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Tissue-specific transcriptome profiles identify functional
differences key to understanding whole plant response

to life in variable salinity
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ABSTRACT

Plants endure environmental stressors via adaptation and phenotypic
plasticity. Studying these mechanisms in seagrasses is extremely
relevant as they are important primary producers and functionally
significant carbon sinks. These mechanisms are not well understood at
the tissue level in seagrasses. Using RNA-seq, we generated
transcriptome sequences from tissue of leaf, basal leaf meristem and
root organs of Posidonia australis, establishing baseline in situ
transcriptomic profiles for tissues across a salinity gradient. Samples
were collected from four P. australis meadows growing in Shark Bay,
Western Australia. Analysis of gene expression showed significant
differences between tissue types, with more variation among leaves
than meristem or roots. Gene ontology enrichment analysis showed the
differences were largely due to the role of photosynthesis, plant growth
and nutrient absorption in leaf, meristem and root organs, respectively.
Differential gene expression of leaf and meristem showed upregulation
of salinity regulation processes in higher salinity meadows. Our study
highlights the importance of considering leaf meristem tissue when
evaluating whole-plant responses to environmental change.

This article has an associated First Person interview with the first author
of the paper.
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INTRODUCTION

The primary mechanisms that allow species to shift their phenotype
in response to changing environments are adaptation and
phenotypic plasticity (Hoffmann and Sgro, 2011; Williams et al.,
2008). Adaptation is the progressive genetic change in populations
resulting from natural selection (Bijlsma and Loeschcke, 2005).
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Phenotypic plasticity is the ability of a given genotype to result in a
variety of different phenotypes and can be adaptive if sufficient
capacity for this variety of phenotypes conveys improved fitness
(Fox et al., 2019). Adaptation via plasticity can also occur through a
number of mechanisms, including gene expression, epigenetics,
alternative splicing and hormonal activity (Fox et al., 2019). A
better understanding of the capacity of a species to respond to
environmental variability through genetic adaptation or phenotypic
plasticity is therefore of fundamental interest to conservation
management, specifically for species at particular risk of decline
due to climate change (Abelson et al., 2020; Pazzaglia et al., 2021).

Seagrasses are naturally exposed to fluctuations in biotic and
abiotic stressors, such as herbivory, temperature and salinity
(McDonald et al., 2016; Marin-Guirao et al., 2017; Berger et al.,
2020; Heck et al., 2021). Seagrass growth, photosynthesis and
nutrient allocation are among the most important processes
commonly affected by these stressors (Touchette, 2007; Bell
et al., 2019; Kendrick et al., 2019; Ontoria et al., 2019, 2020).
How seagrasses respond to these stressors is complex and not well
understood. Photosynthesis (and therefore growth) is negatively
impacted under elevated temperatures, though its relationship with
elevated salinity, especially in tandem with elevated temperatures, is
dependent upon the plasticity or local adaptation of a given seagrass
population (Malandrakis et al., 2017; Lv et al., 2018; Nguyen et al.,
2021).This is demonstrated with increased nitrate assimilation in a
northern hemisphere seagrass, Zostera marina (Lv et al., 2018). The
combination of elevated salinity and temperature has shown a
buffering effect of salinity on photosynthetic yield in at least one
species of seagrass, Halophila ovalis (Ontoria et al., 2020).

The magnitude and composition of changes in seagrass gene
expression will likely be tissue-dependent due to the specialisation of
the different tissue types (e.g. Entrambasaguas et al., 2017). The root
provides plants with a stable anchor, absorb water and nutrients and
can exclude excess salt in halophytes (Flowers and Colmer, 2008;
Hodge et al., 2009). Leaves harvest light and carbon dioxide (CO,) to
produce sugar and oxygen (Barton, 2010). Gas exchange is controlled
by a porous cuticle with a lacunae network, as seagrasses do not have
stomata (Hemminga and Duarte, 2000). No stomatal genes have been
found across two seagrass lineages: Zosteraceae (Zostera marina,
Zostera muelleri) and Hydrocharitaceae (Halophila ovalis) (Golicz
et al., 2015; Olsen et al., 2016; Lee et al., 2018).

Seagrass transcriptomic data, to date, has been predominately
collected from mature leaves, despite reports that the leaf age can
directly influence transcriptomic activity (Ruocco et al., 2019).
Leaf sampling based on length and age may therefore result in
unintended comparisons of leaves of different ages. Alternative or
additional organ types may instead give more comparable snapshots
of gene expression profiles across populations and environmental
gradients (Pernice et al., 2016; Lin et al., 2018). Multiple seagrass
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tissues have been investigated via differential gene expression
(Kakinuma et al., 2012; Greco et al., 2012; Schliep et al., 2015;
Pernice et al., 2016; Shivaraj et al., 2017; Entrambasaguas et al.,
2017; Gamain et al., 2018; Lin et al., 2018; Ruocco et al., 2020;
Pazzaglia et al,, 2022), with four specifically analysing leaf
meristems (Greco et al., 2012; Shivaraj et al., 2017; Ruocco et al.,
2020; Pazzaglia et al., 2022). The crosstalk between organs that
govern plant-wide responses to stimuli, such as leaf meristem, is
poorly understood in seagrasses (Davey et al.,, 2016), and is
therefore of particular interest for species that grow in extreme
habitats, such as Shark Bay in Western Australia.

