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Chapter 4

Bioinformatics Analysis of Estrogen-Responsive Genes

Adam E. Handel

Abstract

Estrogen is a steroid hormone that plays critical roles in a myriad of intracellular pathways. The expression 
of many genes is regulated through the steroid hormone receptors ESR1 and ESR2. These bind to DNA 
and modulate the expression of target genes. Identification of estrogen target genes is greatly facilitated by 
the use of transcriptomic methods, such as RNA-seq and expression microarrays, and chromatin immuno-
precipitation with massively parallel sequencing (ChIP-seq). Combining transcriptomic and ChIP-seq data 
enables a distinction to be drawn between direct and indirect estrogen target genes. This chapter discusses 
some methods of identifying estrogen target genes that do not require any expertise in programming 
languages or complex bioinformatics.
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1  Introduction

Gender disparities are associated with the risk of multiple diseases 
[1]. Estrogen is clearly associated with the risk of many gyneco-
logical malignancies but also has a role in modulating aspects of 
autoimmunity [2–4]. Therefore, understanding estrogen-regulated 
gene pathways is critical to understanding the pathophysiology of 
many diseases. This in turn requires an understanding of the 
dynamics of estrogen-regulated gene expression and the binding 
of ESR1 and ESR2, the nuclear receptors through which estrogen 
exerts much of its effect [5].

Identifying estrogen-responsive genes is an apparently simple 
problem. The obvious method to use is to profile gene expression 
in the presence or absence of estrogen [6]. This can be performed 
either by expression microarray, which involves the use of tiling 
oligonucleotide probes and identifying the targets of RNA hybrid-
ization, and RNA-seq, which involves fragmenting RNA in cells 
and sequencing cDNA reverse transcribed from these RNA 
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fragments [7]. However, depending on the time course used in 
transcriptomic experiments, this will identify both direct estradiol 
target genes and secondary genes modulated by those direct target 
genes (see Note 1).

Chromatin immunoprecipitation with massively parallel 
sequencing (ChIP-seq) is a technique that allows for the genomic 
localization of nuclear receptor binding [7, 8]. This technique uses 
the formation of formaldehyde cross bridges between DNA and 
proteins bound to nucleic acid, followed by selective sequencing of 
DNA fragments that have been immunoprecipitated by an anti-
body directed against a protein of interest. In case the of estrogen, 
fragments that are immunoprecipitated with antibodies against 
ESR1 or ESR2 can be compared with fragments immunoprecipi-
tated by nonspecific antibodies (input control) or fragments can be 
compared between samples pre- and posttreatment with estrogen. 
Stimulation with estrogen (or estrogen receptor agonists) can be 
problematic as, just as in the case of transcriptomics, the duration 
of stimulation can be an important consideration in capturing dif-
ferent aspects of receptor binding (see Note 2). Remodeling of the 
chromatin architecture and the 3D structure of the genome are 
likely to be complex and time-dependent processes, which mean 
that the snapshot of estrogen receptor occupancy afforded by 
ChIP-seq may not always be representative of the underlying biol-
ogy (see Note 3) [9, 10].

This chapter concentrates on basic methods of identifying 
direct estrogen target genes by combining transcriptomic and 
ChIP-seq data. The methods by which nuclear receptors are 
assigned to gene targets in particular cell types either in vitro or 
in  vivo are continuously evolving both due to the availability of 
new techniques and the increasingly encyclopedic datasets available 
on genomic architecture in a multitude of cell types (see Note 4). 
However, here we provide a series of simple workflows that rely 
heavily on the Galaxy web interface and the Genomic HyperBrowser 
that are effective ways of identifying a set of estrogen direct gene 
targets with relatively high confidence [11–15]. These offer the 
distinct advantages that no prior knowledge of bioinformatics or 
programming languages is required for their use.

The first approach described explains how to identify genomic 
intervals for a series of genes differentially expressed in response to 
estrogen treatment and intersect these with ESR1 ChIP-seq-
binding→ sites. The second uses a purpose-built bioinformatics 
tool called BETA that is able to use transcriptomic and ChIP-seq 
data to identify potential ESR1 target genes [16]. Both assume 
that the user has transcriptomic and ChIP-seq data available from 
their cells of interest treated with estrogen and that these data have 
been processed to obtain differentially expressed genes (DEGs) 
and significant ChIP-seq peaks. Previous chapters in this series 
explain how to accomplish this [17, 18].
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2  Materials

	 1.	Modern laptop or personal computer running a modern oper-
ating system with at least 60  GB of hard disc memory and 
4 GB of RAM.

