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SUMMARY
Wepresent a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United
States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteo-
mics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic
genome signature analysis, including a transition-high subtype enriched with never smokers, a transver-
sion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former
smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations
of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and indepen-
dently validate expression signatures of RNA and protein that predict patient survival. Additionally, among
co-measured genes, we found that protein expression is more often associated with patient survival than
RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, prote-
omic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a
foundation for molecularly informed medicine in LUAD.
INTRODUCTION

Lung adenocarcinoma (LUAD) is a leading cause of cancer

deaths in the United States1 despite advances in therapeutics

targeting somatically altered genes and immune checkpoints.

A major challenge in diagnosing and treating individuals with

LUAD is the vast morphological and molecular heterogeneity

within and among tumors.2–4 Several national and international

molecular profiling efforts have cataloged a diversity of somatic

DNA alterations in LUAD, including driver gene mutations, copy-
This is an open access article under the CC BY-N
number alterations, and fusion genes,5–7 as well as molecular

subtypes defined by RNA expression.6,8,9 The established RNA

expression subtypes of LUAD (terminal respiratory unit [TRU],

proximal proliferative [PP], and proximal inflammatory [PI])

have distinct clinical outcomes, therapeutic responses, and

underlying mutations.6,8 Despite these advances, it remains

challenging to predict clinical outcomes for all individuals with

LUAD based on clinical or molecular characteristics.10 In addi-

tion, many LUAD tumors do not possess a molecular alteration

currently indicated for targeted therapy.3
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Table 1. Characteristics of cohort and proteogenomic data types

Patient and tumor features Statistic Summary

Year of sample

collection

range 2012–2018

Race white (%) 92

black (%) 8

Gender female (%) 48.3

Age at diagnosis mean ± SD

(years)

66.3 ± 10.2

Smoking history current (%) 23

former (%) 59.8

never (%) 17.2

Pack years mean ± SD

(years)

40.4 ± 25.8

Stage I (%) 52.9

II (%) 27.6

III (%) 17.2

IV (%) 0

N/A (%) 2.3

Tumor grade 1 (%) 0

2 (%) 39.1

3 (%) 60.9

Histological subtype acinar (%) 33.3

papillary (%) 18.4

solid (%) 36.8

others (%) 11.5

Distant metastasis (%) 37.9

Lost to follow

up before 3 years

(%) 4.5

Median follow up

time (months)

50

Proteogenomic data Platform

Germline whole-

genome sequencing

Illuminaa393 mean

coverage

Tumor whole-

genome sequencing

Illuminaa1163 mean

coverage

RNA sequencing Illuminaa,b14,374

transcripts

MS proteomics Orbitrap MSb7,614

proteins

MS

phosphoproteomics

Orbitrap MSb10,093

phosphosites

RPPA Aushon 2470

arrayerb307 antibodies

Summary statistics displayed for patients, tumors, and protogenomic

platforms. There are no biological or technical replicates in this article’s

tables or figures. RNA-seq transcript count refers to protein-coding

genes with minimal RNA expression, at least 2 transcripts per million.

Some platforms have different subsets available by closed and open

access. See also Table S1.
aData repository availability is by closed access.
bData repository availability is by open access.
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Recent analyses employing shotgunmass spectrometry (MS)-

based proteomics have elucidated new translational and post-

translational layers of tumor biology across several tumor types

that were not observable through genomics alone.11 The joint

characterization of tumor proteomics with genomics and

transcriptomics enables proteogenomic analysis, which may

enhance our understanding of the molecular mechanisms that

drive tumor phenotypes, identify proteome-specific markers of

outcome, and identify novel treatment paradigms. Initial proteo-

genomic studies in LUAD, including the NCI’s Clinical Proteomic

Tumor Analysis Consortium (CPTAC), have described the

broad proteogenomic landscape of LUAD, including proteomic

changes related to mutated genes and protein signaling net-

works.12–16 However, these studies have also reported a wide

range in correlation of relative abundances of RNA expression

to protein expression across genes (correlation values: 0.14,

0.17, 0.28, 0.34, 0.53).12–16 This range indicates that uncertainty

remains in the relationship of protein and RNA levels in bulk

LUAD tumors, which could be a consequence of differences in

sample preparation, molecular platforms, or RNA and/or protein

degradation across cohorts. Validation of gene-wise RNA and

protein expression relationships in independent proteogenomic

LUAD cohorts would reduce this uncertainty. To date, proteoge-

nomic studies in LUAD have primarily included tumors from

outside the United States with high rates of non smoking and

EGFR mutation,12–14 which is an important but incomplete

segment of the disease. Additionally, clinical follow-up data in

the published cohorts have been limited, and there are few inde-

pendently validated proteomic markers of clinical outcome in

LUAD,17 compared with the large number available by RNA

expression.10

It is clinically important to characterize LUAD molecular etiol-

ogy so that diagnostics and therapeutic interventions can be

individualized. To address this aim, we, the Applied Proteoge-

nomic OrganizationaL Learning and Outcomes (APOLLO)

research network,18,19 performed deep proteogenomic profiling

of LUAD from a cohort of individuals in the United States unse-

lected for tobacco use. These data were then comprehensively

analyzed to identify LUAD’s major proteogenomic alterations

and subtypes, possible therapeutic vulnerabilities, and molecu-

lar discriminants of outcome.

RESULTS

Tumor collection and analysis strategy
Eighty-seven patients with LUAD were selected and acquired

from the Lung Cancer Biospecimen Resource Network (https://

lungbio.sites.virginia.edu/) with individual consent and institu-

tional review board approval. LUAD samples were primary

tumors that had been surgically resected for curative intent be-

tween 2012 and 2018. Of these, 80% were stage I or II, and

83% were from patients who smoked (Tables 1 and S1). Tumor

histological subtypes were assigned by expert review of

matched formalin-fixed, paraffin-embedded (FFPE) sections,

revealing three main histologic subtypes: acinar, papillary,

and solid (Figure S1). Tumor tissues were then analyzed by

five molecular profiling assays: whole-genome sequencing

(WGS), RNA sequencing (RNA-seq), MS-based proteomics

https://lungbio.sites.virginia.edu/
https://lungbio.sites.virginia.edu/
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and phosphoproteomics, and reverse-phase protein arrays

(RPPAs) (Figure S2). Matched normal tissues were analyzed by

DNA WGS. Our analysis strategy involved systematic interroga-

tion of each assay platform to identify molecular alterations and

subtypes. This was followed by integrated proteogenomic ana-

lyses to characterize subtypes, comparatively analyze RNA

and protein expression, and identify molecular discriminants of

patient survival.

Somatic genome signature subtypes link molecular
etiologies with smoking histories
LUAD whole genomes displayed a wide range in tumor muta-

tional burden (TMB) and structural variants (SVs) (TMB: 0.35–

176 mutations per megabase; SV range: 14–245; Figure 1A).

To identify common patterns among these somatic alterations,

we applied amulti-modal correlated topicmodeling framework20

to jointly determine signatures from the frequencies of single-

nucleotide variant (SNV) base changes in their tri-nucleotide

contexts, short insertion or deletion (indel) compositions, sizes,

and genomic contexts, as well as SV types and lengths (Fig-

ure S3). This analysis revealed three SNV, three indel, and four

SV signatures, several of which are associated with known etiol-

ogies for specific mutational processes (Figures S3B–S3D). The

three SNV signatures represent established substitution profiles

associated with LUAD tumors:5,6,21 an aging signature charac-

terized by C>Tmutations in the NCpG context, a smoking signa-

ture comprising C>A transversions, and an APOBEC cytidine

deaminase activity signature comprising C>T and C>G muta-

tions in TCN contexts (Figure S3B). Among indel signatures,

one was similar to the COSMIC signatures ID5 and ID3, the latter

of which is associated with tobacco smoking (Figure S3C). The

other two indel signatures (MMRD1 and MMDR2) both resemble

DNA replication/repair slippage and have thymine insertions at

long homopolymers, with the MMRD1 signature also having

cytosine and thymine deletions at long homopolymers (Fig-

ure S3C). The four SV signatures were distinguished by long

(>10 Mb) inversions, short (1–10 kb) deletions and inversions,

medium (100 kb–10 Mb) inversions, and high interchromosomal

translocation frequencies (Figure S3D).

To determine if these somatic genome signaturesmight identify

LUAD subtypes with coordinated mutational processes, we

clustered tumors by their signature profiles and identified three

signature subtypes (Figure 1A). We designated these subtypes

as transition-high, transversion-high, and structurally altered.

The transition-high subtype was defined by high aging SNV and

MMRD2 indel signatures and had the greatest SNV transition/

transversion ratio (Figure 1B), the most never smokers, the most
Figure 1. Subtyping LUAD by whole-genome somatic signatures

(A) Clustering of LUAD tumors by somatic single-nucleotide variant (SNV), insertio

and rows are somatic signature values or patient/tumor features (n = 87). Patients

ANOVA (*p < 0.05); c2 test (̂ p < 0.05). Di-atc and ragged-anast refer to disperse

respectively.

(B–G) Transition/transversion ratios, SV deletions, SV inversions, TP53 and pho

compared across somatic signature subtypes. Boxplot lines indicates 25%, 50%

visualization. p’ refers to Wilcoxon rank-sum test on structurally altered versus tra

transversion subtype. p refers to Wilcoxon rank-sum test on structurally altered

See also Figures S1–S4 and Table S1.
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tumors with acinar histology, and a very low TMB (median 2.3).

The transversion-high subtype was defined by the greatest levels

of the smoking SNV and indel signatures and had the greatest

enrichment of current smokers and the highest TMB (median

20.7). The structurally altered subtype was defined by the

MMRD1 indel and the medium-long inversion signatures. The

structurally altered signature subtype had the greatest enrichment

of former smokers, a high TMB (median 14.7), and intermediate

levels of the smoking SNV and indel signatures. Looking further

into tumor-wise SV burden, the structurally altered subtype also

had the most structural deletions and inversions among these

subtypes (Figures 1C and 1D). Genome-wide somatic copy-num-

ber alterations resembled published LUAD profiles6,8 and did not

associate with the signature subtypes (Figure S3E).

We then interrogated tumor whole genomes for significantly

mutated genes (Figure S4A), revealing significant enrichments

between the signature subtypes (Figure 1A). EGFR somatic mu-

tations were enriched in the transition-high subtype (Fisher’s

exact p < 0.05), while KRAS and STK11 somatic mutations

were enriched in the transversion-high subtype (p < 0.05), similar

to earlier studies.6 In contrast, TP53 somatic mutations were

most frequent in the structurally altered subtype (p < 0.05), sug-

gesting a causal relationship with this subtype’s high structural

deletion and inversion events. While TP53 RNA and protein

expression were unchanged among the subtypes (Figures S3F

and 1E), the structurally altered subtype displayed the greatest

TP53 pSer15 levels (p < 0.0025), which is a residue phosphory-

lated in response to DNA damage,22 consistent with this sub-

type’s high SV burden (Figure 1F). Concordantly, the structurally

altered subtype exhibited the greatest expression of a mutant

TP53 pan-cancer RNA signature23 (Figure 1G). The pairing of

TP53 mutation and structural deletion elevation is consistent

with observations from another recent LUAD cohort.24

Within the non-coding somatic genome, we detected recur-

rently mutated regulatory regions (Figure S4A), some of which

were identified as somatic quantitative trait loci with cis genes.

Among these was a regulatory element that associated with

reduced RNA expression of the surfactants SFTPD, SFTPA1,

and SFTPA2 (Figure S4B). Clustering of somatic SV break points

identified significantly recurrent events within the STK11 gene

locus (Figure S4C). These alterations did not associate with the

somatic signature subtypes.

Characterization of RNAand protein correlations among
tumors
We hypothesized that comparative analysis of protein

expression versus RNA expression may reveal differential
n or deletion (indel), and structural variant (SV) signatures. Columns are tumors,

and tumor features are tested for association with somatic signature subtypes:

d intra-alveolar tumor cells pattern and ragged-anastomosing glands pattern,

spho-TP53 expression from RPPA, and mutant TP53 RNA expression scores

, and 75% percentiles, and points are tumors with horizontal jitter added for

nsition subtype. p’’ refers to Wilcoxon rank sum on structurally altered versus

versus other subtypes.
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Figure 2. Correlation of gene-wise and tumor-wise RNA and protein expression

(A) Gene-wise RNA and protein expression correlations in the APOLLO cohort: 87 tumors and 7,472 co-detected genes.

(B) Gene-wise RNA and protein correlation comparison between APOLLO and CPTAC cohorts: 106 tumors, over 6,729 common, expressed genes between the

cohorts. p refers to Spearman correlation test.

(C) Pathway enrichments according to gene-wise RNA and protein expression correlation in the APOLLO cohort.

(D) Tumor-wise RNA:protein expression correlation in APOLLO (n = 87) and in CPTAC cohorts (n = 105). Columns indicate individual tumors. Rows are molecular

features except for manual slide review features of tumor cellularity percentage, stroma percentage, and grade. Tumor features tested for association with tumor-

wise RNA:protein correlation by Spearman correlation tests for continuous variables and by Kruskal-Wallis tests for categorical variables.

See also Figure S5 and Table S1.
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post-transcriptional regulation across genes and across LUAD

tumors. To compare RNA expression and protein expression

among all 7,472 co-detected genes, we calculated gene-wise

RNA:protein correlations across tumors. The median gene-
wise correlation was 0.47 with 84% of genes having statistically

significant positive correlation (Figure 2A). The APOLLO cohort’s

median gene-wise correlation was very similar to the LUAD

CPTAC cohort13 but much larger than other recent studies in
Cell Reports Medicine 3, 100819, November 15, 2022 5
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LUAD with values of 0.14–0.34.12–16 This range of correlations

may be the result of different protocols used in earlier studies.

We compared our gene-wise RNA:protein correlations with the

CPTAC cohort and found a strong and significant positive corre-

lation of gene-wise RNA:protein correlation values between in-

dependent LUAD cohorts (Spearman’s correlation test, r =

0.73, p < 3e�16; Figure 2B). In addition, these correlations per-

sisted throughout tertile strata of RNA and protein expression,

indicating that these distributions are only modestly influenced

by absolute abundances (r range 0.64–0.78, p << 0.001) (Fig-

ure S5). Markers of LUAD differentiation, including NKX2-1,

NAPSA, and KRT7, were among genes with high gene-wise

RNA:protein correlation in both cohorts. Different biological

pathways were enriched across the range of gene-wise RNA to

protein correlations in the APOLLO cohort, similar to other tumor

types.25,26 Highly correlated genes were enriched in cell adhe-

sion and RAS signaling, and poorly correlated genes were en-

riched in translation initiation and oxidative phosphorylation

(Figure 2C).