Shark Bay is a UNESCO World Heritage Site in Western
Australia that offers a unique opportunity to study seagrasses under
a range of environmental conditions. The range of environmental
conditions are due to its location, spanning temperate and tropical
zones and a horizontal salinity gradient varying from oceanic
seawater at 35 practical salinity units (PSU) to >62 PSU (Walker
et al., 1988). Large temperate seagrasses are the dominant primary
producers and ecosystem engineers responsible for sediment
stabilisation, reducing water turbidity and nutrient sequestration as
well as providing rich breeding and feeding grounds for many other
species (Walker et al., 1988). Seagrasses within this area experience
a wide range of natural environmental conditions (Walker et al.,
1988; Cambridge et al., 2017), including extreme climate events
(Fraser et al., 2014), posing serious ecological and management
issues. Posidonia australis has persisted and shown recovery
through these unfavourable conditions at a faster rate than the most
dominant seagrass, Amphibolis antarctica (Kendrick et al., 2019).
Therefore, understanding the natural variability in gene expression
across tissue types and environments most impacted by extreme
events is crucial to understanding how this temperate seagrass can
respond to natural and anthropogenically-driven environmental
change.

We examined gene expression profiles in P. australis from four
natural meadows, two each of higher and lower salinity sites within
Shark Bay (Fig. 1). Gene expression data were generated for tissue
samples from leaf, meristem and root organs to capture key
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processes for survival in the metahaline environment, which
was most impacted by a marine heatwave (Strydom et al., 2020).
We addressed the following questions: (1) how differentiated are
gene expression profiles between tissues? (2) Are the functional
differences in gene expression dependent upon tissue type? and
(3) How do gene expression profiles within tissues vary between
samples from different salinities?

Our transcriptome dataset describes P. australis growing within
its natural range across a salinity gradient and will provide a resource
for possible stress events in the future. These data provide a new
comparative genomic resource for understanding marine plant
responses in the naturally variable environment of Shark Bay.

RESULTS

Transcriptome sequencing and assembly

Extracted RNA was sequenced at a depth of 20 million reads,
resulting in a total of 1,551,303,078 raw 150 bp paired-end reads
across all samples (Table S1). FastQC analysis showed that all
samples contained mean Phred scores >30 (Table S1), indicating
these were high quality reads with no need for trimming and
filtering due to redundancy in downstream programs. On average,
85.8% of reads for each sample were mapped to the unpublished P.
australis genome (Table S1), resulting in 81,886 non-redundant
transcripts with a mean length of 2113 bp. Briefly the assembly
statistics of the P. australis genome used in this study contained a
total size of 1215 Mbp, N50 score of 9415 and 258,843 contigs
longer than 1kbp (Philipp Bayer and others, unpublished data).

Differential gene expression

Gene expression profiles of P. australis leaf, meristem and root tissue
from four sites were distinct, with organ types clustering separately
(Fig. 2A,B). Both meristem and roots showed distinct separation from
leaf tissue along PC1, while meristem and leaf were more distinct
from root tissues along PC2 (Fig. 2A). The models were shown to be
a good fit for the data, with no significantly anomalous samples for
any tissue found from an outlier investigation (Figs S1-S3).
Transcript count values from all samples were deemed accurate and

Fig. 1. Location of four sampled P. australis
meadows in Shark Bay, Western Australia. The
two northern sites (Middle Bluff and Herald Bight)
are lower in salinity than the southern sites
(Fowlers Camp and Dubaut Point). Approximate
salinity ranges in practical salinity units (PSU) are
reproduced from Walker (1985).
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Fig. 2. Gene expression variance among leaf,
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retained within the dataset. There was more variation among leaf
samples, particularly in the north-western samples, than among
meristem and root samples (Fig. 2A,B). The north-western root
sample was distinct among root samples, as shown from the heatmap
and associated dendrogram clustering (Fig. 2B). Variation among leaf
samples from northern, lower salinity sites was higher than the
southern, higher salinity sites, regardless of gulf (east or west).
Meristem and root samples each clustered tightly along PC1 and PC2,
regardless of gulf or salinity (Fig. 2A).

Functional differences among tissue types
There was a low number of shared transcripts among organ tissue
comparisons indicating that the majority of transcripts were unique
to tissue type (Fig. 3A).

Only 1573 transcripts were shared among both groups of leaf
transcripts for leaf versus meristem (3134 transcripts) and root
versus leaf comparisons (5061 transcripts) (Table 1). Similarly, 349

and 978 transcripts were found shared among root and meristem
comparisons, respectively.