	 2.	Basic software for manipulating spreadsheets (e.g., Microsoft 
Excel or OpenOffice Calc).

	 3.	Internet browser software (e.g., Internet Explorer, Mozilla 
Firefox or Google Chrome).

	 4.	A high-speed Internet connection.

3  Methods

	 1.	Register for the Genomic HyperBrowser (https://hyper-
browser.uio.no/hb/).

	 2.	Prepare ChIP-seq and transciptomic datasets for upload. 
ChIP-seq files should be a set of tab-delimited genomic coor-
dinates corresponding to each peak in the format:
Chromosome	 Start	 Stop
Transcriptomic files should be a list of differentially expressed 

genes (DEGs) as ENSEMBL IDs (see Note 1 for methods 
for converting between different forms of gene ID). The 
datasets used for this demonstration are the ESR1-binding 
site data (actually ChIP-chip data) from Hurtado and col-
leagues and transcriptomic data from Hah and colleagues 
(thresholded at q < 0.05) [6, 19].

	 3.	Firstly upload the ChIP-seq data as shown in Fig. 1.
	 4.	Next use “Generate Tracks > Generate segment track from 

gene IDs” to obtain genomic intervals from the ENSEMBL 
gene IDs of DEGs. These should be uploaded into the tool as 
a series of comma-separated values as shown by the demo data. 
If necessary genomic intervals can be lifted from one genome 
build to another by the “Lift-Over > Convert genomic coordi-
nates” tool.

	 5.	Use “Operate on Genomic Intervals > Get flanks” to extend 
gene regions by a pre-specified number of bases in each direc-
tion (Fig. 2). A suitable distance might be 5 kb, which is analo-
gous to the upstream region extension in the gene ontology 
tool GREAT [20].

	 6.	The original intervals and flanking regions should then be con-
catenated into a single track using “Operate on Genomic 
Intervals > Concatenate” and then merged with “Operate on 
Genomic Intervals > Merge.”

3.1  The Genomic 
HyperBrowser
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	 7.	An important sanity check is to ensure that estrogen receptor 
binding is enriched near estrogen DEGs. The Genomic 
HyperBrowser allows one to calculate the enrichment of estro-
gen receptor-binding sites with the intervals generated above 
(i.e., within 5 kb of estrogen DEGs). Figure 3 illustrates this 

Fig. 1 Uploading files to the Galaxy/Genomic HyperBrowser server. Select “Get Data > Upload files,” select the 
correct file type (in this case “bed” for ChIP-seq data or “txt” for transcriptomic data), select the file location 
using the “browse” button, select the correct genome build, and then select “Execute”

Fig. 2 Generating a track of regions flanking differentially expressed genes. Select “Operate on Genomic 
Intervals > Get flanks,” select the desired track, select the subset of the region to flank (in this case “whole 
region”), select whether to extend flank from the upstream, downstream or both sides of regions, decide on 
the length of flanking regions, and then select “Execute”
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process. It is possible to use the Genomic HyperBrowser to 
calculate an empirical p-value for this overlap using the same 
tab as for enrichment analysis but selecting “Category: 
Hypothesis testing,” “Overlap?,” a suitable null model (e.g., 
“Preserve segments (T2), segment lengths and inter-segment 
gaps (T1); randomize positions (T1) (MC)”) and the number 
of permutations (e.g., for publication quality p-values ~10,000 
permutations would be recommended). The region and scale 
tab is also important as this determines in which areas of the 
genome randomized tracks can fall. Leaving it at its default 
value (all chromosome arms) is adequate for the current sanity 
check. There is significant overlap between ESR1-binding sites 
and estrogen DEGs (2.14-fold, p < 10−4), which suggests that 
there are likely to be plausible direct estrogen targets amongst 
the transcriptomic dataset. Note that analyses are only con-
ducted on bed files, and so if the track of interest is not offered 
by the Genomic HyperBrowser as a potential track for analysis 
then edit that track to ensure that the track type is “bed.”

	 8.	Identifying potential direct estrogen targets is simply a matter 
of joining estrogen DEGs (±5 kb) to ESR1-binding sites 
(Fig. 4).

	 9.	The resultant output can be pasted into a spreadsheet program 
and filtered to obtain unique gene IDs and their respective 
ESR1-binding sites.

Fig. 3 Performing enrichment analysis. Select “Statistical analysis of tracks > Analyze genomic tracks,” select 
the genome build, select that each track for analysis will be from your history and then select the appropriate 
track, select “Descriptive statistics,” select “Enrichment,” and then select “Start analysis”
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	 1.	Register for Galaxy/Cistrome (http://cistrome.org/ap/). 
This tool integrates transcription factor-binding sites with the 
degree of differential gene expression to predict high-
confidence direct targets.