We then compared correlations between RNA and protein

expression using all genes within individual LUAD tumors, called

tumor-wise RNA:protein correlations. We found a range of tu-

mor-wise RNA:protein correlations across the APOLLO cohort (r

range 0.23–0.69), indicating substantial inter-tumor heterogeneity

(Figure 2D). We then compared tumor-wise RNA:protein correla-

tions withmolecular properties of cellular heterogeneity and found

a positive association with tumor purity estimated fromDNAWGS

(Spearman correlation test, r = 0.51, p < 8e�7) as well as with tu-

mor cellularity estimates from histological review (r = 0.37,

p < 4e�4). In contrast, tumor-wise RNA:protein correlations

were negatively correlated with immune and stromal cell RNA

expression scores (r = �0.54 and �0.50, respectively; p < 2e�6

on each) and immune and stromal cell protein expression scores

(r = �0.50 and �0.52, respectively; p < 2e�6 on each). Tumors

with the lowest tumor-wise RNA:protein correlations had elevated

percentages of stroma from histological review in some cases,

although they were not significant overall (p < 0.087).

To determine if these tumor-wise characteristics are generaliz-

able in LUAD, we analyzed tumor-wise RNA:protein correlations

in the CPTAC cohort (Figure 2D) by the same method and iden-

tified a similar range across tumors (r = 0.33–0.64; Table S2A) as

in the APOLLO cohort. Again in the CPTAC cohort, tumor-wise

RNA:protein correlation was positively correlated with tumor

purity based on WGS somatic mutation signal (Spearman corre-

lation test, r = 0.29, p < 0.0027). Tumor-wise RNA:protein corre-

lations negatively correlated with RNA immune score, RNA

stroma score, and protein stroma score (r = �0.26, �0.32, and

�0.29, respectively, each p < 0.01) and trended significantly

with protein immune score (r = �0.19, p = 0.056). In the

CPTAC cohort, we also detected a significant association of

poorly differentiated tumors with greater RNA:protein correla-

tions (p < 0.002). Therefore, we discovered and validated that im-

mune-enriched LUAD tumors have greater variability between

their RNA and protein levels compared with highly pure tumors.

Transcript and protein determinants of patient survival
We identified genes with RNA expression or protein expression

associated with patient overall survival (OS) and with metas-
6 Cell Reports Medicine 3, 100819, November 15, 2022
tasis-free survival (MFS) (Tables S2B and S2C). Focusing on

genes with RNA and protein co-expression, we identified genes

with RNA or protein nominally associated with OS (9 RNAs

and 16 proteins, Wald test p < 0.001), but these were not signif-

icant after multiple testing correction (false discovery rate

[FDR] > 0.25). With MFS, we identified significant associations

for 560 ‘‘survival proteins’’ and 155 ‘‘survival RNAs’’ (Wald test,

FDR < 0.25). Between all co-expressed proteins and RNAs,

MFS hazard ratios were significantly correlated (Figure 3A;

Spearman’s correlation test r = 0.48, p < 3e�16). This correla-

tion of hazard ratios was larger than a similar analysis performed

in prostate cancer (r = 0.25).27

Combining survival proteins and their corresponding log haz-

ard ratios as weights into a protein survival signature (and simi-

larly for an RNA survival signature), we found that the aggregate

expression of these proteins or these RNAs strongly discrimi-

nated patients by OS and MFS (Figure 3B; OS: protein signature

Wald test, p < 1.8e�5, RNA signature p < 5.9e�5; MFS: protein

signature p < 2.9e�10; RNA signature, p < 8.5e�9). Additionally

restricting to 66 survival RNA-proteins, protein, and RNA signa-

tures significantly predicted survival (OS: protein signature,

p < 7.2e�5; RNA signature, p < 7.3e�5; MFS: protein signature,

p < 7.5e�9; RNA signature, p < 1.2e�8; Table S2). All expression

signatures remained significantly associated after controlling for

additional covariates of tumor stage, histological subtype,

gender, and adjuvant treatment (Figure S6A; Wald test,

p < 0.05). We then compared gene-wise RNA:protein correla-

tions among survival gene sets and found striking, significant dif-

ferences (Kruskal-Wallis test, p < 7e�13; Figure 3C). Survival

RNA proteins had the greatest RNA:protein correlations, fol-

lowed by survival RNAs and then survival proteins.

To validate these signatures, we then applied the same

survival signatures to the RNA and proteomics datasets of

the CPTAC cohort, which had a median follow-up time of

15.6 months (Figure 3D). Our survival protein signature was

significantly associated with patient OS (Wald test, p < 0.033)

and trended significantly with patient MFS (p < 0.057)

(Table S2A). The survival protein signature remained significantly

associated with OS when including tumor stage as a covariate

(p < 0.021). The survival RNA signatures significantly associated

with patient OS (p < 0.0078) and MFS (p < 0.0043). Both associ-

ations remained significant when including tumor stage as a

covariate (p < 0.05). Restricting to the survival RNA proteins,

both RNA and protein signatures associated with OS (protein

p < 0.011, RNA p < 0.0045) and MFS (protein p < 0.016, RNA

p < 0.0022), all of which remain significant with tumor stage as

a covariate (p < 0.05). Validating the APOLLO cohort, survival

gene sets had significantly different gene-wise RNA:protein cor-

relation trends in the CPTAC cohort, with survival RNA-proteins

genes having the greatest RNA:protein correlation, followed by

survival RNAs, and then survival proteins (Kruskal-Wallis test,

p < 2e�12; Figure 3E). Therefore, OS and MFS in patients with

LUAD can be predicted by signatures of protein expression

and by RNA expression across independent cohorts.

By phosphoprotein expression, we identified a smaller num-

ber of survival phosphoproteins associated with MFS (MS-

based proteomics n = 96 and RPPA n = 28). Seventy-nine

of the MS-based survival phosphoproteins were positively
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Figure 3. RNA and protein expression determinants of patient survival

(A) Comparison of log hazard ratios between RNA expression and protein expression on matched genes in APOLLO cohort (n = 87). Points outside the axis scale

(less than 2 or greater than 2) are plotted as �2 and 2, respectively. r and p refer to the Spearman rank correlation coefficient and p value, respectively. ‘‘Other’’

refers to genes not associated with survival.

(B) Overall and metastasis-free survival in APOLLO cohort (n = 83 with follow up), with high and low referring to a 50th percentile split on the respective signature

score. p refers to Cox proportional hazards Wald test of the continuous signature score. Top panels are signatures based on survival proteins and survival RNAs,

and bottom panels are signatures based on survival RNA proteins.

(C and E) Gene-wise RNA:protein correlation across survival gene sets compared by Kruskal-Wallis tests, p*.

(D) CPTAC cohort survival following same layout as (B). 50th percentile split for visualization was based on entire cohort, n = 106, and plotted for those with follow

up, n = 101.

See also Figure S6 and Table S2.
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correlated with corresponding MS-based global proteins

(Spearman correlation test, p < 0.05).

Proteogenomic subtyping of LUAD
To subtype LUADs by genome-wide expression, we first applied

the RNA expression subtype predictor8 to assign tumors to the

TRU, PI, and PP subtypes.6,8 Applying the predictor to RNA

expression or global protein expression resulted in highly similar

subtype assignments (Fisher’s exact test, p < 8e�19) (Fig-

ure S6B). We also performed unsupervised clustering on the co-

hort’s RNA and global protein expression, which also resulted in

significantly associated subtype assignments to the RNA sub-

type predictions (p < 1.8e-8 in both cases) (Figures S6C and

S6D). Furthermore, multi-omic clustering on joint RNA and pro-

tein expression also revealed significantly associated subtype-

assignments (Figure S6E). Therefore, the LUAD tumor subtypes

(TRU, PI, and PP) are a robust stratification across both RNA

expression and protein expression. Unsupervised phosphopro-

teomic cluster assignments associated with RNA subtype

predictions, primarily for PP and TRU. To standardize with prior

studies,6,8,28,29 we utilized expression subtype assignments

based on the RNA subtype predictor applied to RNA-seq

throughout the current study.

The expression subtypes were enriched with distinct histolog-

ical subtypes—TRU with acinar and PI with solid, corroborating

earlier cohorts6,8 (Figure 4A). The expression subtypes overex-

pressed their canonical marker genes8 by RNA expression and

by protein expression. For example, the TRU subtype overex-

pressed surfactant protein C (SFTPC) and thyroid transcription

factor 1 (NKX2-1; also known as TTF1). The PP subtype overex-

pressed thymine DNA glycosylase (TDG) and glutathione perox-

idase 2 (GPX2). The PI subtype overexpressed the immune cell

markers cluster of differentiation 163 (CD163) and vascular cell

adhesion protein 1 (VCAM1). Proteogenomic pathway analysis

simultaneously integrating RNA, protein, and phosphoprotein

expression data identified distinct overexpressed pathways

among the expression subtypes (Figure 4B). The TRU subtype

overexpressed protein secretion and developmental pathways

of adipogenesis and myogenesis. The PI overexpressed inflam-

matory and interferon-g signaling pathways. The ‘‘immune-cold’’

PP subtype overexpressed proliferation-related pathways. With

few exceptions, the subtype-specific signals were consistent

across RNA, protein, and phosphoprotein expression, indicating

that distinct transcriptional process of the subtypes carry

through translation and post-translational regulation.

Three somatically mutated driver genes were associated with

the subtypes, STK11 and KEAP1 mutations in PP, and EGFR

mutations in TRU (Figure 4A). By transcript and protein expres-

sion, EGFR, KEAP1, and STK11 (via STK11 pSer30) were also

over- or underexpressed in their respective subtype (Kruskal-

Wallis on enriched subtype versus others, p < 0.05). Genome-

wide TMB was greatest in PI compared with other subtypes

(medians: PI: 27.8, PP: 13.3, TRU: 3.2, Kruskal-Wallis

p < 6e�6) (Figure 4A). The proportions of high TMB tumors

defined by a clinically used threshold of 10 mutations per Mb30

were also significantly different among the subtypes (PI: 78%,

PP: 67%, TRU: 23%, Fisher’s exact p < 5e�5). By immune cell

scores, the subtypes showed significant differences (p < 5e�7)
8 Cell Reports Medicine 3, 100819, November 15, 2022
with PI and TRU leading PP, validating an earlier report28 (Fig-

ure 4A). Tumor purity was greatest in PP (p < 0.001). Additionally,

we discovered that the subtypes display different tumor-wise

RNA:protein correlations led by PP (PP: 0.52, PI: 0.49, TRU:

0.47, Kruskal-Wallis p < 0.05) (Figures 2 and 4A). High tumor pu-

rity and tumor-wise RNA:protein correlation in PP may be

partially explained by reduced immune cell presence in these

tumors.

Comparing tumor subtypes by patient survival outcomes, we

found that the expression subtypes and histological subtypes

significantly associated with MFS (Figure 4C), while somatic

genome signature subtypes did not associate with OS or MFS

(Figure S6F). Therefore, the intrinsic biology captured in LUAD

expression subtypes are a determinant of MFS, expanding on

prior reports on OS.6,8,10 Forty-five of the 66 survival RNA pro-

teins were also differentially expressed among the subtypes,

indicating shared underlying biology.

Integrative network modeling of LUAD subtypes
To identify potential therapeutic vulnerabilities of the RNA sub-

types, we used integrative network modeling to describe sub-

type-specific proteogenomic signals in the context of known

molecular associations. First, we inferred kinase activities across

tumors using phosphoproteomic expression and known kinase-

substrate interactions, which were then used to identify kinase

activity enrichment scores for each subtype (Figure 5A). Re-ex-

amination of these enrichments with phosphoresidue abun-

dances corrected for global protein expression distinguished

direct kinase activity changes from enrichments partially ex-

plained by changes in substrate availability (Figure S7A). To infer

subtype-specific transcription factor (TF) activities, we identified

TF motif matches in known LUAD regulatory elements31 and

compared these against proximal (�50/+10 kb) gene expression

levels corrected for cis copy-number alterations (Figure S7B).

These protein kinase and TF enrichments were then integrated

with mutated and copy-number-altered genes, phosphorylation

sites, global proteins, and enriched pathways into subtype-spe-

cific network models via known kinase-substrate, protein-pro-

tein, and protein-pathway interactions.

The PI network is characterized by molecular interactions that

drive interferon g (IFN-g) signaling and inflammation (Figure 5B).

Activated protein kinase C delta (PRKCD) downstream of the

IFN-g receptor phosphorylates a variety of targets in PI,

including S727 of STAT1, which is necessary for STAT1’s tran-

scriptional activity.32 Increased STAT1 transcription, global pro-

tein expression, and TF activity further supported its activation in

PI tumors. STAT1 drives both immunosurveillance, consistent

with observed increases in HLA protein and CIITA RNA expres-

sion, and immunosuppression, indicated by enhanced RNA

expression of the immune inhibitory receptor CD274 (PD-L1)

(Figure 6). The PI subtype also significantly overexpresses the

PD-L1 protein, detected using two widely used research based

anti-PDL1 antibody clones (E1L3N and CAL10) and the SP-142

clone, which is used as an FDA-approved companion diagnostic

for atezolizumab (Figure 6). All three anti-PDL1 antibodies have

undergone extensive validation testing for clinical-tissue-based

analysis of PD-L1 levels.33,34 Increases in IFN regulatory factor

(IRF) TF activities were additionally supported by enhanced
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Figure 4. Molecular subtype characteristics and survival outcomes

(A) RNA expression subtypes. Tumors (n = 87) appear in columns and clinical and genomic features in rows. Protein refers to MS proteomics expression. RNA

refers to RNA-seq expression. mut refers to non-silent gene mutations. Immune and stromal scores refer to RNA-based ESTIMATE scores. Continuous features

analyzed by Kruskal-Wallis tests. Categorical features analyzed by Fisher’s exact tests. RNA and protein expression compared by Spearman correlation tests.

(B) Proteogenomic expression analysis of RNA expression subtypes. Columns indicate molecular enrichment (RNA, protein, phosphoprotein by subtype), and

rows indicate gene sets. Phosphoprotein expression is from combined RPPA and MS platforms.

(C) Survival outcomes of RNA expression subtypes and histological subtypes, analyzed by log rank tests (p).

See also Figure S6.
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IFN-g and inflammatory signaling in PI.CTLA4 transcript expres-

sion, which predominantly derives from CD4+/CD8+ T cells and

regulatory T cells in lung tumors,35 was also increased in PI tu-

mors (Figure 6). Given elevated immune infiltration, high TMB,

and enhanced IFN-g signaling, coupled with increased PD-L1

protein and CTLA4 RNA expression, the PI subtype may encap-

sulate the subset of tumors most likely to respond to immune

checkpoint inhibitors.