Leaf tissues showed a significant enrichment in processes that
regulate photosynthetic development and respiration, while also
exhibiting processes involved in nutrient assimilation, biosynthesis,
gene expression and gene ontology (GO) terms involved in the
protection from reactive oxygen species and stressors. GO terms
related to core seagrass leaf processes were found commonly
significantly enriched (P<0.05) in leaves. These processes include
photosynthesis (psbS), photosystem II assembly (psbO), nitrate
assimilation, vitamin E biosynthetic process (HPT, HGGT, ubiA,
HST, FOLK), response to oxygen levels and circadian regulation of
gene expression (Figs S4, S5, S6; Tables S2, S3). Leaves were
uniquely significantly enriched relative to root tissues, for terms
such as amylopectin biosynthetic process, carotenoid biosynthetic
process (HST), hydrocarbon catabolic process, negative regulation
of signalling, posttranscriptional gene silencing, response to

3
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Fig. 3. Venn diagram of common differentially expressed genes
between tissues and salinities. Venn diagram of all significantly
differentially expressed transcripts (q<0.05, LFC>|2|), found between (A) all
organ type comparisons (meristem versus root, meristem versus leaf and
leaf versus root), and (B) further separated by upregulated and
downregulated transcripts between northern and southern meristem and leaf
tissues (Upregulated meristem south versus north, downregulated meristem
south versus north, upregulated leaf south versus north and downregulated
leaf south versus north).

abscisic acid (FOLK, DELLA), sulphate transport, zinc ion
transport and response to high light intensity (psbS, psbO, FADG,
desA, ribD) (Figs S4, S5, S6; Tables S2, S3). Leaf samples with
respect to meristems were significantly enriched for terms such as
aerobic respiration, negative regulation of abscisic acid-activated
signalling pathway, reductive pentose-phosphate cycle, selenium
compound metabolic process (PAPSS, sufS), response to carbon
dioxide, iron ion transport, response to iron ion and sequestering of
iron ion (Figs S5, S6; Table S3). Terms such as regulation of
stomatal movement, terpenoid catabolic process and stomatal
movement (PHOT) were also found significantly enriched in
leaves (Figs S4, S5, S6; Tables S2, S3).

Meristems were largely enriched in processes relating to plant
development, such as leaf initiation and growth regulation. Meristems
also showed enrichment in photosynthetic processes, terms related to

Table 1. Differential gene expression comparison by transcript numbers

stress and defence processes, as well as gene expression and
regulation in either leaf or root. Significantly enriched GO terms
found in meristems include microtubule depolymerisation, response
to blue light (AOC), response to carbon dioxide (SUS) and sterol
metabolic process (Figs S6, S7, S8; Tables S4, S5). GO terms
uniquely significantly enriched with respect to the leaf tissue were
axis specification, meristem maintenance, mitotic cell cycle, plant
organ development, response to far-red light (AOC), sister chromatid
segregation, spliceosomal snRNP assembly, cell morphogenesis, cell
division and developmental growth involved in morphogenesis
(Figs S6, S8; Table S5). GO terms instead uniquely significantly
enriched with respect to the root were amylopectin biosynthetic
process, cell fate specification, cortical microtubule organisation, leaf
development, maintenance of DNA methylation, epigenetic
regulation of gene expression, sulphate assimilation (PAPSS, cysC)
and xylem development (Figs S6, S7; Table S4). Notably, the GO
term, response to ethylene (DELLA, dapA, SQLE, ERG1, AOC),
was also enriched in basal leaf meristems (Fig. S6; Table S5).

Root tissues were significantly enriched in processes regulating
root growth and basic root functions. Root tissue transcripts were
upregulated for GO terms involved in root growth in phosphate
limited environments. The significantly enriched GO terms found
commonly in root tissues were ammonium transport, phosphate ion
transport (ERD6, ESL1, TM9SF2_4, XPR1, PHO1, PHOS84,
SLC2A13, ITR, SLC15A3_4, PHT, STP, SLC45A1_2_4), protein
neddylation, response to gravity and transmembrane receptor
protein serine/threonine kinase signalling pathway (Figs S6,
S9, S10; Tables S6, S7). The uniquely significantly enriched
terms were amine transport, callose deposition in phloem sieve
plate, cellular response to hypoxia, cellular response to nutrient
levels, positive gravitropism, response to water deprivation and
shoot axis formation (Fig. S9; Table S6). Uniquely significantly
enriched GO terms with respect to meristem were brassinosteroid
biosynthetic process, cellular response to reactive nitrogen species,
cinnamic acid biosynthetic process, citrate transport, lateral root
formation, L-arabinose metabolic process, response to potassium
ion and proximal/distal pattern formation (Fig. S10; Table S7).

Functional differences at higher and lower salinities
The low number of shared transcripts between tissues at each
salinity is consistent with the majority of transcripts being unique to
tissue type. Only 41 transcripts were found commonly upregulated
in leaves and meristems of higher salinity sites, and 64 transcripts
were similarly upregulated in lower salinity sites (Fig. 3B).
Meristems and leaves clustered independently, although leaves
showed a wider spread along PC1 (Fig. 4A). Samples from the
north-west were the most variable for leaf and meristems (Fig. 4A,
B). All pathways involved in salinity comparisons are provided in
Table 2.

