-TIME 
estimate could serve as a quality check, offering a quick 
cross-check alongside predictions. Ongoing efforts to 
define reproducible immune assays are crucial for this 
purpose.37 38 Proposed CT-TIME signature was successfully 
developed and validated in lung cancer cohorts (cohort 1 
and 2). While we demonstrated its clinical application in 
a pan-cancer cohort, the restricted number of cases per 
cancer type group precludes drawing definitive conclu-
sions, although the results are promising.

Further investigation into the relationship between 
radiomic features and underlying biological mechanisms, 
particularly through the use of functional imaging tech-
niques and animal models, has the potential to provide 
deeper insights into how radiomic features correlate with 
specific biological processes. This avenue of research 
holds promise for advancing the applicability of radiomic 
analyses in various clinical settings. In conclusion, our 
study introduces an innovative radiomics T-cell-inflamed 
signature, providing biological insights, spatiotemporal 
evaluation, and clinical utility exploration. By advancing 
the understanding of the TIME and its radiomics 
features, we aim to catalyze further research and discus-
sions, ultimately leading to the clinical implementation 
of radiomics tools and improved personalized treatment 
strategies for patients undergoing ICI therapy.
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