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Abstract: Improving carbon efficiency and reducing carbon intensity are effective means of mitigating
climate change. Carbon emissions due to urban residential energy consumption have increased
significantly; however, there is a lack of research on urban residential carbon intensity. This paper
examines the spatiotemporal variation of carbon intensity in the residential sector during 2001–2015,
and then identifies the causes of the variation by utilizing the logarithmic mean Divisia index (LMDI)
with the help of Microsoft Excel 2016 for 620 county-level cities in 30 Chinese provinces. The results
show that high carbon intensity is mainly found in large cities, such as Beijing, Tianjin, and Shanghai.
However, these cities showed a downward trend in carbon intensity. In terms of influencing factors,
the energy consumption per capita, urban sprawl, and land demand are the three most influential
factors in determining the changes in carbon intensity. The effect of energy consumption per capita
mainly increases the carbon intensity, and its impact is higher in the municipal districts of provincial
capital cities than in other types of cities. Similarly, the urban sprawl effect also promotes increases
in carbon intensity, and a higher degree of influence appears in large cities. However, as urban
expansion plateaus, the effect of urban sprawl decreases. The land-demand effect reduces the carbon
intensity, and the degree of influence of the land-demand effect on carbon intensity is also clearly
stronger in big cities. Our findings show that lowering the energy consumption per capita and
optimizing the land-use structure are a reasonable direction of efforts, and the effects of differences
in influencing factors should be paid more attention to reduce carbon intensity.

Keywords: carbon intensity; residential sector; urban expansion; LMDI; county level

1. Introduction

Climate change has become the most significant global environmental problem [1].
There is no doubt that, with the vigorous overall development of the global economy,
carbon emissions from burning fossil fuels accelerate the process of climate warming [2–4].
According to statistics from BP in 2019, the growth rate of energy-related carbon emissions
reached a record level in 2018—2.1% since 2010. Although the growth of carbon emissions
dropped to 0.5% in 2019, the average annual growth over 2018 and 2019 was greater than its
10-year average [5]. Clearly, all governments must strive to reduce their carbon emissions.

China, as the biggest developing country in terms of land area and population, has
become the largest carbon emitter [6,7]. Consequently, it is imperative to reduce carbon
emissions and move onto a more sustainable path. With unremitting efforts, the energy
efficiency of China has been significantly improved since the reform and opening-up [8],
and China’s energy intensity decreased by 66.79% during 1980–2003 [9]. However, there is
still a long way to go in order to reach China’s emission-reduction target. The residential
sector is one of the three largest energy-consuming sectors, and therefore, low-carbon
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consumption by resident families is key in vigorously promoting the development of a
low-carbon economy [10,11]. Additionally, China has been experiencing rapid urbanization
in recent decades. According to the national statistics, the urbanization rate reached 60.60%
in 2019 from 36.22% in 2000 [12], and the rate is predicted to reach 65.5% in 2025 [13].
Large-scale rural–urban migration is a powerful factor in the increase in residential energy
consumption, and carbon emissions from such consumption in urban areas have dramati-
cally increased. Therefore, the reduction of carbon emissions from urban residential energy
consumption is key in slowing the process of climate warming.

In the context of sustainable development, there have been numerous studies quantify-
ing the effects of various influencing factors on energy consumption and carbon emissions,
such as urbanization rate [14,15], urban compactness [16], consumption level [17], eco-
nomic development level [18], energy price [19], and climate factors [20]. In fact, improving
carbon efficiency is an important way to develop a low-carbon economy and achieve
carbon-emission reduction targets [21]. Scholars have conducted many studies on carbon-
emission efficiency [22–26]. However, there is still no unique, quantified description of
carbon efficiency [27]. Broadly speaking, carbon efficiency is an indicator of financial
or other beneficial outputs gained concerning carbon emissions [28]. The ratio of gross
domestic product (GDP) to carbon emissions is also defined as carbon efficiency [29], and
is easily obtained—in this sense, carbon intensity, as a ratio of CO2 emissions to GDP,
is regarded as the reciprocal of carbon efficiency, and is commonly used to represent a
country’s energy and environmental performance [30,31].

In order to promote the green economy, significant research on energy intensity and
carbon intensity has been conducted at the national, provincial, and city levels (displayed
in Table 1). In the residential sector, several factors affecting carbon intensity have been
detected, such as the number of households [32], population [33], and consumption struc-
ture [34]. However, these studies mainly focused on the influences of socioeconomic
factors. In fact, anthropogenic activity has greatly increased as a result of human societal
development, reflected by the continuous expansion of built-up areas. The effects of urban
sprawl and land-use change on carbon emissions during such development have attracted
a great deal of attention. For example, Li et al. [35] showed that an increase in city sizes
produces a rise in CO2 emissions. Dong et al. [36] revealed that there is an inverted U-
shaped curve between land urbanization and carbon-emission intensity. However, only a
few studies were conducted to quantify the effect of urban sprawl on residential carbon
emissions and carbon intensity. As an example, Rong et al. [37] deduced that urban sprawl
drove the increase in urban residential carbon emissions according to the spatial patterns.
There was barely direct evidence showing the influence of urban sprawl on residential
carbon intensity. Therefore, it is necessary to reveal the effect of urban sprawl on changes
in carbon intensity. Decomposition models are extensively utilized in quantifying the
influences of driving factors on carbon emissions. Among them, the logarithmic mean
Divisia index (LMDI) model could completely decompose a variable into multiple factors
and eliminate the residual errors [38,39]. A significant amount of the literature employs the
LMDI method to disentangle energy consumption, carbon emissions, and energy/carbon
intensity into several socioeconomic variables [40–42]. Nevertheless, factors related to the
land-use change, such as urban sprawl, are hardly reflected in the LMDI method.
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Table 1. Representative studies related to residential carbon emissions and carbon intensity.

Author(s) Study Period Research Object Method(s) Study Scale

Greening et al., (2001) [32] 1970–1993 Carbon intensity of residential end-uses in
10 OECD countries

Adaptive weighting Divisia index
decomposition method National level

Zhang. et al., (2009) [43] 1991–2006 Energy-related CO2 emissions in China Complete decomposition method National level

Liu et al., (2015) [44] 1996–2012 Carbon intensity in China’s 12
industrial sectors LMDI National level

Cheng et al., (2018) [45] 1998–2014 Carbon intensity in China’s 30 provinces Spatial econometric model Provincial level

Liu et al., (2019) [33] 1995–2010 China’s household carbon intensity LMDI model and STIRPAT model National level

Liu et al., (2019) [34] 2002–2012 Carbon emissions of urban households
in China LMDI National level

Yuan et al., (2019) [46] 2012 Household carbon emissions in China’
30 provinces Spatial decomposition analysis Provincial level

Fan and Fang (2020) [47] 2002–2012 Residential CO2 emissions in Qinghai Structural decomposition analysis Provincial level

Tomas B. (2020) [48] 2004–2016 CO2 emissions in the residential sector
in Lithuania Index decomposition analysis National level

Meng et al., (2021) [49] 2005–2015 CO2 emission reduction in residential sectors
in China’ 286 cities

Laspeyres index decomposition
method Provincial and city levels
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Although much research has been done to mitigate climate warming, there are still
some shortcomings. Firstly, few studies have focused on carbon intensity in the residential
sector. As the second-largest emitter, the residential sector is crucial to carbon-emission
reduction. Secondly, in assessing the impact of land-use change on carbon emissions using
econometric models, the problem of endogeneity is hard to avoid. Therefore, further work
is needed to incorporate land-use change into the LMDI model. Thirdly, few studies have
paid close attention to the driving factors of carbon intensity for county-level cities, i.e.,
the effects of such factors in cities at different economic levels. Consequently, in this paper,
there are three objectives: (1) to use the complete decomposed LMDI model to identify
the effects of urban sprawl on residential carbon intensity in urban areas; (2) to compare
regional differences regarding influencing factors using decomposition analysis at the
county level; (3) to conduct a comprehensive analysis of the urban sprawl effect for cities
at different economic levels.