There were no significantly enriched GO terms in common
between leaf and meristem tissues from plants growing in higher

Comparison No. transcripts upregulated (q<0.05, LFC>|2|) No. transcripts downregulated (q<0.05, LFC >|2|)
Leaf versus meristem 3134 4829

Root versus leaf 2674 5061

Root versus meristem 928 3436

Leaf: higher versus lower salinity 637 1978

Meristem: higher versus lower salinity 354 312

The number of up- and down-regulated, significantly differentially expressed transcripts between organ types (leaf, meristem, root) and higher and lower salinities.
Here, “q” and “LFC” denote the set g-value and log fold change cut off values used.
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Fig. 4. Gene expression variance of leaf and
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salinity. However, terms such as cellular response to phosphate
starvation (PLD1_2, ATP13A1, SPF1), cellular response to sucrose
starvation, regulation of transcription from RNA polymerase II
promoter in response to stress (INO80, INOC1) were enriched in
leaf tissues (Figs S11, S12; Table S8). Pathway analysis showed
transcripts from leaves in higher salinity most affect pathways
involved in starch and sucrose metabolism, mRNA surveillance
pathway, Fanconi anaemia pathway and cell cycle (Table 2).
Meristem tissues were enriched in terms related to salinity stress and
the gamma-aminobutyric acid (GABA) shunt. These terms include
cellular response to salt stress (CDC2L, SPOP), defence response by
callose deposition (EXOC7, EXO70), gamma-aminobutyric acid
metabolic process (POP2), megasporogenesis (HORMAD, HOP1)
and positive regulation of abscisic-acid-activated signalling
pathway (PLD1_2) (Figs S11, S14; Table S10). The term induced
systemic resistance, ethylene mediated (E3.2.1.21) in leaf tissues as
well as regulation of stomatal closure (PLD1_2) in meristem
tissues were also significantly enriched (Figs S11, S12, Sl14;
Tables S8, S10). Pathways most affected contained all those found
in leaves from higher salinities with the addition of thermogenesis,
spliceosome, ribosome and nucleocytoplasmic transport pathways.
These additional pathways may indicate that meristem tissue is more
broadly affected by higher salinity than leaf tissues (Table 2).
There were no shared GO terms significantly enriched between
both leaf and meristem tissues from plants growing in lower
salinity. GO terms such as cellular response to osmotic stress,
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— East
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I 5 .Leaf

Meristem

defence response by callose deposition (RBOH), response to
hypoxia (MYBP) and response to sucrose (MYBP) were
significantly enriched in leaf tissues (Figs S11, S13; Table S9).
The breadth of pathways most affected reflects this broadening
of enriched functional categories, with starch and sucrose
metabolism, phenylpropanoid biosynthesis, amino acid and
nucleotide sugar metabolism, purine metabolism and flavonoid
biosynthesis pathways containing >6 unique KEGG IDs (Table 2).
However, cell cycle and mRNA surveillance were no longer
affected. Hyperosmotic salinity response (E1.11.1.7), respiratory
burst involved in defence response (RBOH) and response to
continuous far red-light stimulus by the high irradiance response
system and regulation of stomatal movement (RBOH) were found
significantly enriched in meristem tissues (Figs S11, S15;
Table S11). In leaves, most pathways affected in higher salinity
were also found in lower salinity. However, in meristems, none of
the pathways most affected in higher salinity were found in lower
salinity, as instead nitrogen metabolism, purine metabolism, MAPK
signalling — plant, and plant—pathogen interaction were most
affected here. These pathways were also all seen in leaves from
lower salinity except nitrogen metabolism (Table 2).

DISCUSSION

Our comparative, transcriptomic assessment from four Posidonia
australis meadows in Shark Bay showed significant differential
expression among leaf, meristem and root tissue. GO enrichment

5
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Table 2. Pathways most affected between higher and lower salinity

Tissue Pathways most affected in higher salinity (No. of unique transcripts ~ Pathways most affected in lower salinity (No. of unique transcripts
comparison identified) identified)
Leaf tissue Cell cycle (7) Starch and sucrose metabolism (10)

mRNA surveillance pathway (5)
Fanconi anemia pathway (4)
Starch and sucrose metabolism (4)

Meristem tissue Spliceosome (8)

Fanconi anemia pathway (6)
Nucleocytoplasmic transport (5)
mRNA surveillance pathway (5)
Ribosome (4)

Cell cycle (4)

Thermogenesis (4)

Phenylpropanoid biosynthesis (8)

Amino acid and nucleotide sugar metabolism (6)
Purine metabolism (6)

Flavonoid biosynthesis (6)
Glycerophospholipid metabolism (5)

Cutin, suberin and wax biosynthesis (5)
RNA degradation (5)

Fanconi anemia pathway (5)

Glycerolipid metabolism (5)

MAPK signalling pathway — plant (5)
Homologous recombination (4)

Nicotinate and nicotinamide metabolism (4)
Inositol phosphate metabolism (4)

Nitrogen metabolism (4)

Purine metabolism (4)

MAPK signalling — plant (4)
Plant-pathogen interaction (4)

All most affected pathways (>4 unique KEGG IDs identified) from the higher versus lower salinity comparisons of leaf and meristem tissues. Pathways are listed in

descending ordered of number of unique transcripts identified per pathway.

and KEGG pathway analysis showed that processes central to the
role and longevity of each tissue were responsible for the
differentiation of gene expression profiles at the transcript. These
results were consistent with other organ-specific transcriptome
studies in seagrasses (Entrambasaguas et al., 2017; Ruocco et al.,
2020; Pazzaglia et al., 2022). Significant differential gene
expression occurred between higher and lower salinity sites for
leaf and meristem, with lower salinity sites showing more functional
variation.