TRU tumors are broadly characterized by overactive EGFR

signaling (Figures 2 and 5). Our network captures activation of

ERK (MAPK3 or ERK1) and PI3K-PDK1 (PIK3R1 or p85 and

PDPK1) by EGFR as well as downstream activation of
RPS6KA1 (aka RSK1 or P90RSK1), which promotes cell prolifer-

ation and inhibition of apoptosis.36,37 Enhanced RPS6KA1 ki-

nase activity in TRU tumors is supported in our data by increased

phosphorylation of its own residues, including S380, and by

several substrate sites, including GSK3B S9, RPTOR S722,

NFKBIA (IkBa) S32, and PDCD4 S457. PRKCE activity is also

enhanced in TRU. PRKCE has been classified as an oncoprotein

due to its anti-apoptotic cellular functions,38 including inhibitory

S118 phosphorylation of pro-apoptotic BAD (Figures 5C and 6),

which is also elevated in TRU. Additionally, increased global pro-

tein expression and phosphorylation of several G protein-

coupled receptor (GPCR) molecules, PKA (PRKACA global and
Cell Reports Medicine 3, 100819, November 15, 2022 9



A B PI subtype regulatory network

S727

T221

GSK3B

RPS3

T147

CYBA

S9

Y216

S686

CD14

CSF2RAITGB3

MMP14

C5AR1

IRF1
STAT6

Y641

ERBB3

FHL1

S127
IL18

S327

CYBB

ITGA5
MSR1

ICAM1

C1S

SAMHD1
GBP2RIPK2

LCP2

TAPBP

TAP1

PFKP

IRF2

S1386

S486

PRKAA1

S496
TSC2

T1462

NR3C1
GSK3A

SNAI2STAT2 RUNX3

MAX

KIT
RUNX2

MDM2

STAT1

FOXO1

ISOC1

WARS

SOD2

CD274

EPSTI1

FGL2

FCGR1A

VCAM1

MAP2K7
S194

Y185

FADDPRKCD
T183

AKT1

MAPK8
S256

S166S134Y279

T133

S211

S21

PD-L1 protein

Inflammatory
response

IL6-JAK-STAT3
signaling

Interferon α response
Interferon γ response

TRU subtype regulatory network

Complement

Apical junction

EGFR/RTK
signalingRPS6KA1 activation

and signaling
GPCR
signaling

Apoptosis

T710
PRKG1

S729

PRKD1

PRKCA
S657

GNG12

S237

PRKCE

S615

S332

S722

S703

SLC9A1

NDRG2

RPTOR

S693
MAPK3

EGFR

Y1069

RPS6KA1

S380
T359

T693
S363

S241

PDPK1

T221

S552

PIK3R1

S191 RPS3

T220

S118
CTNNB1

PPP2CA

CASP3

GNG2

S153

PRKACA

T198

GNAO1GNAI1

TSC1

RPS6KA3

S9

S457
S32

NFKBIA

PDCD4 S415

GSK3B

S36

BAD

BCL2

ESR1S118

MAX

ESR2

ELK1 E2F6

PP subtype regulatory network

GlycolysisMYC targets

G2M checkpoint
E2F targets

19p alterations

KEAP1-NFE2L2
interaction

JNK signaling
AP-1/ETS TF activity

TNFα signaling
via NFκB

CDK1/2/4 signaling
Cell cycle progression

Mitotic spindle

Y185
FADD

S194

T183

MAP2K7

S214

S223RXRA

ELK4

MAPK8FOSL2

JUND
ELK1

CREB1

NFATC3

HDGF
RRM1

LSM7

S165

SNRPD3

ACP1

POLE3

DDX21

S361

TFB2M

ERH

CBX3

SNRPA

S7

RUNX1

SET

HIF1A

RSL1D1

SSB

GLO1

S95

S226 S133

S41

S139

FOXM1

CDC7
T88CDK2

T600
LIG1

CDK1

S428

S395

S76

NUCKS1

ATR

PPARG

NPM1
SNRNP70

PPARA

S38
ATF7

S780

RB1

ZC3HC1

EIF4G2

S1630
S768

VCPIP1

T508

FLNA

S27

CDK4

T5

S70

WDR77

T199

S271

NME1

S181
SNAPIN

MCM2

MAF

KAT7

S203

CASP6

SOD1

TALDO1ENO2

ABCB6 NDUFV3

D169

PKM

T172

S105 S102

NR4A1

RPLP2

S31

TERF2IP

S1100

DCN

S915
S577

ALDH7A1
IRS2

ETV4

S104

PRKAA2

S101

NR4A2

RPLP1

NFE2L2

NR4A3

NCL

RACGAP1

TOP2A

GFPT1

TXN

PGAM1

S1374

S1377CKS1B

PCNA

DCTPP1

CBX1

PBK

CBX5

NOLC1

LUC7L3

S563

PAICS

NASP
STMN1

HMGB3
HMGA1

BPNT1

S584

PA2G4
E2F8

MKI67 S67

RAN RANBP1

MAD2L1
SRSF2

KIF2C S237

SORBS2ARHGDIA

STK11

EEF2

SMARCA4

KEAP1

Kinase

Phospho-
site

Parent
protein Protein

Alteration

Tr. FactorPathway

Node association/
enrichment score

Interactome
node

Associated
node

Kinase-substrate interaction
Substrate-protein link
Activation interaction
Protein-pathway link
Other/Undirected PPI

Enlarged      : K-S enrichment
Enlarged      : Alt. enrichment

+ italic: TF analysis enriched 

No data
<-2 0 >2

C

D

CDC7
CDK4
CDK1
CDK2

PRKCD
PRKCA
PRKG1

MAP2K7
AKT1

PRKCE
RPS6KA1

 P
I

 P
P

 T
R

U

Kinase enrichments

−2 0 2

Enrichment score
(subtype vs. others)

(legend on next page)

10 Cell Reports Medicine 3, 100819, November 15, 2022

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
T198), and PKCa (PRKCA global and S657) were associated with

this subtype. Taken together, the TRU subtype captures tumors

with marked growth factor signaling that may be most respon-

sive to EGFR inhibitors39 and to compounds directed at other

members of these signaling cascades (e.g., PRKCE40 or

RPS6KA137).

The PP subtype network is characterized by enhanced cell-cy-

cle and glycolytic biological processes in an immune-coldmicro-

environment41 (Figures 2, 4, 5D, and 6). Pronounced cyclin-

dependent kinase (CDK) activities (CDKs 1, 2, and 4 and

CDC7) were implicated by enhanced phosphorylation of several

target residues, including S780 on RB1 by CDK4, which disrupts

inhibition of E2F TFs that drive cell-cycle progression42 (Figure 6).

Several of these regulatory states were not implicated by global

abundance changes of their respective parent proteins.

MAP2K7 kinase activity was also significantly enhanced in PP,

reflected by increased phosphorylation at T183/Y185 of

MAPK8 and S194 of FADD, the latter of which is associated

with G2/M cell-cycle regulation43 and poor prognosis in

LUAD.44 Additionally, global protein and phosphoprotein

expression of several proliferation markers were increased in

PP, including TOP2A, MKI67, IRS2, and HDGF. Somatic alter-

ations in STK11 and/or KEAP1 encompass 26 of 30 PP tumors,

while EEF2 and SMARCA4 alterations are also significantly

associated with PP. Inactivation of SMARCA4 can be synthetic

lethal with CDK4;45 thus, SMARCA4-altered PP tumors with

high CDK4 activity may be responsive to CDK4/6 inhibitor ther-

apies. Metabolic reprogramming was also indicated in PP by

upregulation of proteins involved in glycolysis and glutaminoly-

sis, which is consistent with cellular responses to STK11 loss

mediated by HIF-1a in conjunction with enhanced cellular stress

and reactive oxygen species (ROS).46 Indeed, coincident

STK11-KEAP1 alterations were frequently observed in PP tu-

mors (Figure 6) as KEAP1 inactivation promotes NFE2L2 activity

and antioxidant gene expression47 (Figures S7C–S7F). While the

majority of PP tumors do not possess targetable oncogene

mutations, recent studies have demonstrated therapeutic vul-

nerabilities aimed at PP metabolism, including glutaminase

inhibition in STK11-KEAP1-KRAS mutants48 and stearoyl-coe-

nyzme A (CoA) desaturase (SCD) inhibition, which is upregulated

in PP tumors along with other ferroptosis-protective molecules

(Figure 6), in combination with ferroptosis inducers in STK11-

KEAP1 co-mutants regardless of KRAS status.49

DISCUSSION

Here, we report a large-scale proteogenomic characterization of

LUAD from a United States population unselected for tobacco
Figure 5. Proteogenomic network characterization of subtypes

(A) Kinase enrichments based on known kinase-substrate links to measured MS-

Triangles indicate significant kinase enrichments in either PI, TRU, or PP subtyp

(B–D) Regulatory networks of subtypes. Box to right indicates network layout (top)

molecule types or pathways; red outlines identify nodes significantly associated

ciation/enrichment with subtype (gray denotes no measured data); enlarged d

respectively; red outlined triangles with italic text labels indicate TFs identified from

protein-pathway links. Values and data sources for each network node are listed

See also Figure S7.
use. Using six molecular profiling technologies, we measured

four layers of LUAD biology: genome, transcriptome, proteome,

and phosphoproteome. Our systematic analysis of these data

identified tumor subtypes, alterations, signaling patterns, and

markers of survival. The detail and comprehensive prospective

longitudinal clinical data for this United States cohort is distinc-

tive among the published cohorts for LUAD proteogenomic

studies. This is in contrast to the most recent major proteoge-

nomic research in LUAD by Gillette et al. through the NCI’s

CPTAC, which had less longitudinal clinical follow up and repre-

sented LUAD tumors from around the world, with less than a

third of the tumors from the United States. Both studies offer

complementary insights into LUAD, but our study leverages

the United States’ standard of care and treatment protocols as

well as common exposures for a stronger survival analysis and

ultimate translation to medical practice. Although normal adja-

cent tissue matched with tumor specimens were not part of

our protocol, as was included in CPTAC LUAD, we did compre-

hensive correlative analysis with their data to successfully vali-

date our work.

By somatic genome signature analysis, we identified three

subtypes with coordinated molecular etiologies and tobacco

use. The transition-high and transversion-high signature sub-

types represent never and current smokers and correspond

to tumor groups described in prior LUAD cohorts.5–7,21

The structurally altered subtype, however, reveals a bifurca-

tion of smokers (former versus current) by a distinct

pathway of LUAD mutagenesis, structural genome disorgani-

zation, and TP53 alterations. Potentially in the structurally

altered subtype, tobacco mutagens produced a moderate

transversion signature and a TP53 mutation, individuals quit

smoking, and over time, structural alterations accumulated

due to inhibition of DNA repair checkpoints by the TP53-null

phenotype to produce tumors despite the lack of continued

direct DNA damage by tobacco mutagens. In transversion-

high tumors, the continued smoke exposure may have pro-

duced a stronger transversion signature and additional

sequence mutations such as in KRAS, which then led to the

development of the tumors. The structurally altered subtype

may have broad implications in the spectrum of challenges

with LUAD from identifying potential prevention pathway tar-

gets for these former smokers, broadening screening to

include a wider range of former smokers, and guiding earlier

and more aggressive therapies such as TP53-directed

T cell-based therapy.50

Our comparative expression analysis of RNA and protein re-

vealed two interesting LUAD characteristics. First, we found

that gene-wise RNA:protein expression correlation is highly
based proteomics and RPPA phosphoresidues from APOLLO cohort (n = 87).

es (combined FDR < 0.01).

and node/edge shape, size, and color schemes (bottom): node shapes indicate

with the subtype (gray otherwise); blue-to-red shading indicates node asso-

iamonds and ‘‘vee’’ shapes indicate enriched kinases and mutated genes,

TF enrichment analysis; and edge color represents types of protein-protein or

in Table S3.
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Figure 6. Proteogenomic features associated with subtype networks
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consistent across two independent LUAD cohorts. This finding

offers expanded capabilities for biomarker development. Sec-

ond, we found, and validated in an independent cohort, that

tumor-wise correlation of RNA and protein expression varies ac-

cording to immune cellular heterogeneity in LUAD. LUADs with

high tumor-wise RNA:protein correlation have a high grade of
12 Cell Reports Medicine 3, 100819, November 15, 2022
differentiation similar to clear cell renal carcinoma,25 have high

purity, and have low immune cell content and tend to be in

the PP subtype. In contrast, LUADs with a low tumor-wise

RNA:protein correlation have low grade, low purity, and high

immune cell content. Increased immune cell heterogeneity

may present a greater diversity of pathway expression and
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post-transcriptional regulation reducing RNA:protein correla-

tions in the tumor.

The APOLLO cohort’s long clinical follow-up data and

comprehensive proteogenomic data provided an opportunity

to identify biomarkers for LUAD clinical outcome. Among co-

measured genes, we found that survival proteins outnumber sur-

vival RNAs and that survival markers significant at both RNA and

protein levels weremore correlated with one another than unique

survival transcripts or proteins. Supporting this phenomenon in a

different tumor type, a recent report in gastric carcinoma found

greater gene-wise RNA:protein correlation in RNA survival genes

than in non-survival genes.26 RNA and protein expression signa-

tures based on these gene sets significantly predicted survival

outcomes in both this APOLLO cohort and an independent

CPTAC cohort. Protein expression markers may have enhanced

performance in clinically available FFPE specimens and small-

volume biopsies.51 This understanding of the correlation of

RNA and protein expression with survival has significant implica-

tions in individual patient prognosis with LUAD as well as the

development of future prognostic testing for LUAD.

Our proteogenomic analysis identified potential vulnerability

targets for the LUAD RNA subtypes, providing a roadmap for

future studies. The PI subtype had a concentration of immune

features such as IFN-g signaling, PD-L1 expression, and high

TMB. The current reliance on a single analyte such as PD-L1

expression52 or TMB30 as a biomarker for LUAD’s responsive-

ness to immunotherapy may be enhanced using the PI subtype

to offer added predicted capacity. TRU harbors enhanced

EGFR signaling and kinase activity from PRKCE and

RPS6KA1, which are potential therapeutic targets. The PP sub-

type’s proteogenomic profile suggested that CDK inhibitors and

glutaminase inhibitors may be beneficial. Taken together, our

comprehensive results may lead to advances in LUAD precision

medicine, such as molecularly informed clinical trials or

improved molecular diagnostics.

Early diagnosis for LUAD is limited to radiographic CT

screening and biopsy when tumors are large enough (6–8 mm

or greater). The comprehensive proteogenomic understanding

and signatures described in this study may aid early LUAD diag-

nosis with small samples or liquid biopsies to guide precision

treatments. Already, the established LUAD subtypes offer prog-

nostic value; however, prognosis must be coupled with a treat-

ment to improve patient outcomes. Prospective clinical studies

that test our understanding of these subtypes is the next step.

Clinical trials are needed with PI tumors and checkpoint inhibi-

tors as well as with PP tumors, which include KRAS-negative tu-

mors that have been refractory to targeted therapy until recently.

We already have precedent for this concept with the TRU sub-

type of LUAD, which highly correlates with the EGFR-positive tu-

mors that clinically respondwell toEGFR inhibitors. Being able to

identify LUAD and the subtypes with small amounts of proteins

or RNA will be a leap forward in our fight against lung cancer.

As prevention is the ultimate goal for all cancers, understanding

the different molecular subtypes of LUAD combined with

contributing environmental and clinical factors may define spe-

cific pathways that could be therapeutically targeted to halt the

development of malignancy in pre-cancerous and early-stage

LUAD tumors.
Limitations of the study
This study did not measure normal adjacent lung tissue, so we

were not able to compare RNAor protein expression between tu-

mors and normal lung tissue. Adjuvant and neo-adjuvant treat-

ment data were limited in this cohort, so we were not able to

assess patient response to the predicted therapeutic vulnerabil-

ities described in the article. Future proteogenomic studies of

larger cohorts with treatment response may address these

limitations.
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longa, À., Martin, A., de Stanchina, E., Bhanot, U., Asher, M., Shah, N.S.,

et al. (2020). Concurrent mutations in STK11 and KEAP1 promote ferrop-

tosis protection and SCD1 dependence in lung cancer. Cell Rep. 33,

108444. https://doi.org/10.1016/j.celrep.2020.108444.