The rest of the paper is organized as follows: Section 2 describes the methodology
and data. The main results are presented in Section 3. Section 4 discusses the results, and
Section 5 presents some conclusions and policy suggestions.

2. Materials and Methods
2.1. Extended LMDI Model

The LMDI method is a complete index decomposition method that does not produce
a residual term and that is suitable for exploring the influencing factors of carbon inten-
sity [50]; it has been widely used in numerous studies [51,52]. In the residential sector,
income is a beneficial output for residents, so we defined the carbon intensity as the ratio
of carbon emissions to income. We decomposed the urban residential carbon intensity by
using the LMDI model to extract the main driver with the help of Microsoft Excel 2016.
Using the Kaya identity, carbon intensity can be decomposed into six factors as follows:

CI = ∑
i

Ci
Ei
· Ei

E
· E

P
· P

B
· B

A
· A

I
= ∑

i
CCi · ES · EP · PD ·URS · LD (1)

where CI is the carbon intensity in the residential sector—the smaller the value, the higher
the carbon efficiency. Ei and Ci are the energy consumption and carbon emissions for
energy type i. Energy types include electricity, natural gas, liquefied petroleum gas, coal
gas, and energy consumption for central heating. E is the total energy consumption, P is
the urban population, B is the built-up area, A is the area of city, and I is the total income.
CCi = Ci/Ei is the carbon coefficient for energy i, which remains almost unchanged over
time. ES = Ei/E is the energy structure, EP = E/P is the energy consumption per capita,
and PD = P/B is the population density in a built-up area. URS = B/A is the urban sprawl
effect, indicating the expansion of the built-up area, and LD = A/I is the land-demand
effect, reflecting the spatial concentration of urban residents’ income. The smaller the value
of LD, the higher the spatial concentration of wealth created by residents, and the lower
the land demand.

Changes in carbon intensity can be represented by the impacts of these six factors. By
reference to these studies [53–55], the decomposition of carbon intensity is as follows:

4CI = CIt − CI0 = 4CICC + 4CIES + 4CIEP + 4CIPD + 4CIURS + 4CILD (2)
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i
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0
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4CIPD = ∑
i
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t − CIi

0

ln CIi
t − ln CIi

0 ln
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)
(6)

4CIURS = ∑
i
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t − ln CIi

0 ln
(
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)
(7)

4CILD = ∑
i

CIi
t − CIi

0

ln CIi
t − ln CIi

0 ln
(

LDt

LD0

)
(8)

2.2. Data

Income is a better indicator than GDP for representing the beneficial output gained
for residents, and therefore, carbon intensity is regarded as the ratio of CO2 emissions
to income in this study. The data include CO2 emissions from urban residential energy
consumption, income, urban population, urban built-up area, types of energy consumption,
and carbon coefficients. The calculation of CO2 emissions is described by Zhao et al. [56],
who utilized nighttime light datasets to estimate the spatial and temporal variations in
urban residential CO2 emissions. Nighttime light datasets have been used as proxies
to model socioeconomic activity [57,58]. Due to limitations in statistical data, balanced
panel data for 620 county-level cities in 30 provinces (excluding Tibet, Hong Kong, and
Macao) for 2000–2015 were used in this study. The relevant data were collected from
statistical yearbooks, such as the China City Statistical Yearbooks, the China Statistical
Yearbook for Regional Economy, the China Energy Statistical Yearbook, and the provincial
statistical yearbooks.

3. Results
3.1. Temporal and Spatial Characteristics of Carbon Intensity

Increased carbon efficiency plays an important role in reducing CO2 emissions. There-
fore, it is important to analyze spatial and temporal changes in carbon intensity for carbon-
emission reduction and to explore the influencing factors of carbon intensity in the residen-
tial sector. In this section, the spatial distribution and temporal trend of carbon intensity
are analyzed for 620 county-level cities in China.

Figure 1 depicts the spatial characteristics of carbon intensity. Areas of high carbon
intensity are mainly located in Northeast China and the Beijing–Tianjin–Hebei Region. For
example, Harbin and Qiqihar in Heilongjiang Province, Shenyang in Liaoning Province,
Beijing, and Tianjin all had a carbon intensity of more than 1.2. Areas with a carbon
intensity between 0.8 and 1.2 were relatively scattered, including Hohhot, Baotou, and
Datong in the northern region, Shanghai and Nanjing in the Yangtze River Delta region,
Guangzhou, Shenzhen, and Dongguan in the Pearl River Delta region, Chengdu, and
Chongqing. Areas with a carbon intensity ranging from 0.4 to 0.8 were mainly located in
the east and northeast, and formed a small-scale agglomeration in the Yangtze River Delta.
Areas with a carbon intensity of less than 0.4 were widely distributed.

A linear regression model was used to test the temporal trends of carbon intensity
(Figure 2). The results showed that there is an obvious spatial differentiation in temporal
variation. Nine typical cities were selected to present their annual changes in carbon inten-
sity. Cities with high levels of economy, such as Beijing, Shanghai, and Guangzhou, mainly
showed a decreasing trend in carbon intensity, which indicated that their carbon efficiency
gradually improved and developed towards an energy-intensive type. In addition, cities
with a decreasing trend in carbon intensity were mainly located in the south, while cities
with an increasing trend were mainly located in the north. This is likely related to the
gradual expansion of central-heating coverage [59,60]. With this expansion, the total carbon
emissions from residential energy consumption increased somewhat [61]. A comparison of
Figures 1 and 2 shows that areas with high carbon intensity mainly showed a downward
trend in carbon intensity, while areas with low carbon intensity mainly showed an upward
trend in carbon intensity.
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Figure 1. Spatial distribution of carbon intensity during 2001–2015.

Figure 2. Spatial differentiation of temporal variations of carbon intensity.

Three periods were adopted for decomposition analysis: 2001–2005, 2005–2010, and
2010–2015. Changes in carbon intensity for the three periods are shown in Figure 3. Overall,
the national carbon intensity tended to decrease with time, and its temporal characteristics
exhibited obvious spatial differences. The carbon intensity of Beijing and Tianjin decreased
significantly from 2005 to 2010 but increased from 2010 to 2015. The carbon intensity
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of Heilongjiang had an increasing trend with time. Some cities in central and southern
China had a tendency to decrease with time. The carbon intensity of Gansu and Qinghai
fluctuated with time. The carbon intensity of Gansu increased from 2005 to 2010, then
decreased from 2005 to 2010, before increasing from 2010 to 2015. The trend in carbon
intensity in Qinghai was the reverse of that in Gansu.

Figure 3. Changes in carbon intensity for the periods 2001–2005, 2005–2010, and 2010–2015.

3.2. Decomposition of Carbon Intensity

In order to explore the influences of factors on carbon intensity in depth, the LMDI
model was used to decompose the carbon intensity for 620 county-level cities. Carbon
intensity was decomposed into six factors: carbon coefficient (CC), energy structure (ES),
energy consumption per capita (EP), population density (PD), urban sprawl (URS), and
land demand (LD). Since changes in the carbon coefficients were negligible, their effects on
carbon intensity were not considered.

3.2.1. Decomposition Analysis on the Provincial Scale

The decomposition results showed that the effects of factors on carbon intensity varied
greatly in different spatial units. For macroscopic analysis, the effects of influencing factors
on carbon intensity at the provincial level were averaged based on the decomposition
results for the county-level cities. The results are displayed in Table 2.
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Table 2. Results of the decomposition analysis of carbon intensity on the provincial scale (tCO2/(104 yuan)).