Significantly differentiated gene expression profiles among organ
types was likely driven by organ-specific biological processes. For
example, GO terms related to photosynthetic processes were most
enriched in leaves, overall organ growth was most enriched in the
basal leaf meristem, and sediment nutrient transport is most
enriched in roots. These results support previous physiological
findings from terrestrial and aquatic plants (Hemminga and Duarte,
2000; Hodge et al., 2009; Barton, 2010). GO terms associated with
broad processes, such as growth and response to stimuli, were
commonly enriched across all organ types, while specific terms
such as ‘lateral root growth’ and ‘response to nitrate’ identified
within these broad processes were highly differentiated based on the
organ type. GO terms associated with responses to abiotic stimuli
were also ubiquitously enriched across all tissues. However, since
the seagrass samples were collected in situ and not recently
impacted by extreme or sustained anomalous environmental stress
(e.g. a marine heatwave), response to stressor stimuli terms such as
‘response to water deprivation’ in roots, likely reflects homeostatic
regulatory processes, rather than regulation in response to
stressor(s).

Leaves had the largest gene differentiation within organs. Similar
clustering of profiles by organ types, with more variation among leaf
samples than female flowers has also been observed in Posidonia
oceanica (Entrambasaguas et al., 2017). This may be due to
sampling method or small sample sizes in this study. Leaf maturity
was shown to influence gene expression in P. oceanica using RT-
gPCR (Ruocco et al., 2019), and may also explain some of the
variance reported here. This was despite our best efforts to ensure

samples of similar age were collected at the same time of day.
Sample variance could also be explained by genotypic differences,
since allelic differences may vary in gene expression (King et al.,
2018 e.g. Salo et al., 2015; Procaccini et al., 2017). However, recent
population genomic studies showed the four P. australis meadows
sampled in this study belong to a single, large clone (Edgeloe et al.,
2022). Therefore, wide variation in leaf samples may more likely be
age-related, or possibly due to epigenetic responses associated with
local environmental conditions (Richards et al., 2017).

Basal leaf meristem from P. australis captured a broader profile of
key processes for survival in variable environments, including
photosynthesis, growth, nutrient absorption and salt exclusion than
either the leaf or root. We note that while transcriptomic data may
infer activity of physiological or growth characteristics of P.
australis, we do not present here either physiological or growth data,
as this is currently the subject of further research. Instead, caution is
advised since differential mRNA expression may not correlate to
differential protein expression (Koussounadis et al., 2015). We
focussed on the broad ontogenetic suite of transcripts found here
and not strictly expression values suggests that meristems were more
comprehensive in plant-wide activities than leaf or root. Basal leaf
meristems in P. australis are protected within older leaf sheaths,
have less contamination by (leaf) epiphytes and may be less
impacted from herbivorous fish which target the leaf canopy (e.g.
Bell et al., 2019). Use of meristem tissue also avoids age-dependent
gene expression variation (Ruocco et al., 2019). Finally, basal leaf
meristems consistently returned higher RNA quantity on a weight-
by-weight basis. Therefore, we suggest that collection of the organ
producing basal leaf meristem is preferable for future research to
understand whole plant responses to changing environments in
seagrasses.

Functional differences reported among tissues also highlighted
several important pathways involved in seagrass growth and
survival in extreme environments. We note that since the
meadows were not experiencing any anomalous environmental
stress at the time of sampling, activity in these pathways were
interpreted as regular tissue function of the organs, with variation
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assumed to be homeostatic corrections in a naturally variable
environment. Our meristem functional analysis showed enrichment
of GO terms involved in both blue and far-red light. These terms
were enriched due to the presence of a transcript for allene oxide
cyclase (AOC). Seagrass mesocosm experiments conducted by
Strydom et al.,, 2017 found blue light negatively impacted
Halophila ovalis growth, possibly due to the high energy
wavelengths injuring the photosynthetic apparatus, while Ruppia
maritima and Halodule wrightii showed reduced canopy branching
under increased far-red light. There is evidence that in situ
P. oceanica had distinct transcriptomic profiles in relation to
depth, with shallow growing plants upregulating light harvesting
pigments and photoprotection mechanisms due to higher light
levels (Dattolo et al., 2014). A similar process may be occurring in
P. australis meadows in Shark Bay as they are growing in high light
intensities (Walker et al., 1988). However, it is difficult to speculate
on the action of these mechanisms based on vague GO terms and the
action of AOC in reference to this.