50. Hsiue, E.H.C., Wright, K.M., Douglass, J., Hwang,M.S., Mog, B.J., Pearl-

man, A.H., Paul, S., DiNapoli, S.R., Konig, M.F., Wang, Q., et al. (2021).

Targeting a neoantigen derived from a common TP53 mutation. Science

371, eabc8697. https://doi.org/10.1126/science.abc8697.

51. Hood, B.L., Darfler, M.M., Guiel, T.G., Furusato, B., Lucas, D.A., Ring-

eisen, B.R., Sesterhenn, I.A., Conrads, T.P., Veenstra, T.D., and Krizman,

D.B. (2005). Proteomic analysis of formalin-fixed prostate cancer tissue.

Mol. Cell. Proteomics 4, 1741–1753. https://doi.org/10.1074/mcp.

M500102-MCP200.

52. Herbst, R.S., Baas, P., Kim, D.W., Felip, E., Pérez-Gracia, J.L., Han, J.Y.,
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Primary antibody information is listed in Table S1C. Various Various
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APOLLO1 cohort (bulk DNA, RNA, protein)

information is listed in Table S1A.

Lung Cancer Biospecimen

Research Network

N/A

Chemicals, peptides, and recombinant proteins

Mayer’s Hematoxylin Solution Sigma Aldrich Cat# MHS32

Eosin Y Solution Aqueous Sigma Aldrich Cat# HT110216
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Phosphatase Inhibitor Cocktail 2 Sigma Aldrich Cat# P5726

Biotin blocking system Dako Cat# X0590

Hydrogen peroxide Sigma-Aldrich Cat# 323381

I-block Invitrogen Cat# T2015

IRDye680RD Streptavidin fluorescent dye LI-COR Biosciences Cat# 926-68079
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Serum free protein block Dako Cat# X0909
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QIAamp DNA Mini Kit Qiagen cat # 51304
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TMT10plex Isobaric Label Reagent Set plus

TMT11-131C Label Reagent

Thermo Fisher Scientific Cat# A34808

High-SelectTM TiO2 Phosphopeptide Enrichment Kit Thermo Fisher Scientific Cat# A32993

High-SelectTM Fe-NTA Phosphopeptide

Enrichment Kit

Thermo Fisher Scientific Cat# A32992

TruSeq DNA PXR-Dree High Throughput

Library Prep Kit (96 Samples)

Illumina 20015963

TruSeq DNA CD Indexes (96 Indexes, 96 Samples) Illumina 20015949

IDT for Illumina - TruSeq DNA UD Indexes

(96 Indexes, 96 Samples)

Illumina 20022370

TruSeq Stranded Total RNA Library Prep

Gold (96 Samples)

Illumina 20020599

IDT for Illumina - TruSeq RNA UD Indexes

(96 Indexes, 96 Samples)

Illumina 20022371

HiSeq X Ten Reagent Kit v2.5 - 10 pack Illumina FC-501-2521

HiSeq 3000/4000 PE Cluster Kit Illumina PE-410-1001

HiSeq 3000/4000 SBS Kit (150 cycles) Illumina FC-410-1002

Kapa Library Quantification Kits - Complete Kit Roche 7960298001

NGS Fragment Analysis Kit (35–6000 bp) Agilent DNF-486-0500-OB
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Deposited data

WGS data This paper dbGap phs003011.v1.p1 and NCI Genomic

Data Commons

RNA sequencing data This paper dbGap, phs003011.v1.p1 and NCI Genomic

Data Commons

Proteomic data This paper NCI proteomic data commons, phs003011.v1.p1,

ProteomeXChange # PXD036025

CPTAC LUAD data Gillette et al.13 https://proteomic.datacommons.cancer.gov/,

Study ID: PDC000153, File ID 31ba3150-cec4-

4749-b06e-443239185938

COSMIC signatures (v 3.0) Alexandrov et al.21 https://cancer.sanger.ac.uk/signatures/

ENCODE motifs Kheradpour et al.53 http://compbio.mit.edu/encode-motifs/

ENCODE Repli-Seq Hansen et al.54 https://www.encodeproject.org/

GENCODE v28 Frankish et al.55 https://www.gencodegenes.org/

JASPAR motifs (2020) Fornes et al.56 https://jaspar.genereg.net/

MSigDB (v7.0) Subramanian et al.57 http://www.gsea-msigdb.org/gsea/downloads.jsp

PhosphoSitePlus Hornbeck et al.58 https://www.phosphosite.org/

Reactome Functional Interactome (v071718) Wu et al.59 https://reactome.org/download-data

TCGA ATAC-seq Corces et al.31 https://www.science.org/10.1126/science.aav1898
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ANNOVAR, 2017-07-17 Wang et al.60 https://annovar.openbioinformatics.org/en/latest/

Break Point Inspector v1.7 https://github.com/

hartwigmedical/hmftools

https://github.com/hartwigmedical/hmftools/

releases/tag/bpi-v1.7

CIBERSORT, version 1.06 Newman et al.61 https://cibersort.stanford.edu/

Canvas Illumina version 1.28.0.272 + master

ConsensusClusterPlus, 1.24 Wilkerson et al.62 https://bioconductor.org/packages/release/bioc/

html/ConsensusClusterPlus.html

Conpair Bergmann et al.63 https://github.com/nygenome/Conpair

Cytoscape Shannon et al.64 https://cytoscape.org/

deconstructSigs v1.8.0 Rosenthal et al.65 https://cran.r-project.org/web/packages/

deconstructSigs/index.html

DESeq2 v1.16.0 Love et al.66 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ESTIMATE Yoshihara et al.67 https://rdrr.io/rforge/estimate/

GISTIC2 Mermel et al.68 https://github.com/broadinstitute/gistic2

GSEA v4.0.3 Subramanian et al.57 http://www.gsea-msigdb.org/gsea/index.jsp

HTSeq v0.9.1 Anders et al.69 https://htseq.readthedocs.io/en/master/

illumina sequence analysis software,

resequencing workflow

Illumina Resequencing Workflow, version 6.19.1.403 + NSv6

illumina sequence analysis software,

tumor normal workflow

Illumina Tumor Normal Workflow, version 6.9.1.177 + NSv6

Interlap GitHub https://brentp.github.io/interlap/

Intervar, 2.0.2 20180118 Li et al.70 https://github.com/WGLab/InterVar

Isaac aligner Illumina version Isaac-04.17.06.15

Lung Cancer Expression Subtype

Centroid Predictor

Wilkerson et al.8 https://github.com/mwilkers/lungCancerSubtypes/

blob/main/lung_adenocarcinoma_subtypes/

wilkerson.2012.LAD.predictor.centroids.csv

Manta Illumina version 1.1.1

Mascot Matrix Science https://www.matrixscience.com/

Mapsplice, V2.2 Wang et al.71 http://www.netlab.uky.edu/p/bioinfo/MapSplice2
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REAGENT or RESOURCE SOURCE IDENTIFIER

Micro-Vigene Pin et al.72 http://www.vigenetech.com/MicroVigene.htm

MOGSA, version 1.22.1 Meng et al.73 https://www.bioconductor.org/packages/release/

bioc/html/mogsa.html

MultiModalMuSig Funnell et al.20 https://github.com/shahcompbio/MultiModalMuSig.jl

MutEnricher v1.3.1 Soltis et al.74 https://github.com/asoltis/MutEnricher

NetworkX Hagberg et al.75 https://networkx.org/

Pamr CRAN https://cran.r-project.org/web/packages/

pamr/index.html

Peddy v0.3.0 Pedersen et al.76 https://github.com/brentp/peddy

PEER v1.3 Stegle et al.77 https://github.com/PMBio/peer/

Proteome Discoverer Thermo Fisher

Scientific Inc.

https://www.thermofisher.com/us/en/home.html

pyQUILTS v3.0 Ruggles et al.78 https://github.com/ekawaler/pyQUILTS

R, v3.23 and v4.0 CRAN https://cran.r-project.org/

r.jive O’Connell et al.79 https://cran.r-project.org/web/packages/

r.jive/index.html

RSeQC v2.6.4 Wang et al.80 http://rseqc.sourceforge.net/

SAMtools Li et al.81 https://www.htslib.org/

scikit-learn Pedregosa et al.82 https://scikit-learn.org/stable/

SpectrumAI Zhu et al.83 https://github.com/yafeng/SpectrumAI

Strelka Illumina version 2.8.0

TAMO Gordon et al.84 http://fraenkel-nsf.csbi.mit.edu/TAMO/

UNCeqR, v0.2 Wilkerson et al.85 https://github.com/mwilkers/unceqr

wgsim GitHub https://github.com/lh3/wgsim

Other

PEN Membrane Glass Slides Leica Microsystems Cat# 11532918

96 Micro-Tubes in bulk (no caps) Pressure Biosciences Inc Cat# MT-96

96 Micro-Caps (150uL) in bulk Pressure Biosciences Inc Cat# MC150-96

96 Micro-Pestles in bulk Pressure Biosciences Inc Cat# MP-96

9 mm MS Certified Clear Screw Thread Kits Fisher Scientific Cat# 03-060-058

Nitrocellulose-coated glass slides

(ONCYTE AVID 1- 22 3 51mm NC

Pad Per Slide Glass, 25 3 75 3 1mm,

Small Dark Blue Box)

Grace Bio-labs Cat# RD478691-M

ZORBAX Extend 300C18, 2.1 3 12.5 mm, 5 mm,

guard cartridge (ZGC)

Agilent Cat# 821125-932

ZORBAX Extend 300C18, 2.1 3 150 mm, 3.5 mm Agilent Cat# 763750-902

EASY-SPRAY C18 2UM 50CM X 75 Fisher Scientific Cat# ES903

PM100C18 3UM 75UMX20MM NV 2PK Fisher Scientific Cat# 164535
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Matthew D. Wilker-

son (matthew.wilkerson@usuhs.edu).

Materials availability
This study did not generate new, unique reagents.
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Data and code availability
d Data generated in this study (DNA sequencing, RNA sequencing, and proteomic data) are deposited at dbGap under study

accession #phs003011.v1.p1, the NCI Cancer Research Data Commons at https://gdc.cancer.gov/about-data/publications/

APOLLO-LUAD-2022, and the ProteomeXChange #PXD036025.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact, MatthewWil-

kerson (matthew.wilkerson@usuhs.edu), upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimens and clinical data
Patients were recruited to donate specimens to the Lung Cancer Biospecimen Resource Network (LCBRN, https://lungbio.sites.

virginia.edu) at three institutions: The Medical University of South Carolina, The University of Virginia and Washington University-

St. Louis, with informed patient consent and local Institutional Review Board approval. Patients were recruited in Thoracic Surgery

clinics by study teams at each institution from those individuals undergoing evaluation for surgical resection of known or suspected

primary pulmonary carcinoma. All cases had no evidence of disease and surgical margins were negative. The study teams collected

demographic data, including self-reported gender and uniform clinical history, including prior lung cancer procedures, cancer treat-

ments, and exposure data, as well as radiology and pathology reports (Table S1A). Tissue aliquots of tumor and surrounding non-

neoplastic tissue were obtained from the surgical resection specimens (see below). Clinical follow up data was obtained from

each individual at approximately 6 months intervals following surgery, including treatment data, clinical recurrence of cancer, and

survival. Frozen tissue samples of pulmonary adenocarcinoma were obtained from the LCBRN, which had collected the samples

using uniform procedures and collection containers. Warm and cold ischemic times prior to aliquot freezing were recorded, and

the samples were stored at �80�C in mechanical freezers until analysis. Initial central pathology review was performed by C.A.M.

onmatched formalin-fixed paraffin-embedded samples taken adjacent to the frozen tissue aliquots, and then on cryostat frozen sec-

tions taken from the frozen tissue aliquots. Glandular differentiation was verified for well to moderately differentiated neoplasms.

Confirmatory immunohistochemistry (TTF1, napsin, p63, cytokeratin 5/6) was performed on poorly differentiated neoplasms to

confirm adenocarcinoma differentiation as per the recommendations of Mukhopadhyay et al.86 Secondary central pathology review

was performed by T.J.F. to provide expert histologic subtyping. Areas of adenocarcinoma were microdissected from the frozen tis-

sue aliquots using the cryostat histologic sections as a guide to maximize tumor cellularity andminimize areas of tissue necrosis. Our

study design sought to include 100 cases including up to 50 with recurrence and up to 50 with no recurrence. After tissue and mo-

lecular quality control, we had a final cohort of 87 cases.

CPTAC cohort
Sample-level RNA expression, protein expression, gene-levelmutationdata, specimenand subject datawere obtained fromsupporting

tables in Gillette et al.,13 resulting in 105 cases with RNA, protein, and phenotype data. Clinical follow up data for these specimens were

amended with the latest CPTAC clinical data (S046_S056_BI_CPTAC3_LUAD_Discovery_Cohort_Clinical_Data_r2_July2020.xlsx,

available from https://proteomic.datacommons.cancer.gov/, Study ID: PDC000153, File ID 31ba3150-cec4-4749-b06e-

443239185938). Overall survival and metastasis free survival time intervals were calculated from these data. Tumor DNA purity was

calculated from somatic mutations as the median of 2*mutant allele fraction for mutations with a mutant allele fraction <50%. RNA

expression subtypes were assigned using the published subtype predictor to gene median centered RNA expression data.

METHOD DETAILS

Tumor histological evaluation
Digitized slides, one per case, were reviewed by a pulmonary pathologist (T.J.F.) who was blinded to the patients’ clinical outcomes

and molecular analyses. Neoplasms were classified according to the 2015 WHO criteria for the classification of lung adenocarci-

nomas.87,88 Invasive adenocarcinomas were classified into the five main subtypes lepidic, acinar, papillary, micropapillary, and

solid87,88 and three less common subtypes cribriform, ragged-anastomosing glands, and dispersed intra-alveolar tumor cells89

based on the predominant histologic pattern of growth. The predominant subtype was defined by the histologic pattern comprising

the highest percentage of the neoplasm after semiquantitative estimation of each pattern in 5% increments. Neoplasms were graded

based on the highest grade histologic pattern present, regardless of percent composition, as I, II, or III.87,89 Variants of adenocarci-

noma, including invasive mucinous adenocarcinoma, colloid, fetal, and enteric adenocarcinoma,87,88 and the presence of spread

through air spaces (STAS) were noted.90

Tissue sectioning and utilization
Tumor specimens were embedded in optimal cutting temperature (OCT) compound. OCT blocks were then sectioned in an interlac-

ing sequence to obtain material for DNA, RNA, protein and H&E slides. From the top of the block, two sections at 5 microns were
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taken for were taken for H&E analysis. A section count of 5-10 was estimated for a tumor, based on the size of the tissue in the OCT

block with smaller tumors having more sections to enable sufficient quantity for DNA and RNA isolation. With this count, sections of

the tumor were cut at 20 microns for DNA followed by the same number of sections for RNA at 20 microns. For protein analysis, 4

sections (2 sections per slide) cut at 10 microns were placed onto PENmembrane slides. This interlacing sequence (DNA, RNA, pro-

tein) was repeated 5 times and included a mid-way H&E and a final H&E. The sequence is listed in Table S1B.