Provinces
2010–2015 2005–2010 2001–2005

∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD ∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD ∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD

Beijing 0.014 0.204 0.051 0.162 −0.642 0.060 0.201 0.420 0.154 −1.182 −0.087 0.383 0.280 1.132 −1.699
Tianjin −0.050 0.072 0.140 0.361 −0.652 0.010 0.460 −0.155 0.394 −0.961 0.118 0.629 −0.294 0.381 −0.768
Hebei −0.019 0.080 −0.022 0.057 −0.037 −0.002 0.080 0.031 0.056 −0.032 0.015 0.034 −0.003 0.052 −0.021
Shanxi −0.008 0.180 −0.037 0.082 −0.025 0.010 0.102 0.042 0.048 −0.026 0.012 0.065 0.000 0.017 −0.018

Inner Mongolia −0.021 0.177 −0.047 0.061 −0.038 0.007 0.054 0.073 0.062 −0.053 0.002 0.093 −0.025 0.037 −0.024
Liaoning 0.008 0.131 −0.027 0.065 −0.012 −0.004 0.101 0.011 0.101 −0.106 −0.012 0.188 −0.019 0.041 −0.047

Jilin −0.007 0.103 −0.006 0.033 −0.032 −0.006 0.080 −0.007 0.074 −0.046 −0.009 0.082 −0.018 0.041 −0.016
Heilongjiang −0.010 0.184 −0.017 0.032 −0.019 −0.012 0.091 0.009 0.038 −0.046 0.002 0.062 −0.025 0.042 −0.029

Shanghai −0.052 0.104 0.047 0.000 −0.210 0.177 0.037 0.312 0.231 −0.531 0.086 −0.074 −0.018 0.506 −0.618
Jiangsu −0.003 0.020 −0.001 0.045 −0.047 0.009 0.029 −0.023 0.058 −0.049 0.026 0.005 0.000 0.062 −0.035

Zhejiang 0.010 0.006 0.002 0.032 −0.029 0.031 −0.080 0.087 0.038 −0.032 0.028 0.034 −0.017 0.046 −0.020
Anhui −0.018 0.036 −0.011 0.037 −0.020 0.001 0.008 0.025 0.030 −0.024 0.022 0.026 −0.022 0.043 −0.011
Fujian 0.006 0.015 −0.014 0.046 −0.030 0.018 0.025 −0.030 0.073 −0.034 0.020 −0.016 0.020 0.043 −0.011
Jiangxi −0.002 0.021 −0.006 0.038 −0.018 0.008 −0.001 0.000 0.044 −0.017 0.021 0.037 −0.018 0.031 −0.007

Shandong −0.014 0.084 −0.020 0.071 −0.044 0.011 0.068 0.012 0.074 −0.050 −0.002 0.072 −0.032 0.075 −0.027
Henan −0.007 0.071 −0.013 0.037 −0.022 0.006 0.029 0.039 0.038 −0.019 0.000 0.024 −0.021 0.038 −0.009
Hubei −0.004 0.020 −0.014 0.036 −0.019 −0.006 0.004 0.001 0.030 −0.021 0.022 0.041 0.002 0.001 −0.010
Hunan −0.009 0.046 0.004 0.026 −0.026 0.007 −0.001 0.013 0.042 −0.029 0.016 0.028 −0.002 0.022 −0.009

Guangdong 0.004 0.027 −0.014 0.053 −0.042 0.032 −0.104 0.081 0.062 −0.055 0.012 0.036 0.000 0.081 −0.059
Guangxi 0.009 0.013 −0.013 0.038 −0.020 0.013 −0.008 0.029 0.024 −0.018 0.005 0.013 0.000 0.018 −0.008
Hainan 0.009 0.017 −0.021 0.043 −0.009 −0.001 −0.001 0.031 0.011 −0.006 0.008 −0.003 −0.007 0.021 −0.003

Chongqing −0.020 0.214 −0.201 0.447 −0.610 0.035 −0.462 0.343 0.481 −0.903 0.076 0.364 −0.643 0.856 −0.482
Sichuan 0.001 0.037 −0.014 0.061 −0.030 −0.005 −0.021 0.022 0.029 −0.028 0.032 0.030 −0.013 0.043 −0.014
Guizhou −0.028 −0.003 −0.034 0.052 −0.022 0.016 0.036 0.036 0.031 −0.015 0.003 0.044 −0.014 0.018 −0.005
Yunnan 0.000 −0.002 −0.010 0.024 −0.014 0.020 −0.020 0.037 0.038 −0.014 0.006 0.004 −0.024 0.024 −0.006
Shaanxi −0.009 0.136 −0.041 0.075 −0.047 0.002 0.037 0.013 0.063 −0.041 0.006 0.069 −0.015 0.026 −0.020
Gansu −0.003 0.051 −0.025 0.064 −0.020 −0.015 0.067 0.013 0.046 −0.014 0.015 0.002 0.003 0.021 −0.011

Qinghai −0.028 0.076 −0.008 0.054 −0.020 0.014 0.025 0.052 0.010 −0.017 −0.019 0.065 0.002 0.008 −0.006
Ningxia 0.094 −0.162 −0.035 0.124 −0.034 −0.095 0.313 0.044 0.112 −0.042 −0.014 0.103 −0.052 0.101 −0.015
Xinjiang −0.013 0.129 −0.047 0.081 −0.036 −0.001 0.029 0.016 0.088 −0.033 −0.008 0.063 0.000 0.016 −0.016
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The effect of energy structure (∆CIES) on carbon intensity fluctuated over time in most
provinces, and the change in energy structure had the least impact on carbon intensity
compared to other factors, which was similar to the results of Jiang [62]. The effects of
energy consumption per capita on carbon intensity (∆CIEP) were mainly positive in the
increase in carbon intensity, which was in accordance with the results of Han et al. [63],
and its degree of influence varied in different provinces. In some cities, such as Tianjin,
the degree of influence of energy consumption per capita on carbon intensity tended to
decrease, while in Shaanxi and Shanghai, its degree of influence exhibited the opposite
trend, with an upward tendency. The effects of population density (∆CIPD) on carbon inten-
sity presented obvious variations in provinces, and its effects fluctuated over time, mainly
contributing to the decrease in carbon intensity; these results are consistent with those
found in Song et al. [64]. The land-demand effects (∆CILD) reduced carbon intensity for
every province. The carbon intensities of Beijing, Tianjin, Chongqing, and Shanghai were
greatly affected by LD; however, they tended to decrease over time, except in Chongqing.

The urban sprawl effects (∆CIURS) were positive in stimulating the increase in carbon
intensity in all provinces, which was likely because urban sprawl would increase the per
capita carbon emissions from energy consumption [44]. The degree of impact of URS
on carbon intensity and its temporal trend varied from province to province. In some
provinces, such as Beijing, Shanghai, and Guangzhou, the degree of the positive effect
of URS on the increase in carbon intensity gradually decreased with time, mainly due to
limited urban expansion. Notably, in Shanghai, urban sprawl remained almost zero during
2010–2015. However, in provinces such as Tianjin, Hebei, Ningxia, and Hunan, there
was no significant change in the impact of URS on carbon intensity, indicating that their
built-up area kept expanding at a certain rate, and the impact on carbon intensity reached
a stable level. Some provinces, such as Shanxi, Jiangsu, Guangxi, and Hainan, possessed
an increasing influence on carbon intensity with time. Chongqing, Tianjin, Beijing, and
Ningxia were the most affected by urban sprawl. The degrees of influence of urban sprawl
were seemingly related to the level of economic development.

3.2.2. Decomposition Analysis for Different Types of Cities

• Classification according to the industrial type
There is a big gap in the industrial structure, energy structure, and energy efficiency

between traditional and newly industrial regions. We selected some typical cities for the
two industrial types displayed in Table 3, and the decomposition results during 2010–2015
are shown.