Root analyses identified a suite of phosphate ion transport genes
including the phosphate transporters XPR1, PHO1, PHO84 and
transmembrane 9 superfamily member 2/4, TM9SF2_4, which is
over-expressed in northern sites for both root and meristems, though
little is known of the function of TM9SF2_4 (Fig. S6). GO terms
involved in phosphorus-limited growth identified in roots reflected
the phosphorous-limitation in more southerly, higher salinity
environments within Shark Bay (Fraser et al., 2012; Fourqurean
et al.,, 2012). A likely mutualistic evolutionary relationship has
formed between sediment microbes and the seagrasses, where
microbes alleviate phosphorus starvation by breaking down
seagrass detritus to provide higher concentrations of readily
available organic phosphorus in the sediment (Fraser et al., 2012,
2018). Thus, higher concentrations of available phosphorus in
sediments correlate with lower concentrations of phosphorus
availability in higher saline water columns, as most free
phosphorus ions are bound to minerals such as apatite and not
accessible by seagrass (Paytan and McLaughlin, 2007; Fraser et al.,
2012). The heavy expression of transporter genes for phosphorus in
P. australis roots supports this hypothesis. However, we cannot state
this with confidence as statistical power was low since root samples
were pooled due to lower quantities of RNA.

Functional enrichment of reproductive processes was
unexpectedly found enriched in roots and leaves. For example,
‘microsporogenesis’ was found enriched in roots due to a SERK1
transcript. Evidently, this process is not accurately describing the
activity of the expressed SERKI here, since SERK1 activity has
been linked to the formation of lateral roots (Kwaaitaal et al., 2005).
Similarly, POP2 (also known as gamma-aminobutyrate
transaminase, GABA-T), which regulates GABA levels, can be
involved in many developmental processes (Jalil et al., 2019).
However, here it was designated as ‘pollen tube growth’ enrichment
in leaves. Evidence for this relationship has been reported
(Palanivelu et al., 2003), however, POP2 is more accurately
described by its role in leaf development (Jalil et al., 2019). This
highlights the caveat when using GO terms, as thorough exploration
is required of the transcripts used to generate the enrichment
analysis. Further, ethylene, stomatal and terpenoid related genes
have been reportedly lost from both Zosteraceae (Golicz et al., 2015;
Lee et al., 2016) and Hydrocharitaceae (Lee et al., 2018) seagrass
families. However, we find ethylene, stomatal and terpenoid related
biological processes were enriched in leaves and meristems, which
suggests conservation of these genes within the P. australis genome.
Stomatal processes are especially intriguing because seagrasses lost

their stomata as they adapted to marine life (Kuo and den Hartog,
2007). Further assessment of these upregulated fragments may show
stomatal processes and regulation were ancestral to the development
of stomata in plants, or they are mislabelled or misattributed to
general functions through erroneous computational inference of
function from large, non-species-specific databases (Wei et al.,
2020).

Gene expression profiles in P. australis were significantly
differentiated from higher and lower salinity at the transcript level
for leaf and meristem. Biological processes associated with salinity
stress responses were commonly enriched across higher salinity leaf
and meristem, although the transcripts identified here were highly
differentiated. The wide variation in transcripts among samples in
lower salinity sites may indicate a more complex interaction
between salinity and other leaf factors, such as herbivory, which is
known to be more prevalent in the northern meadows with lower
salinities (Bell et al., 2019). Leaf tissues from higher salinity sites
showed nutrient starvation in the form of sucrose and phosphate,
with sucrose and starch metabolism being the most affected
pathway. Meristems also showed highly affected sucrose and
starch pathways, in addition to enriched processes involved in the
GABA-shunt, as well as upregulation of the abscisic-acid-activated
signalling pathway. GABA-shunt activity is more commonly
associated with anoxic and hypoxic conditions, where recently
GABA-shunt induction, namely via increases in glutamate
decarboxylase, y-aminobutyrate transaminase and succinyl
semialdehyde dehydrogenase activity, has been found in wheat
leaves under salt stress (Lv et al., 2018; Che-Othman et al., 2020).
However, the POP2 (or GABA-T) gene is responsible for the main
GABA findings here in higher salinity. The presence of GABA
shunt, sucrose metabolism and amino acid processes are consistent
with higher concentrations of these amino acids and sucrose activity
were found in P. australis at higher salinities (48—54 PSU) in Shark
Bay. The demand for sucrose may be indicative of sucrose as an
osmolyte, as well as keeping up with the energy demands of
P. australis at a higher salinity. Leaves and meristems from lower
salinities were enriched with functions involved in a broader array of
biological processes than higher salinity samples largely due to the
oxidase homolog, RBOH. Additional pathway analysis supported
these GO findings, with the caveat that extrapolating findings from
GO terms where most are driven by a handful of genes can be
misleading. Caution should be taken and further research into these
findings is warranted.