Tumor DNA and RNA sections from this interlacing sequence were pooled for DNA extraction and pooled for RNA extraction. Tu-

mor DNA and RNA was extracted using the Qiagen QIAamp DNA Mini Kit and RNeasy Lipid Mini Kit (Qiagen Germantown, MD)

respectively. Whole tumor laser microdissection was performed on the PEN membrane slides before protein analysis, to conduct

tissue harvest to represent a bulk tissue representation of the tumor specimen. PEN membrane slides were sequentially utilized

from the top of the block until approximately 80mm2 tissue area was harvested for LMD for MS proteomics and phosphoproteomics.

Then, the next PEN membrane sections were utilized sequentially until approximately 15mm2 tissue area was harvested for RPPA.

Matched normal DNA for germline was isolated from either the buffy coat fraction of blood or non-neoplastic tissue using Qiagen

DNeasy Blood & Tissue Kit and the Qiagen QIAamp DNA Mini Kit respectively (Qiagen, Germantown, MD).

DNA sample handling and library preparation
Quality control of input genomic DNA samples was conducted by visual inspection for discoloration and/or presence of precipitants.

Genomic DNA quantitation was performed using a fluorescence dye-based assay (PicoGreen dsDNA reagent) and measured by a

microplate reader (Molecular Devices SpectraMax Gemini XS) before normalization to 20 ng/uL. Normalized gDNA samples were

added into wells of a Covaris 96 microTUBE plate at 55 mL volume and sheared using the Covaris LE220 Focused-ultrasonicator

with settings for targeting a peak size of 410 bp (PIP: 450W,Duty Factor: 18%,Cycles per burst: 200, Time: 60s). Sequencing libraries

were generated from 1,000 ng of fragmented DNA using the Illumina TruSeq DNA PCR-Free HT Library Preparation Kit with minor

modifications for automation on a Hamilton STAR Liquid Handling System. Adapters for ligation used either TruSeq DNACD Indexes

or IDT for Illumina TruSeq DNA UD Indexes (96 Indexes, 96 Samples). Library size distribution and absence of free adapters and/or

adapter dimers was assessed by automated capillary gel-electrophoresis (Advanced Analytical Fragment Analyzer). Library yield and

concentration (in nM) was determined by qPCR quantitation using the KAPA qPCR Quantification Kit on a Roche Light Cycler 480

Instrument II.

DNA library clustering and whole genome sequencing
After qPCR quantitation of sequencing libraries, normalization of libraries to 2.2 nM was performed into a working 96 well plate by

automation on a Hamilton STAR Liquid Handling System. Libraries were clustered as three lanes within a single flowcell for tumor

tissue-derived samples or single lane per single flowcell for germline tissue-derived samples on an Illumina cBot2 using the HiSeq

X PE Cluster Kit and a HiSeq X Flow Cell v2.5 before sequencing on an Illumina HiSeq X System with 151 + 7+151 cycle parameters

using HiSeq X HD SBS Kit reagents.

RNA library preparation and sequencing
Total RNA sample integrity was assessed using automated capillary electrophoresis on a Fragment Analyzer (Agilent) using the HS

RNA Kit (15NT). For all samples with RQN >4.0, a total RNA amount of >100 ng was used as input for library preparation using the

TruSeq Stranded total RNA Library Preparation Kit (Illumina). Sequencing libraries were quantified by real-time PCR using the KAPA

Library Quantification Complete kit (Roche) and assessed for size distribution and absence of free adapters and adapter dimers on a

Fragment Analyzer. Sequencing libraries were pooled and quantified by real-time PCR as above and clustered on a cBot2 (Illumina)

using a HiSeq 3000/4000 PE Cluster Kit. Clustered flowcells were sequenced on a HiSeq 3000 System (Illumina) using a HiSeq 3000/

4000 SBS Kit (150 cycles) with run conditions generating paired-end reads at 75 bp length.

Proteomics specimen preparation
Collection of lung tumor tissues using whole tumor laser microdissection (LMD), sample digestion, preparation of TMT multiplexes

and offline, basic reversed-phase liquid chromatographic (bRPLC) fractionation was performed essentially as previously

described.91 Briefly, whole tissue representations (cancer and stroma combined) were harvested by LMD from fresh-frozen tissue

sections (10 mm) on polyethylene naphthalate membrane slides, without any bias for cellular subpopulations. Whole tumor LMD

was performed to minimize contamination of tissue samples with OCTmounting medium, a compound known to impact mass spec-

trometry analysis.92 The mean tissue area collected per sample was 87 ± 4 mm2 for MS proteomics and 15 ± 2.4 mm2 for RPPA.

Samples were collected into microcentrifuge tubes containing 50 mL of LC-MS grade water and vacuum dried. The LMD harvested

tissue was manually transferred into pressure cycle technology (PCT) Micro-Tubes (Pressure Biosciences, Inc) containing 20 mL

100 mM TEAB/10% acetonitrile, pH 8.0, and subsequently lysed and digested with a heat-stable form of trypsin (SMART Trypsin,

ThermoFisher Scientific, Inc.) employing pressure cycling technology with a barocycler (2320EXT Pressure BioSciences, Inc). Pep-

tide digests were transferred to 0.5 mLmicrocentrifuge tubes, vacuum dried, re-suspended in 100mMTEAB, pH 8.0 and the peptide

concentration of each digest was determined using the bicinchoninic acid assay (BCA assay); the mean peptide yield was 0.67 ±

0.16 mg/mm2. Thirty micrograms of peptide from each sample, along with a reference sample generated by pooling equivalent

amounts of peptide digests from individual patient samples, were aliquoted into a final volume of 100 mL of 100mMTEAB and labeled
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with tandem-mass tag (TMT) isobaric labels (TMT11plex Isobaric Label Reagent Set, ThermoFisher Scientific) according to the man-

ufacturer’s protocol. Each TMT-11 multiplex set of samples was loaded onto a C-18 trap column in 10 mM NH4HCO3 (pH 8.0) and

resolved into 96 fractions through development of a linear gradient of acetonitrile (0.69% acetonitrile/min) on a 1260 Infinity II liquid

chromatography system (Agilent). Concatenated fractions (36 pooled samples representing 10% of the entire peptide sample) were

generated for global LC-MS/MS analysis. The remaining 90% of peptides were pooled into 12 fractions for serial phosphopeptide

enrichment by metal affinity chromatography (TiO2 and Fe-IMAC). Briefly, concatenated peptide fractions were vacuum dried,

re-suspended in TiO2 binding/equilibration buffer and bound to TiO2 affinity spin columns (High-Select TiO2 Phosphopeptide Enrich-

ment Kit, Thermo Fisher Scientific, Inc), and sample flow-through and washes were reserved for subsequent enrichment by Fe-NTA

(nitrilotriacetic acid) affinity chromatography (High-Select Fe-NTA Phosphopeptide Enrichment Kit, ThermoFisher Scientific, Inc).

Mass spectrometry-based proteomics
Liquid chromatography-tandemmass spectrometry (LC-MS/MS) analyses of TMT-11 multiplexes was performed essentially as pre-

viously described.91 In brief, each concatenated TMT fraction (5 mL, �600 ng) was loaded on a nanoflow high-performance LC sys-

tem (EASY-nLC 1200, ThermoFisher Scientific, Inc.) employing a two-column system comprised of a reversed-phase trap column

(Acclaim PepMap 100 Å, C-18, 20 mm length, nanoViper Trap column, ThermoFisher Scientific, Inc.) and a heated (50�C)
reversed-phase analytical column (Acclaim PepMap RSLCC-18, 2 mm, 100 Å, 75 mm3 500mm, nanoViper, ThermoFisher Scientific,

Inc.) connected online with an Orbitrap mass spectrometer (Q-Exactive HF, ThermoFisher Scientific, Inc.). Peptides were eluted by

developing a linear gradient of 2%mobile phase A (2%acetonitrile, 0.1% formic acid) to 32%usingmobile phase B (95%acetonitrile,

0.1% formic acid) within 120 min at a constant flow rate of 250 nL/min. High-resolution (R = 60,000 at m/z 200) broadband (m/z

400–1600) mass spectra (MS) were acquired, from which the top 12 most intense molecular ions in each MS scan were selected

for high-energy collisional dissociation (HCD, normalized collision energy of 34%) acquisition in the Orbitrap at high resolution

(R = 60,000 at m/z 200). Peptide and molecular ions selected for HCD were restricted to z = +2, +3 and +4. The S-Lens RF was

set to 60, and both MS1 and MS2 spectra were collected in profile mode. Dynamic exclusion (20 s at a mass tolerance = 10

ppm) was enabled to minimize redundant selection of peptide molecular ions for HCD.

Reverse phase protein array (RPPA)
Tissue lysates were kept at�80�C until they were immobilized onto nitrocellulose coated slides (Grace Bio-labs, Bend, OR) using an

Aushon 2470 arrayer (Aushon BioSystems, Billerica, MA). Each sample was printed in technical triplicates along with reference stan-

dards used for internal quality control/assurance. To estimate the amount of protein in each sample, selected arrays (one in every 15)

were stained with Sypro Ruby Protein Blot Stain (Molecular Probes, Eugene, OR) following manufacturing instructions.72,93 Samples

for RPPA analyses exhibited mean protein yields of 1.1 ± 0.24 mg/mm2 tissue area collected.

Prior to antibody staining, the arrays were treated with Reblot Antibody Stripping solution (Chemicon, Temecula, CA) for 15 min at

room temperature, washed with PBS and incubated for 4 h in I-block (Tropix, Bedford, MA). Arrays were then probed with 3%

hydrogen peroxide, a biotin blocking system (Dako Cytomation, Carpinteria, CA), and an additional serum free protein block

(Dako Cytomation, Carpinteria, CA) using an automated system (Dako Cytomation, Carpinteria, CA) as previously descried.93

Each array was then probed with one antibody targeting an unmodified or a post-translationally modified epitope. Antibodies

were validated as previously described.94 Slides were then probed with a biotinylated secondary antibody matching the species

of the primary antibody (anti-rabbit and anti-human, Vector Laboratories, Inc. Burlingame, CA; anti-mouse, CSA; Dako Cytomation

Carpinteria, CA). A commercially available tyramide-based avidin/biotin amplification kit (CSA; Dako Cytomation Carpinteria, CA)

coupledwith the IRDye680RDStreptavidin fluorescent dye (LI-CORBiosciences, Lincoln, NE) was employed to amplify the detection

of the signal. Slides were scanned on a laser scanner (TECAN, Mönnedorf, Switzerland) using the 620 and 580 nm wavelength chan-

nels for antibodies and total protein slides, respectively. Images were analyzed with a commercially available software (Micro-Vigene

5.1.0.0; Vigenetech, Carlisle, MA) as previously described72; this software performs automatic spot finding and subtraction of the

local background along with the unspecific binding generated by the secondary antibody. Finally, each sample was normalized to

its corresponding amount of protein derived from the Sypro Ruby stained slides and technical replicates were averaged.

RPPA antibody identifiers were mapped to Uniprot protein accessions and HGNC identifiers through manual inspection of com-

mercial antibody names and corresponding human protein entries curated within the UniProt resource (uniprot.org). Pan-specific

antibodies were assigned to multiple protein isoform accessions and residues for modified proteins were mapped to curated protein

model positions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative data processing pipeline for MS global and phosphoproteome analyses
Analyses of TMT global and phosphoproteome data were performed as previously described.91 Briefly, peptide identifications were

generated by searching LC-MS/MS data against a publicly available, non-redundant human proteome database (Swiss-Prot, Homo

sapiens, downloaded 12/0½017) appended with porcine trypsin (Uniprot: P00761) using Mascot (v. 2.6.0, Matrix Science, Inc.) and

Proteome Discoverer (v. 2.2.0.388, ThermoFisher Scientific, Inc.) with the following parameters: precursor mass tolerance of 10 ppm,

fragment ion tolerance of 0.05 Da, a maximum of two tryptic missed cleavage sites, static modification for TMT reporter ion tags
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(229.1629 Da) on N-termini and lysyl residues, and dynamic modifications for oxidation (15.9949 Da) on methionine residues, as well

as phosphorylation (79.9663 Da) on seryl, threonyl or tyrosyl residues for phosphoproteome analyses. The resulting peptide spectral

matches (PSMs) were filtered using an FDR <1.0% (q-value < 0.01), as determined by the Percolator95 node of Proteome Discoverer.

Phosphoproteome search results were further analyzed by the ptmRS node96 within Proteome Discoverer as a confidence measure

for the post-translational modifications identified.

TMT reporter ion intensities were extracted using Proteome Discoverer at a mass tolerance of 20 ppm, and PSMs lacking a TMT

reporter ion signal in TMT channelm/z 126 (TMT-126 - the pooled study reference which is a pool of all tumor digests in each sample

multiplex), PSMs lacking TMT reporter ion intensity in all TMT channels, or PSMs exhibiting an isolation interference of R50% were

excluded from downstream analyses. Log2-transformed TMT reporter ion ratios corresponding to individual patient tissue samples

were calculated for each PSM against the pooled reference standard (TMT-126). Log2-transformed PSM abundance distributions

were normalized by calculating the mode-centered Z score transformation adapted from Mertins P et al.97 for each channel in the

TMT-11 multiplex as follows: normalized PSM (Log2Ratio) = [PSM (Log2Ratio) – ModeCenter PSM (Log2Ratio)/s PSM (Log2Ratio).

For global protein-level abundance, the abundances of proteins identified by a unique PSM (i.e. in which a PSM maps uniquely to

a single protein accession) were determined by calculating the median log2-transformed abundance ratios of all such PSMs. The

abundances of PSMs mapping to multiple proteins (i.e. ‘‘multi-mapper’’ PSMs) were compared to mapped unique protein abun-

dances using a mean-squared-error approach to assign them to unique proteins based on comparative abundance analyses.

Multi-mapper PSMs were assigned to the corresponding unique protein accessions exhibiting the smallest difference in relative

abundance levels comparatively and candidates not identified by a unique PSM were excluded from downstream analyses. Pro-

tein-level abundance was calculated from normalized, median log2-transformed TMT reporter ion ratio abundances from aminimum

of two PSMs corresponding to a single protein accession. Missing abundances for proteins quantified inR50%of all patient samples

were imputed using a k-nearest neighbor (k-NN) strategy (adapted from97) using the pamr (Prediction Analysis for Microarrays) R

package98; proteins quantified in fewer than 50% of samples were not further considered.