The effect of EP in traditional industrial cities was slightly higher than that in newly
industrial cities. With the aid of technical progress, traditional industrial cities have a lower
energy consumption per capita, which contributes to the slower growth of carbon intensity.
The urban sprawl effect was slightly lower than that in newly industrial cities; however, the
difference was not obvious. The effects of ES, PD, and LD were quite different between the
two industrial types. Due to structural adjustments and optimization, the carbon intensity
of newly industrial cities was obviously reduced compared with traditional industrial
cities. The PD effect reduced the carbon intensity more in newly industrial cities. High-tech
industrial zones are usually located in the suburbs, which attracted people away from
urban areas, and the population density decreased in built-up areas. In the meanwhile,
the total energy consumption and carbon emissions decreased. Furthermore, thanks to
the improvement of technological level, the carbon intensity declined in newly industrial
cities. The LD effect was bigger in newly industrial cities than that in traditional cities. The
development of high-tech zones had a positive effect on urban land-use efficiency [65],
usually with a high level of innovation and promotion of the economic development.



Int. J. Environ. Res. Public Health 2021, 18, 3929 10 of 18

Table 3. Decomposition results for different types of industrial cities during 2010–2015 (tCO2/(104 yuan)).

Factors Traditional Industrial Cities Newly Industrial Cities

Cities
Harbin, Yichun, Changchun, Siping, Shenyang,
Pingdingshan, Zhuzhou, Xiangtan, Shaoxing,

Liuzhou, Baise

Shenzhen, Guangzhou, Hangzhou, Nanjing,
Wuhan, Xi’an, Suzhou, Changsha, Chengdu,

Qiangdao, Xiamen, Wuxi, Hefei, Jinan, Ningbo

∆CIES −0.009 −0.029

∆CIEP 0.183 0.170

∆CIPD −0.013 −0.033

∆CIURS 0.130 0.200

∆CILD −0.174 −0.287

• Classification according to the administrative and economic level
The 620 county-level cities were divided into three categories: municipal districts of

provincial capital cities (Type A cities), municipal districts of prefecture-level cities, except
for Type A cities (Type B cities), and county-level cities, except for Type A and B cities (Type
C cities). The results of decomposition for the different types of cities are shown in Table 4.

The changes in ES were related to the increase in carbon intensity for the periods
2001–2005 and 2005–2010. In Type A and B cities, the degree of the effect of ES on carbon
intensity showed a downward trend, while it showed an upward trend in Type C cities.
During the period 2010–2015, the changes in ES were related to the decrease in carbon
intensity for the three types of cities. Even so, the effect of ES on carbon intensity was small
compared with those of other factors. In addition, ES had the most obvious effect on the
carbon intensity of Type A cities. There was no significant difference in the effect of ES on
carbon intensity between Type B and C cities.

Changes in EP had a positive and relatively large effect on the increase in carbon
intensity. The degree of influence of EP on carbon intensity first increased and then
decreased with time. The influence of EP on carbon intensity was greatest in Type A cities,
followed by Type B cities, and then in Type C cities.

From 2001 to 2015, the influence of PD on carbon intensity fluctuated. The degree of
the effect of PD on carbon intensity was relatively small—only slightly greater than that of
ES. PD was more influential in Type A cities than in other types of cities.

URS was the most stable factor, and there was no obvious change in the degree of
influence of URS on carbon intensity with time. Notably, the effect of URS on carbon
intensity in Type A cities was significantly greater than in Type B and C cities, indicating
that URS played a greater role in increasing carbon emissions in provincial capitals.

The LD factor showed a negative effect on the increase in carbon intensity, with the
degree of the effect first increasing and then decreasing with time. The degree of the
influence of LD on carbon intensity in Type A cities was obviously greater than in Type B
cities and was smallest in Type C cities.

In short, the factors’ effects exhibited clear temporal variation. The most influential
factors were urban sprawl, land demand, and energy consumption per capita—urban
sprawl is closely related to land-use change. In addition, the factors showed the greatest
influence in the municipal districts of provincial capital cities, mainly due to their high
carbon intensity.
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Table 4. Results of the decomposition analysis of carbon intensity for different types of cities
(tCO2/(104 yuan)).

Period Factors Type A Cities Type B Cities Type C Cities

2010–2015

∆CIES −0.0373 −0.0034 −0.0030
∆CIEP 0.3375 0.0883 0.0325
∆CIPD −0.0438 −0.0239 −0.0103
∆CIURS 0.2691 0.0711 0.0234
∆CILD −0.3734 −0.0331 −0.0068

2005–2010

∆CIES 0.0326 0.0040 0.0053
∆CIEP 0.1007 0.0335 0.0171
∆CIPD 0.0322 0.0272 0.0235
∆CIURS 0.3591 0.0734 0.0203
∆CILD −0.4555 −0.0484 −0.0091

2001–2005

∆CIES 0.0429 0.0212 0.0017
∆CIEP 0.2623 0.0640 0.0241
∆CIPD −0.1345 −0.0107 −0.0043
∆CIURS 0.3856 0.0576 0.0128
∆CILD −0.3269 −0.0267 −0.0043

• Classification according to the spatial location
There are large climatic differences between the northern and southern regions. Be-

cause the northern regions have a lower air temperature, they consume more energy for
heating in the winter. In the summer, the southern regions have a higher air temperature
and spend more energy on cooling.

As shown in Table 5, the change in carbon intensity was greater in the northern cities
than in the southern cities. There were two reasons for this result. One was that carbon
intensity in northern cities was higher than that in southern cities, and thus provided
plenty of room for the carbon intensity to decrease. The other was that the change in carbon
intensity was also larger than that in the southern cities. Another characteristic was that
the gap in the changes in carbon intensity between the northern and southern cities was
much greater in Type A cities than in Type B cities. This finding further confirmed that
changes in carbon intensity in Type A cities should be paid more attention.

Table 5. Decomposition results for the northern and southern cities during 2010–2015 (tCO2/
(104 yuan)).

Types Administrative
Level ∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD

Northern
cities

Type A cities −0.079 0.576 −0.088 0.348 −0.436
Type B cities −0.006 0.141 −0.036 0.084 −0.033

Southern
cities

Type A cities 0.007 0.080 0.004 0.184 −0.306
Type B cities −0.001 0.039 −0.013 0.059 −0.033

3.2.3. Decomposition Analysis for Capital Cities

Since the factors had the greatest impact on carbon intensity in the municipal districts
of provincial capital cities, which are energy-intensive and densely populated areas, it is
necessary to further explore the regularity and features of the influencing factors for carbon
intensity in these cities. The results of the decomposition for the municipal districts of
provincial capital cities are displayed in Table 6.
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Table 6. Results of the decomposition analysis for capital cities (tCO2/(104 yuan)).

Cities
2010–2015 2005–2010 2001–2005

∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD ∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD ∆CIES ∆CIEP ∆CIPD ∆CIURS ∆CILD

Beijing 0.014 0.204 0.051 0.162 −0.642 0.060 0.201 0.420 0.154 −1.182 −0.087 0.383 0.279 1.132 −1.699
Tianjin −0.050 0.072 0.140 0.361 −0.652 0.010 0.460 −0.155 0.394 −0.961 0.118 0.629 −0.294 0.381 −0.768

Shijiazhuang −0.153 0.508 −0.017 0.225 −0.581 −0.030 0.359 −0.085 0.292 −0.244 0.060 0.225 −0.090 0.473 −0.151
Taiyuan −0.268 2.521 −0.314 0.698 −0.389 0.247 −0.353 0.148 0.289 −0.344 0.007 0.621 0.030 0.129 −0.284
Hohhot −0.089 0.566 −0.280 0.465 −0.273 0.140 −0.052 0.448 0.136 −0.223 0.028 0.314 −0.111 0.118 −0.156

Shenyang 0.018 0.404 −0.129 0.332 −0.438 0.152 0.241 −0.350 0.764 −1.260 −0.296 2.116 −0.523 0.589 −0.577
Changchun −0.146 0.071 0.133 0.344 −0.566 0.029 0.698 −0.578 1.036 −0.571 −0.124 0.615 −0.335 0.489 −0.290