This study provides novel baseline data of in situ P. australis. We
show that processes central to the role and longevity of leaf,
meristem and root at the transcript level were responsible for
significant differentiation in gene expression profiles among tissue
types. Few differential salinity tolerance regulatory processes were
identified, with the same enriched stress responses detected in
higher and lower salinity sites. These results are consistent with the
recent findings that in fact the four P. australis meadows sampled
here belong to a single plant (Edgeloe et al., 2022). Thus, our data
provide an interesting perspective on how a single plant can respond
to natural variation across the metahaline region in Shark Bay. The
low number of differentially expressed genes found between
salinities for leaf and meristem tissues is also suggestive that the
enriched stress responses to salinity in higher salinity sites is likely
not indicative of a true stress response to high salinity waters, but
rather a homeostatic response to living in higher salinity. Our work
contributes to the growing body of seagrass transcriptomic data,
which is increasingly important to understanding homeostatic and
stress-related gene expression profiles. Further, these data provide a
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good baseline for understanding salinity-related gene expression
regulation via in situ experimental manipulation, which will guide
conservation and restoration efforts under changing climates.

MATERIALS AND METHODS

Study location

Shark Bay, also known as Gathaagudu to the Traditional Owners, is at the
interface of temperate and tropical marine ecosystems, supporting high
biodiversity and many iconic marine species (Kendrick et al., 2012). It is an
inverse estuary bordered by Bernier, Dorre and Dirk Hartog islands to the
west. Shark Bay is divided into two gulfs by a ~110 km long peninsula and
has a horizontal salinity gradient from oceanic to hypersaline water (~35 —
>70 PSU; Fig. 1). The salinity gradient has been maintained since the last
sea level adjustments ~4500 years ago by the formation of P. australis and
Amphibolis antarctica seagrass-dominated sills and banks that restrict water
movement, ocean exchange and nutrient availability (Fraser et al., 2012;
Fourqurean et al., 2012; Kendrick et al., 2012). The gradient is steepest in
the eastern gulf, where the physiological limits for seagrasses occur at the
Faure Sill, the northern boundary of the hypersaline Hamelin Pool.

Plant sampling

Four established P. australis meadows were sampled within the metahaline
region (~37-45 PSU) of Shark Bay, Western Australia in August 2018:
northern sites, Herald Bight (25.62208° S 113.59095° E) and Middle Bluff
(25.82398° S 113.46401° E) with lower salinity (<40 PSU) and southern
sites, Fowlers Camp (26.10549° S 113.61285° E) and Dubaut Point
(25.85282° S 113.76023° E) with higher salinity (>40 PSU; Fig. 1). The
northern and southern sites within each gulf occurred are approximately
60 km apart with non-overlapping salinities. The seagrass meadows were
dominated by P. australis, at a maximum depth of 1-2 m, away from tidal
channels were selected at each location. Samples from each gulf were
collected over two consecutive days between 10 am and 11 am to minimise
differences in gene expression profiles due to daily plant activity cycles (de
Montaigu et al., 2015; Ruocco et al., 2021). Three rhizomes containing a
growing tip with three to four shoots each were collected on SCUBA from
the edge of each meadow at a minimum distance of 2 m between collections.
Samples were harvested in individual calico bags and transported to the
research vessel for immediate processing. Approximately 2 cm of tissue was
collected for each basal leaf meristem, central mature leaf tissue and root
tissue (from rhizome towards the growing tip). We note that the basal leaf
meristem comprised young tissue with initial and actively dividing cells
where cell differentiation and post-embryonic growth occurs (Barton,
2010). For the purpose of this paper, basal leaf meristems are represented as
an organ, although leaf, meristem or roots in reference to the study samples
denote the tissue collected and should not be considered as the entirety of
their respective organs unless otherwise stated. Samples were manually
cleaned of epiphytes, as necessary, before placing in pre-labelled 2 ml
screw-cap tubes and stored in a dry shipper prechilled with liquid nitrogen.
All samples were processed within 10 min of harvesting to limit RNA
degradation. Samples were stored at —80°C upon return to Perth, prior to
RNA extraction.

RNA extraction and library preparation

50-100 mg of plant tissue from each of the three tissues (leaf, meristem and
root) was weighed separately from each sample (#»=3) and placed into a 2 ml
screw-cap tube with six 3 mm spherical YSZ grinding media beads.
Samples were placed in prechilled (—80°C) metal tube blocks, then ground
into powder using the 2010 Geno/Grinder® (SPEX Sample Prep, Metuchen,
NJ, USA) for 1 min at 1300 rpm. RNA was then extracted using the
Spectrum™ Plant Total RNA kit from Sigma-Aldrich® (St Louis, MO,
USA) following protocol A. Samples were assessed for RNA yield via a
Qubit™ 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA) and purity via a
NanoDrop™ 1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). RNA was treated with the DNA-free™ Kit (Invitrogen™,
Carlsbad, CA, USA). RNA quality was assessed via LabChip® GX
Touch™ (Perkin and Elmer, Waltham, MA, USA) 24 nucleic acid analyser
where all samples’ RIN values scored >7. After pooling and assessing

quality, yield and purity of the root RNA, due to low individual sample
yield, samples were transferred to RNA stabilisation tubes (GenTegra®
Pleasanton, CA, USA) and sent for poly(A) selected library preparation for
mRNA sequencing by GENEWIZ® (Suzhou, China).