The abundances of phosphorylated (phospho)-PSMs were assembled at the level of discrete phosphosites that map to a unique

protein using a tiered strategy aimed at defining high- and low-confidence phospho-PSMs. First, TMT reporter ion intensities were

processed for phospho-PSMs as described above to calculate normalized, log2-transformed abundance ratios of phospho-PSMs

for a given patient sample. The number and amino acid positions of phosphosites that were identified in the database search for

a given phospho-PSM were compared with phosphosite positions predicted by the ptmRS algorithm. A high-confidence phos-

pho-PSM was determined when all phosphosites identified by database search also exhibited >50% probability of being the

‘‘best’’ predicted phosphosite for a given phospho-PSM. A low-confidence phospho-PSM was determined when any phosphosite

identified by database search was not predicted as a phosphosite or exhibited <50% probability of being predicted as the ‘‘best’’

phosphosite. Low-confidence phospho-PSM candidates were further prioritized using a tiered strategy in which unique phosphosite

variants identified for the same phospho-PSM event were selected based on the highest ptmRS probability score that exhibited the

lowest search engine rank in the TMT-11 patient sample plex with the greatest number of total PSMs. Normalized log2-transformed

protein-specific phosphosite abundances were determined by calculating the median abundance of phospho-PSMs exhibiting the

same phosphosite as well asmethionine oxidation state. Phosphosites quantified redundantly as both low- and high-confidence ver-

sionswere further filtered to prioritize only high-confidence phosphosites for downstream analyses. For phosphosites co-identified in

companion global proteomic data, median log2-transformed, protein-specific phosphosite abundances were also normalized to the

total protein abundance quantified in global proteome analyses.

MS variant peptide identification from patient-specific proteogenomic databases
Patient-specific proteome databases were constructed from germline and somatic tumor mutation calls assembled from whole

genome sequencing (WGS) data as well as alternative splice and fusion events assembled from companion total RNA-seq data using

QUILTs (https://github.com/ekawaler/pyQUILTS)78 using the prepare_refseq proteome database workflow against a RefSeq human

reference database (downloaded 8/2019, 53,912 entries). MapSplice junctions were retained if they were supported by R 10 reads.

Search databases were constructed for each TMT-11 multiplex by concatenating the human reference database with patient-specific

variant databases corresponding to patient samples analyzed within a given TMT-11 sample multiplex. Protein entries reflecting vari-

ants that were redundant across patient samples within a given TMT-11 multiplex were merged into unique database entries using in-

house scripts. Global.raw files for a given TMT-11 multiplex were searched using Mascot (Matrix Science) and Proteome Discoverer

(ThermoFisher Scientific) software against respective patient-specific databases using identical parameters as described above. Inves-

tigation of variant peptides mapping to novel splice junctions were confirmed by BLASTP (nr database for taxid:9606) and showed that

all candidates mapped to reviewed or predicted human proteins. Quantified variant peptides (peptides mapping to patient-specific

variant, but not reference protein entries) were prioritized for downstream analyses from each patient sample TMT-11 multiplex.

Variant peptide abundances were calculated using identical parameters as described above. Briefly, log2-transformed TMT re-

porter ion ratios corresponding to individual patient tissue samples were calculated for each variant PSM against the pooled refer-

ence standard and log2-transformed PSM abundance distributions were normalized by mode-centered Z score transformation. We

further implemented orthogonal verification strategies to promote high-confidence variant peptide identifications by employing

SpectrumAI (https://github.com/yafeng/SpectrumAI).83 Variant peptides encoding a missense substitution of interest were consid-

ered verified if a single tandem MS spectra exhibited fragment ions flanking a substitution of interest was identified in all patient
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sample plexes in which a variant peptide was quantified. Variant peptides encoding missense substitutions derived from germline

mutation calls were further compared to variant genotypes derived from WGS data with the expectation that variant peptide abun-

dance will be significantly increased (Mann Whitney U p > 0.05) in patients homozygous alternate or heterozygous for a given variant

versus homozygous reference samples.

Differential global and phosphoproteomics
We identified differentially expressed total proteins and PTMs between tumor groups (e.g. by expression subtypes) using ordinary

least-squares regression, controlling for influences of patient gender and ancestry. For PTMs measured by MS, we considered

imputedmeasurements (k-nearest neighbors, at least 50% real measurements) as well as regressions that used the unimputedmea-

surements, requiring a 20% measurement rate in ‘‘case’’ tumors and skipping instances with no measurements in ‘‘control’’ sets.

Unless otherwise noted, proteins and PTMs possessing and FDR q-value < 0.1 were deemed significant.

Germline and somatic variant calling and sample concordance
All WGS samples were initially processed through the Illumina Sequence Analysis Software Resequencing Workflow (version

6.19.1.403 + NSv6). This workflow aligned sequencing reads to the human reference genome (NCBI GRCh38 with decoys) with

the Isaac aligner (version Isaac-04.17.06.15)99 and called germline variants (SNVs and short indels) with Strelka2 (version

2.8.0),100 structural variants (SVs) with Manta (version 1.1.1),101 and copy number variants with Canvas (version 1.28.0.272 + mas-

ter).102 Initial sample quality features assessed at this stage included total pass fail reads, percent aligned reads, and total coverage

depth (target �30X for germline specimens, �90X for tumors). We also inferred sample gender and ancestries from DNA evidence

and compared these to sample clinical information. We predicted sample gender from chromosome X heterozygous to homozygous

variant ratios with a support vector machine (SVM) classifier trained on DNA specimens of known gender. Sample ancestries were

inferred using Peddy.76 Briefly, principal component reduction was performed on genotype calls at specific loci from 2,504 samples

in the 1000 Genomes project and an SVM classifier was trained on the resulting first four components, using known ancestries as the

training labels. Sample genotype calls at these same loci were then mapped to principal component space and the trained SVMwas

used to predict underlying ancestries.

We then called somatic variants frommatched tumor and normal specimens using the Illumina Sequence Analysis Software Tumor

Normal Workflow (version 6.9.1.177 + NSv6), which called somatic SNVs and indels with Strelka2, somatic structural variants with

Manta, and somatic copy number alterations with Canvas. Prior to running this workflow, we first verified that matched sample DNA

specimens derived from the same individual. For this we ran Conpair63 on expected matched sample pairs, using the 7,353 auto-

somal GRCh38 markers provided with the tool. Tumor-normal pair concordances exceeded 95%. We also ran Conpair’s contami-

nation estimation tool and found that all final tumor specimens displayed less than 0.5% contamination. In addition to Conpair, we

utilized a hierarchical clustering scheme that compared the sample genotypes from the samemarker set. This analysis also revealed

that all expected sample pairs indeed derived from the same individuals.

Tumor purity was estimated from tumorWGS data by Canvas within the Illumina Tumor Normal Workflow.We identified four cases

with 100% tumor purity estimates; subsequent manual review found that these tumors had a normal-like copy number profiles and

mean somatic VAFs inconsistent with such high purity estimates. Thus, for these four cases, tumor purity estimates were assigned as

two times their mean somatic SNV frequency.

Germline variant pathogenicity analysis
We used InterVar70 to classify all germline variants. We selected variants called Pathogenic (P) or Likely Pathogenic (LP) and

occurring in genes reported as germline mutations by The Cancer Genome Atlas.103 We further filtered these variants using

ExAC,104 retaining those with an allele frequency less than 1%. Germline mutation calls were then reviewed by a medical geneticist

(C.E.T).

Somatic variant filtration and annotation
For somatic SNVs and indels, we retained variants passing all Strelka2 filters (i.e. PASS variants). To further control for potential

false positives and/or caller artifacts, we implemented a panel of normals (PON) approach whereby additional somatic variant calls

were removed if they were observed in ‘‘pseudo somatic’’ call sets derived from the matched normal specimens. For this, we ran

the Tumor Normal Workflow on every normal WGS dataset against a synthetic normal sample. This synthetic normal was gener-

ated with wgsim (https://github.com/lh3/wgsim) and mimics an �30X depth WGS dataset with all base calls matching the hg38

reference genome. We ran wgsim with the following parameters to create a set of simulated WGS paired-end FASTQ files with no

variants from the reference genome: -N 475,000,000 -d 420 -s 95 -e 0.0–1 150 -2 150 -r 0.0 -R 0.0 -X 0.0. We then ran the Re-

sequencing Workflow on this synthetic dataset and used the resulting outputs as the ‘‘normal’’ specimen when running the Tumor

Normal Workflow with the true normal WGS samples as the ‘‘tumors’’. Passing variants occurring in two or more pseudo somatic

samples formed a filter list. These SNV and indel variants were then filtered from tumor somatic variants in the cohort. Finally, we

annotated these filtered somatic SNVs and indels with ANNOVAR60 against GENCODE v28 gene models,55 to be used throughout

the remainder of the study. Tumor mutational burden (TMB) was defined as the sum of SNVs per megabase and indels per

megabase.
e8 Cell Reports Medicine 3, 100819, November 15, 2022

https://github.com/lh3/wgsim


Article
ll

OPEN ACCESS
For somatic copy number alterations (CNAs), we retained segments called by Canvas that passed all caller filters (i.e. PASS var-

iants) for gene-level analysis. For somatic SVs, we ran Break Point Inspector on the Manta calls (https://github.com/hartwigmedical/

hmftools/releases/download/bpi-v1-7/bpi-v1.7.jar), which re-examines support for these calls from the tumor and normal sample

BAM files directly. Somatic SVs not passing Manta and additional Break Point Inspector filters were discarded.

DNA copy number segments and gene-level copy number values
We used continuous log2(CN) – 1 (logCN) values as the numerical factors for Canvas segments for several analyses. Here, CN, or the

normalized floating point copy number (e.g. 2.0 equals copy number 2), is equal to: (2 * RC)/(DC), where RC is the mean read count

per bin reported by Canvas for the segment and DC is the overall diploid coverage value for the sample estimated by Canvas. For

autosomes, we used log2(CN) – 1 values directly; for sex chromosomes, we adjusted the calculations on chromosomes X and Y to

log2(CN) – 0 for male samples, whereas log2(CN) – 1 was used for chromosome X segments in female samples.

For gene-level copy values, we extracted sample-wise logCN values corresponding to individual gene coordinates. If no Canvas

segment overlapped the gene coordinates, logCN was set to 0.0; if a single segment overlapped the gene, this value was used for

logCN; otherwise, if more than one segment overlapped the gene coordinates, the segment covering the greatest proportion of the

gene was used for logCN.

RNA-seq alignment, quantification, and differential expression analysis
Raw paired-end RNA sequencing reads were aligned to the human reference genome (hg38) using MapSplice71 (version 2.2.2) with

the –fusion parameter set. Gene-level read counts against GENCODE (version 28) basic gene models55 were calculated by

HTSeq69 (version 0.9.1) with the parameters: -s reverse -t exon -m intersection-nonempty. For calculating transcripts

per million (TPM) values, the average of all transcript lengths corresponding to the same gene were used for gene length factors

and only protein-coding genes (identified by the presence of at least one annotated CDS element in its gene model) were considered

in the ‘‘per million’’ normalization factor calculations. Read alignment statistics and sample quality features were calculated with

SAMtools81 and RSeQC.80 Read characteristics (e.g. total reads, mapping percentages, pairing percentages), transcript integrity

number (TIN),105 50 to 30 gene body read coverage slopes, and rRNA content were inspected for sample quality determination.

We used DESeq266 (version 1.16.1) to calculate differential gene expression between sample groups (e.g. by subtypes). We gener-

ally considered genes to be differentially expressed if their cohort mean TPM expression levels were greater than one, if their esti-

mated adjusted p values were less than or equal to 0.1, and if the absolute values of their log2 fold-changes following shrinkage

(i.e. using the lfcShrink function in DESeq2) were greater than or equal to 0.322.

Sample identity matching
As done for DNA WGS tumor-normal pairs (see Germline and somatic variant calling and sample concordance), we conducted an-

alyses to assure appropriate sample concordance between RNA-seq and proteomic datasets with WGS specimens. To assess

concordance between RNA-seq and DNA WGS datasets, we extracted genotypes at the �7,000 loci selected by Conpair.63 DNA

WGS genotypes were extracted from sample VCF files produced by the Illumina workflow and RNA-seq sample genotypes were

calculated with UNCeqR.85 For all pairwise sets of genotypes, we computed distances based on the counts of matching genotype

calls and used hierarchical clustering (Euclidean distance and average linkage) to identify sample groups. All normal WGS, tumor

WGS, and tumor RNA-seq corresponding to the same individual were clustered together in triplicate groups.

After assuring appropriate concordance between DNA WGS and RNA-seq samples, we compared RNA-seq and proteomic

datasets by expression correlation. We first identified linked RNA transcripts and proteins by gene symbol mapping and

restricted analyses to only these matched pairs. For each dataset, we Z score transformed individual species’ expression levels

prior to comparisons. We then computed Spearman correlations between pairwise vectors of normalized sample expression

levels for matched species. To confirm sample identity, we determined the best and expected sample-wise correlations among

RNA-protein dataset comparisons. For MS total proteomics datasets, we observed a median dataset-wise Spearman correla-

tion of 0.48 with matched RNA-seq datasets and, for the vast majority of cases (85 of 87), the best sample-to-sample

correlations derived from expected sample pairs; in cases where this was not true, the expected correlation was highly numer-

ically similar to the best correlation. Thus, this analysis confirmed appropriate sample-wise matching between RNA-seq and MS

proteomic datasets.

Comparisons between MS total proteins and RPPA antibodies targeting total proteins (83 total species) revealed a median tumor-

wise Spearman correlation of 0.42. When further restricting this analysis to individual proteins with strong MS to RPPA correlations

(e.g. protein-wise r > 0.4), we observed a stronger median sample-wise correlation of 0.7. In the latter analysis, the majority of sam-

ples (81 of 87) were most strongly correlated with their expected pairs, while the remaining cases showed numerically similar corre-

lations between their expected pairs and their observed bests, which may be related to the low number of targets on the RPPA plat-

form. Protein-wise Spearman correlation across the 83 common proteins between the platforms was 0.36.

RNA-protein correlations
RNA:protein correlations were determined between log2(TPM +1) RNA expression data and total proteomic MS data. For species

matching by gene symbol between the two datasets (n = 7,472), we row-standardized (i.e. z-scored) RNA and protein measurements
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and calculated gene-wise Spearman correlations. We then corrected correlation p values for multiple hypotheses using the

Benjamini-Hochberg FDR procedure and deemed RNA-protein pairs with FDR <0.05 and a positive Spearman correlation coefficient

(r > 0) as significantly positively correlated. We identified enriched pathways and biological processes among uncorrelated species

(r < 0 and FDR >0.05) and strongly positively correlated species (r > 0.5 and FDR <0.05) by running GO term enrichment on these

foreground gene sets against all identified matched RNA-protein pairs.

For further RNA and protein comparative analysis, we restricted to genes with at least 2 mean TPM by RNAseq, yielding 7,322

genes, referred to as ‘co-expressed genes’. Then, we calculated tumor-wise correlations as the Spearman correlation between a

tumor’s RNA expression and protein expression using co-detected expressed genes. In the Gillete et al. cohort gene-wise and pro-

tein-wise correlations were calculated similarly. RNAseq data was already restricted to expressed genes in Gillette et al.13 Using spe-

cies common to both Gilette et al. RNA and protein platforms (n = 10,069) gene-wise and tumor-wise Spearman correlations were

calculated. Gene-wise correlations between APOLLO and Gilette cohorts were compared on common, expressed genes between

the cohorts, n = 6,729 genes.