Harbin 0.110 0.747 −0.049 0.271 −0.566 −0.054 0.135 0.431 0.234 −0.716 0.031 0.094 −0.504 0.827 −0.609
Shanghai −0.052 0.104 0.047 0.000 −0.210 0.177 0.037 0.312 0.231 −0.531 0.086 −0.074 −0.018 0.506 −0.618
Nanjing −0.031 0.084 0.016 0.147 −0.374 0.060 0.281 −0.001 0.166 −0.346 0.171 −0.113 −0.443 0.769 −0.362

Hangzhou 0.012 0.014 0.221 0.104 −0.275 0.012 −0.253 0.102 0.187 −0.296 0.149 0.285 0.027 0.232 −0.235
Hefei −0.095 0.005 0.085 0.196 −0.227 −0.134 0.111 0.092 0.268 −0.297 0.186 0.058 −0.170 0.354 −0.135

Fuzhou 0.054 0.279 −0.001 0.164 −0.269 0.155 0.178 −0.193 0.311 −0.270 −0.008 0.001 −0.043 0.387 −0.073
Nanchang 0.018 0.005 −0.105 0.246 −0.190 0.036 0.048 −0.111 0.281 −0.192 0.162 0.172 −0.157 0.257 −0.100

Jinan −0.138 0.579 −0.058 0.137 −0.242 0.058 0.405 −0.350 0.385 −0.374 −0.005 0.195 0.079 0.283 −0.195
Zhengzhou −0.122 0.301 0.038 0.266 −0.475 0.139 −0.302 0.814 0.308 −0.357 −0.084 0.107 −0.441 0.583 −0.166

Wuhan −0.043 −0.034 −0.123 0.124 −0.322 −0.253 −0.095 −0.463 0.858 −0.426 0.471 0.310 0.142 0.048 −0.246
Changsha 0.002 0.066 0.153 0.132 −0.395 0.092 0.182 −0.264 0.669 −0.509 0.026 0.301 0.054 0.125 −0.191

Guangzhou 0.057 −0.022 0.123 0.189 −0.360 −0.057 −0.140 0.312 0.231 −0.470 0.042 0.292 −0.295 0.458 −0.505
Nanning 0.069 0.095 −0.010 0.160 −0.154 0.020 0.167 −0.014 0.123 −0.151 0.035 −0.067 0.073 0.163 −0.066
Haikou 0.080 0.001 −0.036 0.159 −0.055 −0.063 0.120 0.090 0.001 −0.030 0.037 −0.105 −0.074 0.160 −0.022

Chongqing −0.020 0.214 −0.201 0.447 −0.610 0.035 −0.462 0.343 0.481 −0.903 0.076 0.364 −0.643 0.856 −0.482
Chengdu 0.043 0.234 −0.116 0.329 −0.538 0.215 0.004 0.059 0.166 −0.583 0.063 −0.087 −0.155 0.682 −0.344

Xi’an −0.121 1.122 −0.292 0.584 −0.463 −0.018 0.223 −0.152 0.373 −0.432 0.004 0.493 −0.099 0.200 −0.214
Lanzhou −0.015 0.063 −0.221 0.466 −0.243 −0.193 0.677 −0.140 0.303 −0.126 0.150 −0.594 0.008 0.115 −0.122
Xining −0.125 0.279 −0.023 0.143 −0.059 0.069 −0.022 0.131 0.019 −0.046 −0.078 0.223 0.001 0.020 −0.016

Urumchi −0.015 0.629 −0.214 0.418 −0.516 −0.024 −0.127 0.024 1.036 −0.456 −0.061 0.324 0.070 0.075 −0.203
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Changes in ES had the least impact on carbon intensity. During the study period,
changes in ES first exhibited a positive effect on the increase in carbon intensity, and then
showed a negative effect in some provincial capitals, such as Tianjin, Shijiazhuang, Taiyuan,
Hohhot, Shanghai, Nanjing, Hefei, Wuhan, Chongqing, Xi’an, and Lanzhou. However, in
Beijing, Shenyang, and Fuzhou, the temporal trend of the effect of ES was the opposite.
The impacts of ES remained unchanged in Hangzhou, Nanchang, Changsha, Nanning,
Chengdu, and Urumchi, among which only Urumchi showed a constantly restraining
effect on the increase in carbon intensity.

With regard to the impact of EP, there were 12 cities with constantly positive effects
on the increase in carbon intensity. The effect of EP in Shenyang during 2001–2005 was
largest, and in Taiyuan and Xi’an during 2010–2015. In terms of the temporal variation,
there was no significant change in the impact of EP on carbon intensity in Beijing. The
impact of EP on carbon intensity in Tianjin, Nanchang, and Changsha tended to decrease,
while in Shijiazhuang, Harbin, Fuzhou, and Jinan, it tended to increase. Most cities showed
a fluctuating growth trend in the effect of EP on carbon intensity. For example, Chongqing
showed an effect of increasing carbon intensity during 2001–2005 and 2010–2015, as well
as an effect of reducing carbon intensity during 2005–2010. The degree of the effect of EP
in Hefei first increased, and then decreased. Guangzhou showed a positive effect on the
increase in carbon intensity during 2001–2005 and a negative effect during 2005–2015.

There were spatiotemporal differences in the influence of PD on carbon intensity.
The effects of PD on reducing carbon intensity during 2001–2005 were relatively greater
than the effects on increasing carbon intensity, such as in Chongqing, Shenyang, Harbin,
Nanjing, and Zhengzhou. During 2005–2010, the effects of increasing carbon intensity were
relatively greater, such as in Zhengzhou, which had the largest degree of effect, followed by
Hohhot, Harbin, and Beijing. Changchun and Wuhan exhibited relatively large effects of
reducing carbon intensity. During 2010–2015, the overwhelming majority of cities showed
a decreasing trend in the degree of influence of PD, except for Hangzhou, which showed
an increasing trend.

The effects of URS on increasing carbon intensity showed slight regional differences.
The greatest promotive effect of URS on carbon intensity was found in Beijing during
2001–2005, while during 2005–2010, the biggest URS effect was identified in Changchun
and Urumchi. There were no obvious regional differences in the positive effects of URS
on the increase in carbon intensity during 2010–2015. In terms of temporal variations,
Tianjin, Nanchang, Jinan, Changsha, Nanning, and Haikou showed stable effects of URS on
carbon intensity. The effects of URS in Taiyuan, Hohhot, Xi’an, Lanzhou, and Xining had a
steady upward trend. However, the effects of URS in most cities—Shijiazhuang, Nanjing,
Hangzhou, Hefei, Zhengzhou, and Beijing—had a steady downward trend. Shenyang,
Changchun, Harbin, and Chengdu had a fluctuating downward trend for the effect of URS.

LD had a negative effect on the increase in carbon intensity in all provincial capitals,
and the degree of the effect mainly had an increasing trend, such as in Shijiazhuang,
Taiyuan, Zhengzhou, and Xi’an. A few large cities showed a decreasing trend in the degree
of the effect of LD, such as Beijing, Shanghai, and Guangzhou. The effects of LD in Nanjing,
Hangzhou, Hefei, and Haikou were stable over time.

4. Discussion

Carbon intensity is an important indicator of carbon efficiency, and improvements
in carbon efficiency and technology play an essential role in carbon reduction [56]. In
our study, a similar conclusion was drawn regarding such improvements. Therefore, it
is crucial to increase carbon efficiency in order to reduce carbon emissions and, thus, to
mitigate global warming.

Three factors influenced carbon intensity the most: the energy consumption per capita
effect, the urban sprawl effect, and the land-demand effect.