Transcriptome sequencing and assembly

Sequencing was carried out via Illumina® Hiseq® sequencing platform to
generate short reads 0of 2x150 bp at 30x coverage. Raw fastQ sequence reads
were initially assessed for quality via FastQC (http:/www.bioinformatics.
babraham.ac.uk/projects/fastqc/), then mapped to an unpublished
P. australis genome assembly (unpublished data, assembled by Philipp
Bayer, UWA). Mapping was done using HISAT2 v2.0.5 (http:/
daechwankimlab.github.io/hisat2/) (Kim et al., 2019) and samtools v1.9
(http:/samtools.sourceforge.net/) (Li et al., 2009). The mapped reads were
then assembled into transcripts using StringTie 2.1.1 (https:/ccb.jhu.edu/
software/stringtie/) (Pertea et al., 2015) and Gffcompare (https:/ccb.jhu.
edu/software/stringtie/gffcompare.shtml) (Pertea and Pertea, 2020) was
used to compare StringTie transcripts to known transcripts. Sample files
were prepared for DESeq2 by producing a transcript counts matrix using
prepDE.py  (http:/ccb.jhu.edu/software/stringtie/index.shtml?t=manual )
with Python 3.8 (https:/www.python.org/downloads/release/python-380/).

Differential gene expression

R v4.0.2 (https:/www.r-project.org/) was used to examine differentiation
in gene expression profiles among tissues, using variance stabilising
transformation on the transcript counts from all samples. Sample clustering
was visualised using the R package pheatmap v1.0.12 (https:/rdrr.io/cran/
pheatmap/) (Kolde, 2018) and the plotPCA function of the R package
DESeq2 v1.28.0  (https:/bioconductor.org/packages/release/bioc/html/
DESeq2.html) (Love et al., 2014) to generate clustered heatmaps and
principal component analyses, respectively.

Pairwise comparisons using differential expression analysis among tissue
types (leaf, meristem and root) and salinity (north, low salinity and south,
higher salinity sites) were explored with DESeq2. The model used for
among tissue differences was ‘~ Gulft+Location+Tissue’, to account for the
effect of sample site by gulf (west or east) and location along the salinity
gradient (north or south) and tissue type had on transcript count variation.
Differences in tissue types from different salinities were modelled using ‘~
Gulf+Group’ where the ‘Group’ field is a combination of tissue type and
sampling site location along the salinity gradient (e.g. ‘LeafNorth’). An
outlier investigation was undertaken by assessing a box plot of Cook’s
distances of all samples, as well as assessing how each model fit the data by
plotting dispersion estimates for both models using the plotDispEsts
function.

A results table was generated using the results function of DESeq?2.
Transcripts with a log, fold change of two (representing a fourfold change),
capturing the greater than absolute fold change alternate hypothesis with a
g-value <0.05, were retained. The log, fold change was then transformed
using the IfcShrink function of DESeq?2, specifying the ‘apeglm’ shrinkage
method (Zhu et al., 2019). The subsequent list of transcripts was deemed
significantly differentially expressed. Comparisons of leaf and meristem
tissues along the salinity gradient were conducted. Root samples were
excluded as root transcripts were pooled within site due to low biological
sample numbers at each location.

Functional annotation and pathway analysis

Functional differences in gene expression between tissues were examined
using GO enrichment analysis to infer important biological processes
in significantly differentially expressed transcripts. The significantly
differentially expressed transcripts were examined for open reading
frames, as predicted using Transdecoder v5.5.0 via the Galaxy web
interface  (https:/github.com/TransDecoder/TransDecoder/wiki) (Afgan
et al, 2018). Only the single best open reading frame (based on
homology over length) per transcript was kept and translated into peptide
sequences. These peptide sequences were then submitted to PANNZER2
(http:/ekhidna2.biocenter.helsinki.fi/sanspanz/) (Koskinen et al., 2015)
for GO term annotation. The R package TopGO v3.13 (Alexa and
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Rahnenfuhrer., 2016) was used to determine GO term enrichment by
comparing the PANNZER2 annotation files of differentially expressed
transcripts against the PANNZER2 annotation of the combined
transcriptome (all raw transcripts across all samples). Only significantly
enriched GO terms (P<0.05) were used to generate treemaps with the online
tool, Revigo (http:/revigo.irb.hr/) (Supek et al., 2011).

Pathway analysis was conducted for the comparisons of meristem and
leaf tissues only from higher and lower salinities using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway mapping via the
KEGG Automatic Annotation Server (https:/www.genome.jp/kegg/kaas/)
(Moriya et al., 2007). Each list of up- or downregulated significantly
differentially expressed peptide transcripts was searched using the GHOSTX
parameter and assigned a KEGG Orthology Identifier using the bi-directional
best hit from all available monocot species (Oryza sativa japonica — both
RefSeq and RAPDB versions, Aegilops tauschii, Zea mays, Phoenix
dactylifera, Musa acuminata, Dendrobium catenatum, Phalaenopsis
equestris and Asparagus officinalis). Pathways were considered to be most
affected if four or more unique transcripts were identified in a pathway.
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