Somatic mutation recurrency analysis
We used MutEnricher (version 1.3.1)74 to interrogate coding genes and non-coding regulatory elements for recurrent somatic muta-

tions. For coding genes, we consideredGENCODE (version 28) basic gene annotations,55 skipping genes encoded on chromosomes

Y orM and restricting to those with at least one coding domain sequence (CDS) andwhosemedian RNA transcript expression across

the full cohort was greater than one transcript per million (14,757 genes in total). For variant impact annotations, we ran ANNOVAR60

on the filtered sample somatic VCF files against GENCODE v28 gene models. When running MutEnricher’s coding module, we used

the covariate clustering method to compute background mutation rates. As covariates we used gene full lengths, coding lengths,

sequence GC and CpG contents, median RNA expression levels, and replication timing values from 23 different Repli-Seq datasets

across a variety of cell lines obtained from ENCODE (https://www.encodeproject.org/; retaining the mean value per gene from each

dataset). In addition, we used MutEnricher’s default binomial testing strategy (i.e. stat-type = nsamples), which computes the signif-

icance of observing n samples out of N total with non-silent somatic mutations in a gene, and, for hotspots, restricted testing to re-

gions with at least three non-silent somatic mutations from at least three samples. All other parameters were set to their default

values. In cases where subsets of samples were run through MutEnricher (e.g. by expression subtypes), the same parameters

and gene covariate clustering results were used. Genes with overall burden or combined burden plus hotspot FDRs <0.1 were

deemed significant, except where otherwise noted.

For non-coding elements, we interrogated LUAD-specific non-coding regulatory regions (promoters, 30 UTRs, 50 UTRs, and distal

enhancers) identified by ATAC-seq.31 For each element type, we removed regions overlapping any annotated CDSs and indepen-

dently ran MutEnricher with the local background mutation rate method, which scans the local genomic neighborhood surrounding

each non-coding element to compute a per-sample background rate. Again, we used MutEnricher’s binomial testing strategy and

tested candidate hotspots with a maximum distance between mutations of 50 basepairs and with at least three somatic mutations

from at least two samples. All other parameters were set to their default values. Non-coding elements and/or hotspots were deemed

significant if their FDR-corrected p values were less than 0.1.

Copy number alteration recurrency analysis

We used GISTIC2.068 to identify recurrent somatic copy number alterations among all tumor samples. As input, we used sample

log2(CN) – 1 (logCN) values from copy number segments identified by Canvas (see above). As parameters we used: -genegistic 1

-armpeel 1 -brlen 0.98 -conf 0.99 -scent median -maxseg 5000 -ta 0.1 -td 0.1 -rx 0. All other parameters not explicitly indicated

here were set to their defaults. We considered events with q-value < 0.25 to be significant (i.e. the default GISTIC threshold).

Somatic structural variant clustering

To identify recurrent somatic structural variants among tumor samples, we devised a clustering approach whereby SVs were grouped

by the consistency of their breakend coordinates. For this cohort-wide analysis, intrachromosomal SVs (i.e. deletions, tandem duplica-

tions, insertions, and inversions) were handled separately from interchromosomal SVs (i.e. translocations) as we aimed to compare

events targeting the same or similar genomic loci. We considered an intrachromosomal SV in the analysis if it passedManta and Break

Point Inspector filters (i.e. PASS), if its length was >30 bp, and the sum of the somatic paired read (PR) and split read (SR) evidences for

the SVwasR5. Deletion SVs less than 1000 bp in length were also excluded from the analysis and reciprocal inversion calls annotated

as the same ‘‘event’’ byManta weremerged into singular calls, retaining themean start and end coordinates of the source SVs. In addi-

tion, we filtered SVs whose breakend coordinates did not fully intersect with a mappable genomic locus defined by the Genome in a

Bottle Consortium (version 3.2.2 with hg38 genome lift over; ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/

NISTv3.2.2).Once the intrachromosomalSVswere loaded,wefirst identified overlappingSV intervals (with help from the interlapPython

package: https://github.com/brentp/interlap) aswell as closely neighboring intervals (e.g. withinDT bp). Next, for all intervals comprising

more than one SV, we used single linkage hierarchical clustering with the following distance function (Dab) to identify SV clusters:

Dab = minðd1; d2Þ
d1 = dss � dee = ðjas � bsj = 3e9Þ � ðjae � bej =3e9Þ
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d2 = dse � des = ðjas � bej = 3e9Þ � ðjae � bsj = 3e9Þ
where a and b subscripts index two SVs and s and e subscripts indicate the start and end coordinates, respectively, of the two SVs

(s < e for all SVs). SV clusters were then called if the linkage distance between formed groups was less than a threshold CT, where

CT = ðDT=3e9Þ2. Any SVs not part of a cluster were reported as singletons. For identified SV clusters, we calculated the significance

of observing k or more SVs as part of a cluster using a Poisson test, where the Poisson m (mean) parameter was calculated as the

average number of SVs within a cluster among non-singleton clusters.

For interchromosomal SVs (i.e. translocations), we again retained SVs passing both Manta and Break Point Inspector filters as well

as those with PR + SRR 5. To find clustered translocations, we created a breakend graph whereby an edge between two SVs was

established if the two involved chromosomes matched and the distance Dab between the two was less than CT, as defined above.

Translocation clusters were then identified from this breakend graph by identifying connected components within; any non-con-

nected SVs were classified as singletons. Breakend graph building and manipulation were performed within the NetworkX package

in Python (https://networkx.org/).75 In addition, we computed Poisson p values for the translocation clusters as described above for

intrachromosomal SVs.

For these analyses we used a distance threshold (DT) of 10 kb. For some analyses, we also included fusion genes called from sam-

ple RNA transcript data. For these, we used well-annotated fusion calls made by MapSplice. In an alternative analysis, we identified

clusters of somatic SVs on a per-sample basis that allowed for ‘‘chains’’ of SVs. Here, somatic SVs were filtered using the same

criteria described above and a breakend graph was built among all SV types (e.g. both interchromosomal and intrachromosomal

SVs). An edge between two SVs was created in the graph if either of the two breakends of one SV intersected a breakend of another

within a distance thresholdDT. SV clusters were identified from this graph by finding connected components and non-connected SVs

were deemed singletons.

Somatic signatures analysis
We used MultiModalMuSig,20 a multi-modal correlated topic modeling (MMCTM) approach implemented in the Julia programming

environment (version 1.1.0), to jointly learn somatic mutation signatures from patient SNV, indel, and structural variant profiles.

For each tumor sample, we extracted the counts of 1) somatic SNVs within their tri-nucleotide contexts (96 possible) using

the deconstructSigs R package (version 1.8.0),65 2) somatic short indels classified by size, affected nucleotides, and repeat/

microhomology contexts according to classes defined by COSMIC (https://cancer.sanger.ac.uk/cancergenome/assets/

PCAWG7_indel_classification_2017_12_08.xlsx), and 3) somatic structural variants grouped by alteration type (deletions, tandem

duplications, insertions, inversions, and interchromosomal translocations) and size (<1 kb, 1–10 kb, 10–100 kb, 100 kb–1 Mb,

1 Mb–10 Mb, and >10 Mb; applicable to intrachromosomal SVs only). To determine the optimal number of signatures (K) for each

variant type (i.e. mode), we independently ran 100 iterations of MultiModalMuSig for each mode across a range of possible K

(2–10; MultiModalMuSig parameters a = 0.1 and tolerance = 1 3 10�6 for all modes) and assessed model log-likelihoods against

each value of K. From this analysis we chose 3 SNV, 3 indel, and 4 SV signatures as the optimal per-mode K values. We then ran

the algorithm 1000 times on the three modes jointly using their optimal K values (a = 0.1 for all modes and tolerance = 1 3 10�7),

retaining the maximum scoring (i.e. highest log likelihood) result. Following identification, we mapped the SNV and indel signatures

to known COSMIC (version 3) single base substitution (SBS) and small insertion and deletion (ID) signatures, respectively, using ridge

regression and cosine similarity mapping. With the ridge regression procedure, all known COSMIC signatures were considered in a

single model, whereas signatures were mapped individually with the cosine correlation method.

We then used hierarchical clustering (Euclidean distance and Ward linkage) to identify groups from the patient signature probabil-

ities. This analysis revealed three distinct clusters. We additionally compared these signature cluster assignments to several clinical

and molecular features, including smoking history and somatic mutation rates, using ANOVA for continuous variables and c2 statis-

tics for categorical features.

Somatic quantitative trait loci (QTL) analysis
We performed quantitative trait loci (QTL) analyses to identify coding and non-coding somatic mutation impacts on RNA and/or pro-

tein expression. For all analyses, we used elastic net, a regularized regression procedure that combines both the L1 and L2 penalties

on estimated coefficients, to evaluate mutation impacts on expression:

bb = argmin
b

�
exp � Xb2 + l1b1 + l2b

2
�

For coding analyses, we considered recurrently mutated genes (MutEnricher Fisher FDR <0.1) and groupedmutations within these

genes by their variant impact types (i.e. nonsynonymous SNVs, stopgains, frameshift alterations, etc.). For each of these genes we

built a regression model according to:

exp g = b0 + bmut1M1 + bmut2M2 +.+ bmutnMn + bCNAC+ bancA+ bsexS+ bhiddenH
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where b values represent regression coefficients for mutation types (e.g. M1, M2, . Mn), gene copy number levels (C, sample

log2(CN) – 1 values for gene g), background ancestry (A, either EUR or AFR for this cohort), gender (S, male or female), and additional

hidden factors (H; see below). A similar approach was used for non-coding loci:

exp g = b0 + bl1L1 + bl2L2 +.+ blnLn + bCNAC+ bancA+ bsexS+ bhiddenH

where L variables represent recurrently mutated non-coding loci linked to gene g. If a non-coding element contained one or more

significant hotspot regions (FDR <0.05), mutations contained within these were considered part of a distinct element in the regres-

sion; then, if the full non-coding element was also significant (burden FDR <0.2), the remaining mutations not part of any significant

hotspots were included as an additional locus. If no significant hotspots were identified but the overall region was deemed significant

(burden FDR <0.2), the full element was included as a single term in the regression. For locus-gene links, we considered cis map-

pings, i.e. genes within +/� 1 Mb of the locus. Ultimately, we considered 426 regulatory elements mapped to 4,767 cis genes,

creating 7,019 total locus-gene links. We note that this overall QTL approach to non-coding mutations is similar to methods

described in Zhang et al.,106 though with modifications.

For RNA transcript expression levels, we ran DESeq2’s (version 1.16.0)85 variance stabilizing transformation (VST) on the raw sam-

ple gene counts. We then ran probabilistic estimation of expression residuals (PEER; obtained from https://github.com/PMBio/peer

for Python)77,107 on the VST-normalized data to estimate the hidden factor variables in the QTL regression models (i.e.H factors). We

estimated 10 potential hidden factors with PEER, including a mean term along with the known sample covariates gender and

ancestry during estimation. After fitting, we examined a plot of the posterior variance of factor weights against the number of esti-

mated hidden factors; this analysis indicated a natural choice of four optimal hidden factors to include in regressions involving

RNA expressionmeasurements. We also ran this procedure on the global proteomics data to estimate hidden factors for regressions

involving total protein measurements. Here, we used the normalized and log-transformed total protein measurements as input to

PEER, again considering up to 10 potential factors and running in the context of known covariates for gender and ancestry. Exam-

ination of the posterior factor weight variances additionally revealed four optimal hidden factors for use in protein QTL regressions.

These estimated factors were included directly into subsequent regressions.

All regression were run in Python with the ElasticNet linear regression module implemented in the Scikit-learn package.82 To es-

timate the optimal L1 and L2 penalty weights (i.e. l1 and l2), we ran regressions over a range of values for the elastic net parameters

(alpha, l1_ratio); in this implementation, l1 = alpha *l1_ratio and l2 = 0.5 * alpha * (1 - L1_ratio). For all tested (alpha, l1_ratio) combi-

nations, samples were randomly divided 50 times into 70% training and 30% testing sets and the mean training error (negative mean

squared error) was recorded; the optimal set of parameters was then taken as the minimum error combination. We tested 120 loga-

rithmically spaced values for alpha that ranged from 13 10�4 to 89.125 and 21 L1_ratio values ranging from 0 to 1 in 0.05 increments.

After fitting with the optimal parameter sets, we used F-statistics to derive an overall mutation effect p value for each tested gene/

protein as well as individual mutation term significances (e.g. for multiple coding mutation types or multiple non-coding loci). For the

overall effect, we compared the full model accuracy against that of a model fit with the same elastic net parameters but without any

mutation terms. Similarly, for individual mutation terms, we compared the full model accuracy against a model excluding each mu-

tation term individually. We then multiple hypothesis corrected (Benjamini-Hochberg) the overall mutation effect p values for each

gene/protein separately from the individual mutation type to gene or locus to gene p values. For coding mutation analyses, we

considered genes/proteins significant if their overall mutation effect FDR was less than 0.1 and if they possessed at least one

mutation type with an FDR <0.1. Similarly, for non-coding mutations, we considered genes with overall FDR <0.1 and at least

one locus-gene interaction effect with FDR <0.1. In coding mutation volcano plots, we computed an aggregate effect size estimate

for each gene/protein as the significance-weighted average of the individual mutation effect terms (i.e. wi = log10(p-valuei)/sum

(log10(p values)); aggregate effect size = sum(b *w)). For non-coding plots, we reported individual locus-gene p values and effect sizes

directly from the elastic net regressions.

Tumor expression subtyping
Tumor RNA expression subtype assignments were calculated using the LUAD subtype predictor (https://github.com/mwilkers/

lungCancerSubtypes/blob/main/lung_adenocarcinoma_subtypes/wilkerson.2012.LAD.predictor.centroids.csv).8 Tumor RNA expres-

sion data were upper quartile read counts per gene, increased by one pseudocount, and log2 transformed. The maximum Pearson

correlation of a tumor’s gene median centered expression to the predictor centroids defined that tumor’s subtype assignment, using

common genes between the predictor centroids and the APOLLO RNA data (475 of 506 genes). Subtype assignments based on total

protein expression were calculated in similar fashion. Proteomic expression were collapsed to gene symbols by taking the average of

peptidemapping to the same gene symbol, and genemedian centered. ThemaximumPearson correlation of a tumor’s protein expres-

sion to the predictor centroids defined its protein subtype assignment, using common genes between the predictor centroids and the

APOLLO protein data (317 out of 506 genes).