Energy consumption per capita mainly showed an effect of increasing carbon intensity,
which could be explained by the following: Firstly, the ownership of appliances increased
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rapidly, including per-household ownership [66]—a major driving force in electricity
consumption and carbon emissions. Secondly, with improvements in living standards,
residents pursue a more comfortable life, resulting in, for example, a rise in domestic hot
water and air-conditioning use [67]. Thirdly, due to the demolition and renovation of old
residential communities, the central heating system was expanded, resulting in an increase
in energy consumption and pollutant emissions.

The urban sprawl effect, the major concern in this study, is related to changes in land
use in urban areas. With the expansion of built-up areas, various land-use types were
converted into construction land, thus changing urban morphology and making cities less
compact. In this study, the expansion of built-up areas had a significantly positive effect on
the increase in carbon intensity. Likewise, Wang et al. [68] came to a similar conclusion—
that urban sprawl is negatively correlated with carbon-emission efficiency, which is usually
the reciprocal of carbon intensity. There are several reasons for this. Firstly, dwellers reside
in a greater degree of dispersion compared with those living in a compact city, which
results in an increase in heat loss from long heating pipes [27]. Secondly, land-use change
decreases green-land cover, and carbon absorption declines [69]. In addition, many studies
have shown that urban size is positively related to carbon emissions [70,71].

The land-demand effect reduced the carbon intensity, indicating that the wealth
created by laborers per unit of land area showed an increasing trend. The land-demand
effect was related to the economic level of the city, and the degree of its effect was relatively
strong for large cities and provincial capitals. The main reason for this result was that the
economic levels and economic efficiencies of large cities are relatively high, and the added
value created per unit of input is greater, thus substantially reducing land demand.

Additionally, population density mainly showed an effect of reducing carbon intensity,
which is essentially consistent with the conclusion of Huo et al. [72]; the authors argued
that a low population density leads to a low final energy demand, resulting in a low
carbon intensity. Similarly, Song et al. [64] pointed out that population concentration
had an inhibitory effect on carbon-emission intensity in China’s Bohai Economic Rim.
In our study, the population density was related to city size. The degree of the effect of
population density on decreasing carbon intensity had a slightly enhanced trend in Type B
and Type C cities, meaning that there was a steeply decreasing trend in population density
in small-to-medium cities. For provincial capitals, the degree of impact of population
density mainly showed a weakened trend, especially in big cities, such as Beijing, Shanghai,
and Guangzhou, where the changes in population density were related to the increase
in carbon intensity. This is likely because large cities provide more jobs and have higher
welfare benefits than small cities, thus proving more attractive to people and encouraging
population inflow. Meanwhile, the expansion of built-up areas in large cities tends to be
stable, increasing the population density in those areas.

5. Conclusions

In this study, the relationship between carbon emissions and carbon intensity was
examined. We explored the causes of changes in carbon intensity using balanced panel data
from 620 county-level cities in 30 provinces (excluding Tibet, Hong Kong, and Macao) and
the LMDI model. Firstly, the spatial and temporal characteristics of carbon intensity were
identified. Secondly, we employed the LMDI model to decompose the carbon intensity
into six factors, including the carbon coefficient, energy structure, energy consumption per
capita, population density, urban sprawl, and land demand. Urban sprawl is the ratio of
the built-up area to a city’s size, which is accompanied by land-use change and reflects the
influence of human activity on land use.

The analysis showed that there was obvious spatial heterogeneity in carbon-emission
intensity and its temporal trends. Clearly, large cities, such as Beijing, Tianjin, and Shanghai,
had a relatively high carbon intensity, which, however, showed a downward trend. In
addition, many cities in southern China also showed an overall downward trend in carbon-
emission intensity. The decomposition analysis showed that the energy consumption per
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capita, urban sprawl, and land demand influenced carbon intensity the most. Energy
consumption per capita mainly had a positive effect on the increase in carbon intensity—its
degree of influence was high in the municipal districts of provincial capital cities, but
relatively low in other types of cities. The urban sprawl effect increased carbon intensity
in most cities, and the degree of its effect was significantly greater in big cities compared
with small-to-medium cities. However, as urban expansion tended to flatten out, the urban
sprawl effect decreased, especially in Shanghai. The land-demand effect exerted a negative
effect on the increase in carbon intensity, and its degree of influence was clearly strong in
big cities.

Based on these results, some policy suggestions are provided for reducing carbon
emissions and carbon intensity. Firstly, lowering the energy consumption per capita
is one of the most effective ways to reduce carbon intensity. It is essential to further
improve residents’ awareness of energy saving, guiding them to conserve energy and,
thus, reduce carbon emissions. Central heating in winter constitutes a large proportion of
urban residential energy consumption, and there is great potential for energy conservation.
However, residents rarely intentionally decrease heat input, even if it is warm enough.
Therefore, some measures should be taken. For example, the charges for central heating
should be based on both the heating area and the input flow. In addition, step pricing
can be used to regulate the consumption of household electricity. Secondly, the positive
impact of urban expansion on the increase in carbon intensity needs to be acknowledged,
especially in big cities, which should be attributed to the rapid land urbanization. For
most cities, large-scale land expansion is underway, and urban expansion will most likely
increase carbon intensity. That is to say, the land utilization efficiency should be increased
by optimizing the land-use structure for these big cities to offset the effect of urban sprawl.
Thirdly, regional differences in the effects of factors on carbon intensity must be considered
by decision-makers. The developmental speed of each city is not the same, and neither is the
developmental stage. Therefore, the effects of differences in influencing factors are relatively
large, and mitigation countermeasures according to local needs must be implemented.

Author Contributions: Conceptualization, J.Z. and Q.L.; validation, Q.L.; formal analysis, Q.L.;
methodology, J.Z.; data curation, J.Z.; writing—original draft preparation, J.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
42001220), Innovation Team of Philosophy and Social Science of Colleges and Universities in Henan
Province (No. 2021-CXTD-04), Key Scientific Research Projects of Colleges and Universities in Henan
Province (No. 21B170001), and Key Laboratory of Regional Sustainable Development Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method.

Ecol. Indic. 2018, 91, 410–422. [CrossRef]
2. Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius

and Calendar to today’s earth system models. Endeavour 2016, 40, 178–187. [CrossRef] [PubMed]
3. Li, M.; Wu, J.; Deng, X. Land-use change and soil carbon sequestration in China: Where does it pay to conserve? Reg. Environ.

Chang. 2016, 16, 2429–2441. [CrossRef]
4. Sun, C. An empirical case study about the reform of tiered pricing for household electricity in China. Appl. Energy 2015, 160,

383–389. [CrossRef]
5. Statistical Review of World Energy. 2020. Available online: https://www.bp.com/en/global/corporate/energy-economics/

statistical-review-of-world-energy.html (accessed on 20 November 2020).

http://doi.org/10.1016/j.ecolind.2018.04.016
http://doi.org/10.1016/j.endeavour.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27469427
http://doi.org/10.1007/s10113-016-0948-9
http://doi.org/10.1016/j.apenergy.2015.09.030
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html


Int. J. Environ. Res. Public Health 2021, 18, 3929 16 of 18

6. Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption
and cement production. Geophys. Res. Lett. 2011, 35, L08806. [CrossRef]

7. Zhang, C.; Su, B.; Zhou, K.; Yang, S. Decomposition analysis of China’s CO2 emissions (2000–2016) and scenario analysis of its
carbon intensity targets in 2020 and 2030. Sci. Total Environ. 2019, 668, 432–442. [CrossRef]

8. Li, Y.; Meng, F.; Liu, X. Evolution and causes for China’s energy intensity: Based on provincial panel data. Urban Probl. 2016, 253,
67–72.

9. Fan, Y.; Liu, L.; Wu, G.; Tsai, H.; Wei, Y. Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecol. Econ.
2007, 62, 683–691. [CrossRef]

10. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press:
Cambridge, MA, USA; Cambridge, UK; New York, NY, USA, 2013; Volume 43, pp. 866–871.

11. Yin, J.; Shi, S. Social interaction and the formation of residents’ low-carbon consumption behaviors: An embeddedness perspective.
Resour. Conserv. Recycl. 2021, 164, 105116. [CrossRef]

12. National Bureau of Statistics of China (NBSC). 2017. Available online: https://data.stats.gov.cn/ (accessed on 20 November
2020).

13. Chinese Academy of Social Sciences (CASS). China Rural Development Report 2020; China Social Sciences Press: Beijing, China,
2020.

14. Liddle, B.; Lung, S. Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated
population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [CrossRef]

15. Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban
agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [CrossRef]

16. Chen, H.; Jia, B.; Lau, S.S.Y. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Habitat
Int. 2008, 32, 28–40. [CrossRef]

17. Satterthwaite, D. The implications of population growth and urbanization for climate change. Environ. Urban. 2009, 21, 545–567.
[CrossRef]

18. Lu, H.L.; Liu, G.F. Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using
enhanced nocturnal lighting. Appl. Energy 2014, 131, 297–306. [CrossRef]

19. Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from
city-level data. Ecol. Indic. 2017, 73, 29–37. [CrossRef]

20. Nie, H.G.; Kemp, R.; Xu, J.H.; Vasseur, V.; Fan, Y. Drivers of urban and rural residential energy consumption in China from the
perspectives of climate and economic effects. J. Clean. Prod. 2018, 172, 2954–2963. [CrossRef]

21. McEvoy, D.; Gibbs, D.C.; Longhurst, J.W.S. Reducing residential carbon intensity: The new role for English local authorities.
Urban Stud. 2001, 38, 7–21. [CrossRef]

22. Kaya, Y.; Yokobori, K. Environment, Energy and Economy: Strategies for Sustainability; United Nations University Pres: Tokyo, Japan,
1997.

23. Zaim, O.; Taskin, F. Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach. J. Environ.
Manag. 2000, 2, 95–107. [CrossRef]

24. Lin, B.; Du, K. Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach.
Energy Econ. 2015, 49, 550–557. [CrossRef]

25. Geng, Z.; Dong, J.; Han, Y.; Zhu, Q. Energy and environment efficiency analysis based on an improved environment DEA
cross-model: Case study of complex chemical processes. Appl. Energy 2017, 205, 465–476. [CrossRef]

26. Feng, C.; Wang, M. Analysis of energy efficiency and energy savings potential in China’s provincial industrial sectors. J. Clean.
Prod. 2017, 164, 1531–1541. [CrossRef]

27. Liu, Y.; Song, Y.; Song, X. An empirical study on the relationship between urban compactness and CO2 efficiency in China. Habitat
Int. 2014, 41, 92–98. [CrossRef]

28. Tahara, K.; Sagisaka, M.; Ozawa, T.; Yamaguchi, K.; Inaba, A. Comparison of CO2 efficiency between company and industry. J.
Clean. Prod. 2005, 13, 1301–1308. [CrossRef]

29. Perkins, R.; Neumayer, E. Do recipient country characteristics affect international spillovers of CO2-efficiency via trade and
foreign direct investment? Clim. Chang. 2012, 112, 469–491. [CrossRef]

30. Su, B.; Ang, B.W. Multiplicative decomposition of aggregate carbon intensity change using input-output analysis. Energy Policy
2015, 154, 13–20. [CrossRef]

31. Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour.
Conserv. Recycl. 2018, 129, 187–201. [CrossRef]

32. Greening, L.A.; Ting, M.; Krackler, T.J. Effects of changes in residential end-uses and behavior on aggregate carbon intensity:
Comparison of 10 OECD countries for the period 1970 through 1993. Energy Econ. 2001, 23, 153–178. [CrossRef]

33. Liu, L.N.; Qu, J.S.; Zeng, J.J.; Wang, Q.H.; Wang, L. Analysis the influence factors of China’s household carbon intensity. In
Environment, Energy and Sustainable Development; Sung, W.-P., Kao, J., Chen, R., Eds.; Taylor and Francis Group: London, UK, 2014.

34. Liu, X.; Wang, X.; Song, J.; Wang, H.; Wang, S. Indirect carbon emissions of urban households in China: Patterns, determinants
and inequality. J. Clean. Prod. 2019, 241, 118335. [CrossRef]

http://doi.org/10.1029/2007GL032887
http://doi.org/10.1016/j.scitotenv.2019.02.406
http://doi.org/10.1016/j.ecolecon.2006.08.016
http://doi.org/10.1016/j.resconrec.2020.105116
https://data.stats.gov.cn/
http://doi.org/10.1007/s11111-010-0101-5
http://doi.org/10.1016/j.jclepro.2018.10.248
http://doi.org/10.1016/j.habitatint.2007.06.005
http://doi.org/10.1177/0956247809344361
http://doi.org/10.1016/j.apenergy.2014.06.036
http://doi.org/10.1016/j.ecolind.2016.09.031
http://doi.org/10.1016/j.jclepro.2017.11.117
http://doi.org/10.1080/00420980123554
http://doi.org/10.1006/jema.1999.0312
http://doi.org/10.1016/j.eneco.2015.03.028
http://doi.org/10.1016/j.apenergy.2017.07.132
http://doi.org/10.1016/j.jclepro.2017.07.081
http://doi.org/10.1016/j.habitatint.2013.07.005
http://doi.org/10.1016/j.jclepro.2005.05.006
http://doi.org/10.1007/s10584-011-0204-8
http://doi.org/10.1016/j.apenergy.2015.04.101
http://doi.org/10.1016/j.resconrec.2017.10.035
http://doi.org/10.1016/S0140-9883(00)00059-1
http://doi.org/10.1016/j.jclepro.2019.118335


Int. J. Environ. Res. Public Health 2021, 18, 3929 17 of 18

35. Li, L.; Lei, Y.; Wu, S.; He, C.; Chen, J.; Yan, D. Impacts of city size change and industrial structure change on CO2 emissions in
Chinese cities. J. Clean. Prod. 2018, 195, 831–838. [CrossRef]

36. Dong, F.; Bian, Z.; Yu, B.; Wang, Y.; Zhang, S.; Li, J.; Su, B.; Long, R. Can land urbanization help to achieve CO2 intensity reduction
target or hinder it? Evidence from China. Resour. Conserv. Recycl. 2018, 134, 206–215. [CrossRef]

37. Rong, P.; Zhang, Y.; Qin, Y. Spatial differentiation of carbon emissions from residential energy consumption: A case study in
Kaifeng, China. J Environ. Manag. 2020, 271, 110895. [CrossRef]

38. Ang, B.W. Decomposition analysis of policymaking in energy: Which is preferred method? Energy Policy 2004, 32, 1131–1139.
[CrossRef]

39. Ang, B.W.; Liu, N. Handing zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35,
238–246. [CrossRef]

40. Nie, H.; Kemp, R. Index decomposition analysis of residential energy consumption in China: 2002–2010. Appl. Energy 2014, 121,
10–19. [CrossRef]

41. Zhang, M.; Song, Y.; Li, P.; Li, H. Study on affecting factors of residential energy consumption in urban and rural Jiangsu. Renew.
Sust. Energy Rev. 2016, 53, 330–337. [CrossRef]

42. Ye, L.; Wu, X.; Huang, D. Industrial energy-related CO2 emissions and their driving factors in the Yangtze River Economic Zone
(China): An extended LMDI analysis from 2008 to 2016. Int. J. Environ. Res. Public Health 2020, 17, 5880. [CrossRef]

43. Zhang, M.; Mu, H.; Ning, Y. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773.
[CrossRef]

44. Liu, N.; Ma, Z.; Kang, J. Changes in carbon intensity in China’s industrial sector: Decomposition and attribution analysis. Energy
Policy 2015, 87, 28–38. [CrossRef]

45. Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy
Rev. 2018, 81, 2935–2946. [CrossRef]

46. Yuan, R.; Rodrigues, J.F.D.; Behrens, P. Driving forces of household carbon emissions in China: A spatial decomposition analysis.
J. Clean. Prod. 2019, 233, 932–945. [CrossRef]

47. Fan, F.; Fang, C. Insight into carbon emissions related to residential consumption in Tibetan Plateau—Case study of Qinghai.
Sustain. Cities Soc. 2020, 61, 102310. [CrossRef]

48. Tomas, B. Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A
case from Eastern Europe. Energy Policy 2020, 140, 111433.