Unsupervised RNA expression subtypes were detected with the same expression matrix but restricting to genes having a cohort

mean TPM of at least 2 and annotated as coding with a complete open reading frame in GENCODE v28 (n = 14,374 genes). The top

3,000 genes by median absolute deviation were selected for unsupervised clustering and median centered. Consensus clustering

was performed by ConsensusClusterPlus62 with the following options: distance metric – Pearson, clustering algorithm – hierarchical,

item resampling 80%, and 1,000 repetitions, supporting three clusters. Unsupervised protein expression subtypes were detected
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similarly with gene-symbol collapsed protein expression data. The top 3,000 proteins bymedian absolute deviation were selected for

ConsensusClusterPlus analysis using the same options, also supporting three clusters. Unsupervised phosphoproteomics expres-

sion subtypes were detected similarly using ConsensusClusterPlus using phosphoproteins that were detected in at least 50% of

samples.

Joint and Individual Variation Explained (JIVE) decomposition was performed on tumor RNA and tumor proteomics expression

data using r.jive,79 identifying a joint rank of 3. RNA data were TPM, pseudocount incremented, log2 transformed. Protein data

were gene symbol collapsed proteomics data. Data were reduced to genes detected by both RNA and protein. Clustering on the

first 3 joint rank vectors by partitioning around medoids and a k = 3 defined joint unsupervised subtypes.

TP53 mutation signature
Tumors were scored according to a published pan-cancer TP53 overexpression gene signature (TP53 mutant vs wildtype, 20

genes).108 Similar to prior work,109 log2(TPM +1) expression values for these genes were standardized to z-scores, and the mean

of a tumor’s z-scores served as as the mutant TP53 score per tumor.

Cell type estimation
Weused the deconvolutionmethodsCIBERSORT61 and ESTIMATE67 to estimate tumor immune and other cell type proportions from

bulk RNA-seq datasets. In all cases, we used sample transcripts per million (TPM) values for protein coding genes as the input data to

these algorithms. We ran CIBERSORT on the web (version 1.06; https://cibersort.stanford.edu/), using both relative and absolute

modes together and disabling quantile normalization (as recommended for RNA-seq data), against the LM22 immune cell types

signature set for 1000 permutations. ESTIMATE version 1.0.13 was also used to compute tumor immune and stromal scores.

When comparing deconvolution features (e.g. absolute immune scores) between sample groups (e.g. by expression subtypes),

we used either t-statistics or non-parametric statistics (Mann-Whitney U test) to compare mean differences and the Benjamini-

Hochberg procedure to correct for multiple comparisons. We also used ESTIMATE with input of normalized gene-level proteomics

data.

Gene ontology and other pathway enrichment analyses
Gene ontology (GO) and other pathway enrichments for differentially expressed genes and proteins were calculated with hypergeo-

metric tests against a background of all expressed genes (mean TPM R1) or all measured proteins. For GO, we considered terms

with less than or equal to 1000 total genes in the GO database downloaded on November 16, 2018. We also obtained gene sets from

the Molecular Signatures Database (MSigDB; version 7.0; http://www.gsea-msigdb.org/gsea/downloads.jsp),110 including hall-

mark,111 C2 curated (canonical, KEGG, and Reactome pathways), and C3 regulatory target (transcription factor and miRNA targets)

gene sets. Raw p values calculated for each term set were adjusted for multiple hypotheses using the Benjamini-Hochberg FDR

procedure.

Multi-omics gene set analysis
We used the multi-omics gene set analysis (MOGSA) software package (version 1.22.1) in R to perform multivariate single sample

gene-set analysis.73 Within this framework, we calculated integrated single sample MSigDB hallmark gene-set pathway scores

(GSS) from sample transcriptomic, global proteomic, and phosphoproteomic data. To identify pathways enriched in specific sample

groups (e.g. by expression subtypes), we first selected pathways inwhich individual sampleGSS FDRswere smaller than 0.01 in 50%

of all samples. From these pathways, we used generalized linear models (GLMs) to estimate the difference in sample GSS values

between tumors in a group of interest against all others, selecting pathways with FDR <0.05. For visualization, we selected represen-

tative pathways ranked by GLM T values.

Survival analysis
Patient overall survival (OS) was defined as the interval from surgery to death or last follow up. This interval was censored at 5 years and

patients deceasedwithin 30 dayswere removed fromOSanalyses.Metastasis-free (MFS) survival timewas defined as the time interval

from surgery until the first appearance of metastasis to a distant organ site (brain, bone, adrenal, liver, colon, contralateral lung,

pancreas) or death. Patients with MFS <30 days were removed from analyses involving this feature and MFS was censored at 5 years.

Categorical features (e.g. tumor subtype assignments) were tested for associations with OS and MFS by log-rank tests. Contin-

uous data (e.g. expression of individual RNAs, proteins, phosphoproteins) were tested against OS andMFS by Cox proportional haz-

ards model and Wald tests for the given molecular marker. False discovery rates were calculated by the Benjamini-Hochberg

method. MS phosphoproteins were tested if detected in at least 50% of samples.

Using gene sets significantly associated with MFS (FDR <0.25), survival expression signatures were defined for these gene sets

and expression measures from RNA or protein by the following function, similar in form to prior studies112:

Score =
Xk

i = 1

bi � expressioni
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in which k is the size of the RNA/protein set, b is the log hazard ratio for RNA/protein i, and expression is a given tumor’s RNA or pro-

tein expression for that gene. Survival expression signatures were defined using the APOLLO cohort to establish training perfor-

mance and subsequently tested against the CPTAC cohort. The majority of survival signature genes/proteins from the APOLLO

cohort were also available in the CPTAC cohort.

Phosphoprotein and kinase enrichment analysis
For phosphoproteomic analyses, we combined phosphosite data quantified by phospho MS and RPPA, requiring phosphosite mea-

surements in 50% of samples, imputing missing values with k-nearest neighbors (K = 10), and excluding MS peptides/RPPA anti-

bodies mapping to multiple parent proteins, to make an integrated phosphoproteomic dataset. We derived kinase-substrate (i.e.

phosphosite) links from PhosphoSitePlus,58 retaining kinases with at least three measured substrates in our phosphorylation

data. We used three methods to infer active kinases from target phosphorylation site data:

1. Kinase-substrate regression: We built a Ridge regression model for each patient that inferred kinase activities from phospho-

site abundance measurements according to:
argmin
bi

pi � Xbi
2
2 + lbi

2
2

where pi are median centered phosphosite abundances for patient i (i.e. pi = po –median(p)),X is a binary matrix of kinase-phosphosite

links (xi = 1 if a link exists, 0 otherwise), and bi are kinase regression coefficients. For all regressions, we set the L2 regularization param-

eter l to a fixed value of 0.1. Following fitting, we computed a score for each kinase against each patient as the sign of the kinase regres-

sion coefficient multiplied by the negative base 10 logarithm of the coefficient p value (i.e. score = -sign(bik) x log10(p value)). To infer

differential kinase activities between groups of samples (e.g. by expression subtypes), we compared kinase scores between a target

group of interest against scores from remaining samples not in this group using t-statistics.

2. Kinase-substrate enrichment analysis (KSEA): For this method, we performed differential phosphosite expression analysis be-

tween groups of samples (e.g. by expression subtypes) using t-statistics and ranked these results in descending order accord-

ing to: score = -sign(bik) x log10(p value). We then ran 100,000 permutations of pre-ranked GSEA (version 4.0.3)106 with these

values against PhosphoSitePlus kinase-phosphosite links.We retained p values and associated normalized enrichment scores

for kinases up-regulated and down-regulated in the sample groups according to the ranked phosphosite data.

3. Hypergeometric test (HGT) kinase enrichment: With this method, we computed differential phosphosite expression (as in (2)

above) and performed hypergeometric tests of up-regulated (regression coefficient >0 and FDR <0.25) and down-regulated

(regression coefficient <0 and FDR <0.25) kinase targets against backgrounds of all tested phosphosites. From this analysis

we retainedHGT enrichment p values and foreground enrichment levels, the latter values signed as positive if the p value for the

up-regulated phosphosite set was less than the p value for the down-regulated set and negative otherwise.

We then combined enrichment p values from these three methods using Fisher’s method and called significant kinases as those

with Benjamini-Hochberg FDR-corrected Fisher p values < 0.01 and whose effect size estimates among the three inferencemethods

all possessed the same sign.

Transcription factor enrichment analysis
We inferred transcriptional regulator activities from cis transcription factor (TF) motif matches near differentially regulated RNA tran-

scripts. To better isolate transcription factor-specific effects on gene expression, we regressed out the influences of somatic copy

number alterations and recurrent somatic mutations from patient expression data (i.e. using the residuals from somatic QTL ana-

lyses). We obtained TF motif position frequency matrices (PFMs) from JASPAR56 (2020 database, non-redundant vertebrate set,

http://jaspar.genereg.net/downloads/) and ENCODE53 (http://compbio.mit.edu/encode-motifs/) and used TAMO84 to process and

store this data.

We used TCGA LUADATAC-seq data to define active regulatory regions31 within�50/+10 kb of expressed gene transcription start

sites and identified motif matches within these. For each motif, we scanned each region and computed a normalized log likelihood

ratio (LLR) score as LLRnorm = (LLR – LLRmin)/(LLRmax – LLRmin) for every k-base-pair sub-sequence, where k is the length of themotif,

and a motif match was called if LLRnormwas greater than or equal to the TFM-Pvalue113 computed score threshold corresponding to

a match p value < 1 3 10�6 for that motif against the human genome. We retained the best scoring motif match for each motif from

each region.

To identify TF motif to gene links, we computed a distance-weighted affinity score for each motif against each gene as:

MAm;g =
Xn

i = 1

LLRnorm�m;g;i � e�dm;g;i=Do
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where LLRnorm-m,g,i is the motif match score for motif m against gene g from cis regulatory region i, dm,g,i is the absolute distance in

basepairs from the midpoint of the motif match location to the TSS of gene g, and Do is the exponential distance constant (set to

10,000 bases for all motifs). We then created a binary motif-gene match matrix (XTF) by setting MA scores greater than or equal

to 0.5 to 1 for that motif-gene link (0 otherwise). Motifs with links to fewer than 10 genes were removed from the final matrix.

We implemented two approaches for finding significant TF enrichments based on discovered motif-gene links and the alteration-

adjusted expression data:

1. Motif regression:We used a linear regression framework to infer TF activities for each TF motif in each tumor sample (similar in

principle to114). As TF motifs can show high levels of similarity (i.e. collinearity), we created univariate ordinary least squares

(OLS) regression models for each TF motif separately. Patient-specific gene expression values were taken as robust Z score

values (median centered and median absolute deviation scaled) against the full sample set. Patient TF motif scores were then

taken as the sign of the OLS regression coefficient multiplied by the negative log10 p value.

2. TFSEA: For this method, we performed differential ANOVA stabilized and alteration-adjusted (i.e. somatic mutations and copy

alterations) gene expression data between groups of samples using t-statistics and ranked these results in descending order

according to: score = -sign(bim) x log10(p value). We then ran 10,000 permutations of pre-ranked GSEA (version 4.0.3)57 with

these values against the motif-gene links stored in XTF and retained p values and associated normalized enrichment scores for

TF motifs up-regulated and down-regulated in the sample groups according to the ranked expression data.

We then combined enrichment p values from these two methods using Fisher’s method. As the TF motifs can be highly similar (i.e.

non-independent), we considered significant TF motif enrichments as those possessing a raw Fisher p value < 13 10�4 and an ab-

solute motif regression coefficient greater than 0.75.

We report JASPAR motif enrichments for the main results; the ENCODE motif enrichments generally revealed similar overall motif

type/group results, confirming the findings based on JASPAR motifs. For downstream analyses, we mapped enriched motifs to TF

proteins. To do this we first took direct proteinmappings reported by JASPAR. Next, we examined JASPARmotif clustering results to

identify highly similar motifs and additionally used these protein mappings. Finally, we interrogated the human transcription factors

database115 (http://humantfs.ccbr.utoronto.ca/) to identify inferred TFmappings of thesemotifs based on amino acid similarity >75%

to human and mouse proteins.

Integrative network modeling
We built network models integrating the wide array of omic data collected in this study, including enriched protein kinases, transcrip-

tion factors, mutated/altered genes, phosphorylation sites, global proteins, and pathways. We focused these efforts on modeling

data associated with samples assigned to expression subtypes (i.e. proximal inflammatory, proximal proliferative, and terminal res-

piratory unit subtypes).

Interactome building: We created a combined interactome from which network models were generated, integrating kinase-phos-

phosite links from PhosphoSitePlus,58 MSigDB Hallmark protein-pathway associations (version 7.0)102, and protein-protein interac-

tions from the Reactome functional interactions (ReactomeFI) database59 (version 071,718 from https://reactome.org/

download-data). All reported interactions from PhosphoSitePlus and MSigDB Hallmark sets were used. In addition, we manually

included a kinase-substrate link from STK11 to T172 of PRKAA2 based on established evidence.116,117 For ReactomeFI interactions,

we updated gene symbols to valid HGNC identifiers (as of May 24, 2019) and excluded interactions annotated as ‘‘predicted,’’ in-

teractions annotated as expression regulation without further annotation as activation, catalysis, or complex, and all interactions

with ubiquitin (UBC gene symbol).

We used the NetworkX Python package to create and store this interactome as a directed graph object.75 Kinase-phosphosite

interactions were included as directed edges from kinases to substrates, protein-pathway links were encoded as directed edges

from proteins to pathways, and protein-protein interactions were included according to ReactomeFI annotations, e.g. ‘‘-’’ edges

were encoded as undirected edges between species, ‘‘/’’ edges were included as directed activation edges from protein A to pro-

tein B, ‘‘-|’’ edges were included as directed inhibitory edges from protein A to protein B, etc.

Networkmodel creation: We extracted omic data species associated with subtype groups (e.g. enriched kinases, differential phos-

phosites, etc.) and labeled these data nodes as ‘‘terminals.’’ We built network models around these terminal sets by extracting short

paths between specific data types, linking upstream enriched kinase and significantly altered protein nodes to downstream active

transcription factors and enriched pathways (similar in principle to the KiPNA method described in Brubaker and Paulo et al.,118

but extended here).

Beginning with enriched kinases, we identified links between these and differential phosphosites; when found, we created an auto-

matic kinase / phosphosite / parent protein path. From the parent protein, we extracted simple short paths targeting enriched

transcription factors using the NetworkX all_simple_paths function with cutoff = 2. These short paths were included in the output

network model if all nodes along the path were part of the terminal set, with the exception of parent proteins of enriched phospho-

sites. To include nodes associated with enriched somatic alterations (if not already included), we identified simple paths between

these proteins and enriched kinases and/or transcription factors (cutoff = 3 in NetworkX function). Again, we required all nodes iden-

tified along such candidate paths to be part of the initial terminal set for inclusion in the final network. Lastly, we interrogated the
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terminal set nodes for links to enriched pathways and included these when found. We then scanned the current network model pro-

teins for additional enriched phosphosites in the terminal setmapping to these proteins and included these in the final networkmodel.

Network clustering and visualization: We visualized networks in Cytoscape.64 To simplify interpretation, we applied the GLay

Girvan-Newman community clustering procedure119 to the networks, retaining inter-cluster edges (as implemented in the cluster-

Maker Cytoscape plugin - http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.shtml). From these clustered models, we

selected subnetworks around specific enriched kinases, transcription factors, and pathways for final visualization and presentation.

All p values are from two-sided tests calculated with R, except where indicated.
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