49. Meng, F.; Chen, S.; Cheng, S.; Chen, B.; Li, Z.; Wang, F.; Liu, G. Analysis of subnational CO2 mitigation policy pressure in the
residential sector in China. J. Clean. Prod. 2021, 293, 126203. [CrossRef]

50. Fu, C.; Wang, W.; Tang, J. Exploring the sensitivity of residential energy consumption in China: Implications from a micro-
demographic analysis. Energy Res. Soc. Sci. 2014, 2, 1–11. [CrossRef]

51. Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on
LMDI method. Sci. Total Environ. 2020, 734, 138473. [CrossRef]

52. Zhang, W.; Tang, X.; Yang, G.; Zha, D. Decomposition of CO2 emission intensity in Chinese MIs through a development mode
extended LMDI method combined with a production-theoretical approach. Sci. Total Environ. 2020, 702, 134787. [CrossRef]

53. Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [CrossRef]
54. Xie, Z.; Gao, X.; Yuna, W.; Fang, J.; Jiang, Z. Decomposition and prediction of direct residential carbon emission indicators in

Guangdong Province of China. Ecol. Indic. 2020, 115, 106344.
55. Jin, T.; Choi, B. Sectoral decomposition of Korea’s energy consumption by global value chain dimensions. Sustainability 2020, 12,

8483. [CrossRef]
56. Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions

and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [CrossRef]
57. Lu, H.L.; Zhang, C.R.; Liu, G.F.; Ye, X.; Miao, C. Mapping China’s ghost cities through the combination of nighttime satellite data

and daytime satellite data. Remote Sens. 2018, 10, 1037. [CrossRef]
58. Zhao, J.; Chen, Y.; Ji, G.; Wang, Z. Residential carbon dioxide emissions at the urban scale for county-level cities in China: A

comparative study of nighttime light data. J. Clean. Prod. 2018, 180, 198–209. [CrossRef]
59. Zhou, Z.; Wang, C.; Sun, X.; Gao, F.; Feng, W.; Zillante, G. Heating energy saving potential from building envelope design and

operation optimization in residential buildings: A case study in northern China. J. Clean. Prod. 2018, 174, 413–423. [CrossRef]
60. Chang, C.; Zhu, N.; Yang, K.; Yang, F. Data and analytics for heating energy consumption of residential buildings: The case of a

severe cold climate region of China. Energy Build. 2018, 172, 104–115. [CrossRef]
61. Zhang, W.; Cui, Y.; Wang, J. How does urbanization affect CO2 emissions of central heating systems in China? An assessment of

natural gas transition policy based on nighttime light data. J. Clean. Prod. 2020, 276, 123188. [CrossRef]
62. Jiang, J. China’s urban residential carbon emission and energy efficiency policy. Energy 2016, 109, 866–875. [CrossRef]
63. Han, X.; Cao, T.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity

in China’s urbanization construction. J. Clean. Prod. 2019, 38, 117958. [CrossRef]
64. Song, M.; Wu, J.; Song, M.; Zhang, L.; Zhu, Y. Spatiotemporal regularity and spillover effects of carbon emission intensity in

China’s Bohai Economic Rim. Sci. Total Environ. 2020, 740, 140184. [CrossRef]

http://doi.org/10.1016/j.jclepro.2018.05.208
http://doi.org/10.1016/j.resconrec.2018.02.009
http://doi.org/10.1016/j.jenvman.2020.110895
http://doi.org/10.1016/S0301-4215(03)00076-4
http://doi.org/10.1016/j.enpol.2005.11.001
http://doi.org/10.1016/j.apenergy.2014.01.070
http://doi.org/10.1016/j.rser.2015.08.043
http://doi.org/10.3390/ijerph17165880
http://doi.org/10.1016/j.enpol.2008.11.025
http://doi.org/10.1016/j.enpol.2015.08.035
http://doi.org/10.1016/j.rser.2017.06.103
http://doi.org/10.1016/j.jclepro.2019.06.110
http://doi.org/10.1016/j.scs.2020.102310
http://doi.org/10.1016/j.jclepro.2021.126203
http://doi.org/10.1016/j.erss.2014.04.010
http://doi.org/10.1016/j.scitotenv.2020.138473
http://doi.org/10.1016/j.scitotenv.2019.134787
http://doi.org/10.1016/j.enpol.2015.07.007
http://doi.org/10.3390/su12208483
http://doi.org/10.1016/j.apenergy.2018.09.180
http://doi.org/10.3390/rs10071037
http://doi.org/10.1016/j.jclepro.2018.01.131
http://doi.org/10.1016/j.jclepro.2017.10.237
http://doi.org/10.1016/j.enbuild.2018.04.037
http://doi.org/10.1016/j.jclepro.2020.123188
http://doi.org/10.1016/j.energy.2016.05.060
http://doi.org/10.1016/j.jclepro.2019.117958
http://doi.org/10.1016/j.scitotenv.2020.140184


Int. J. Environ. Res. Public Health 2021, 18, 3929 18 of 18

65. Lu, X.; Chen, D.; Kuang, B.; Zhang, C.; Cheng, C. Is high-tech zone a policy trap or a growth drive? Insights from the perspective
of urban land use efficiency. Land Use Policy 2020, 95, 104583. [CrossRef]

66. Li, C.; Wei, C.; Yu, Y. Income threshold, household appliance ownership and residential energy consumption in urban China.
China Econ. Rev. 2020, 60, 101397. [CrossRef]

67. Hu, S.; Yan, D.; Cui, Y.; Guo, S. Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and
scenarios to 2030. Energy Policy 2016, 92, 158–170. [CrossRef]

68. Wang, S.; Wang, J.; Fang, C.; Li, S. Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta,
China. Cities 2019, 85, 117–129. [CrossRef]

69. Xia, C.; Chen, B. Urban land-carbon nexus based on ecological network analysis. Appl. Energy 2020, 276, 115465. [CrossRef]
70. Oliveira, E.A.; Andrade, J.S.; Makse, H.A. Large cities are less green. Sci. Rep. 2014, 4, 4235. [CrossRef]
71. Fragkias, M.; Lobo, J.; Strumsky, D.; Seto, K.C. Does size matter? Scaling of CO2 emissions and US urban areas. PLoS ONE 2013,

8, e64727. [CrossRef]
72. Huo, T.; Ma, Y.; Yu, T.; Cai, W.; Liu, B.; Ren, H. Decoupling and decomposition analysis of residential building carbon emissions

from residential income: Evidence from the provincial level in China. Environ. Impact Assess. Rev. 2021, 86, 106487. [CrossRef]

http://doi.org/10.1016/j.landusepol.2020.104583
http://doi.org/10.1016/j.chieco.2019.101397
http://doi.org/10.1016/j.enpol.2016.01.032
http://doi.org/10.1016/j.cities.2018.08.009
http://doi.org/10.1016/j.apenergy.2020.115465
http://doi.org/10.1038/srep04235
http://doi.org/10.1371/journal.pone.0064727
http://doi.org/10.1016/j.eiar.2020.106487

	Introduction 
	Materials and Methods 
	Extended LMDI Model 
	Data 

	Results 
	Temporal and Spatial Characteristics of Carbon Intensity 
	Decomposition of Carbon Intensity 
	Decomposition Analysis on the Provincial Scale 
	Decomposition Analysis for Different Types of Cities 
	Decomposition Analysis for Capital Cities 


	Discussion 
	Conclusions 
	References