	 2.	Prepare ChIP-seq and transcriptomic data for upload. Again, 
the ChIP-seq data should be a tab-delimited file in the 
format:
Chromosome	 Start	 Stop
RNA-seq data can either be directly uploaded as Cuffdiff or 

LIMMA output [21, 22] or formatted as a tab-delimited 
file with columns corresponding to gene ID, direction of 
change (e.g., T-score) and significance (e.g., FDR). Ensure 
that all data are present as text (gene ID) or numerical 
data. Some spreadsheet programs can format data in ways 
that will cause BETA to crash (e.g., substituting dates for 
numerical values).

	 3.	Start the BETA tool running after selecting the appropriate 
parameters (Fig. 5). The BETA tool is available through 
“Integrative Analysis > BETA-plus: Binding and Expression 
Target prediction and motif analysis.” For an initial analysis, it 
is recommended to leave as many settings at their default val-
ues as possible. Subsequently these can be altered to test how 
robust the results are to changes in, for example, the distance 
threshold of ESR1-binding sites to DEGs.

3.2  BETA

Fig. 4 Joining two tracks side by side. Select “Operate on Genomic Intervals > Join,” select the required tracks, 
and then select “Execute”
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Fig. 5 Performing BETA-plus analysis. Select the track containing the ChIP-seq data, select the track contain-
ing the transcriptomic data, select the type of gene ID used (RefSeq or gene symbol), input the prefix for output 
files, select the genome build, select the type of transcriptomic data (i.e., the format of the track selected 
earlier), if the transcriptomic data is in a custom format insert a comma-separated list of numbers referencing 
which column is the gene ID, the direction of expression change and the significance measure (e.g., if this was 
a track with three columns, the first of which was the gene ID, the second of which was the log2 fold change 
and the third of which was the FDR, this would be 1,2,3). Finally select “Execute”
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	 4.	The output files then produce direct target predictions. These 
are described below:
(a)	 BETA functional prediction on ESR1 ChIP-chip: A graph 

showing the relationship between functional rank and the 
number of direct targets and an associated p-value for up- 
or downregulated genes.

(b)	 BETA direct targets prediction on up regulated genes: A 
table of up-regulated gene targets detailing the rank prod-
uct score (derived from the significance score provided in 
the transcriptomic dataset).

(c)	 BETA direct targets prediction on down regulated genes: 
A table of downregulated gene targets detailing the rank 
product score (derived from the significance score pro-
vided in the transcriptomic dataset).

(d)	 Uptarget associated peaks: A list of peaks with the associ-
ated up-regulated gene target, the distance to the target 
gene, and a functional score.

(e)	 Downtarget associated peaks: A list of peaks with the asso-
ciated downregulated gene target, the distance to the tar-
get gene, and a functional score.

(f)	 Motif analysis on target regions: An html output file detail-
ing top motifs detected for multiple comparisons along 
with associated statistical scores.

(g)	 A series of detailed motif analysis outputs: The statistical 
data for the above file.

(h)	 Log of BETA plus: This details the input parameters and 
any errors encountered during the course of the analysis.

4  Notes

	 1.	Converting between different gene IDs: There are multiple ways 
of converting between different forms of gene ID (e.g., gene 
symbol, RefSeq, ENSEMBL). One simple way is to use the 
Table Browser function in UCSC Genome Browser (http://
genome.ucsc.edu/) (Fig. 6) [23]. It is possible to convert 
gene IDs between multiple types of gene ID using sequential 
conversions.

	 2.	Considerations for experimental design: Replicates are essential 
for ChIP-seq and transcriptomic analysis when attempting to 
distinguish biologically meaningful variation from noise. As 
mentioned in the introduction, if using stimulation with estro-
gen or an estrogen receptor agonist, it is vital to decide on the 
time scale of stimulation to ensure that the correct cross sec-
tion of binding and transcriptomic changes are sampled.
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	 3.	Limitations of current bioinformatic methods: There are several 
important limitations to consider when interpreting lists of 
direct gene targets. The output is only as good as the data 
input into the model in the first place. This can be an issue 
particularly for ChIP-seq datasets, which are noisy and fre-
quently irreproducible in the main between different studies 
nominally using the same material and methods [24]. However, 
new methods for calling ChIP-seq peaks, such as irreproduc-
ibility discovery analysis, which attempt to leverage power 
from replicates, may help to alleviate this problem [25]. 
Another limitation is that distance thresholds applied in calling 
direct gene targets are linear, whereas it is clear that the 3D 
structure of chromatin is important in determining which 
binding sites interact with which genes [9]. Methods for con-
sidering 3D structure in enrichment analyses are available 
through the Genomic HyperBrowser but the interpretation of 
such data is not straightforward [26].

	 4.	Further functional annotation of direct gene targets: As men-
tioned above, many of the thresholds used are rather arbitrary 
and so it can be informative to include other forms of func-
tional annotation to hone down a list of potential gene targets 
to ones of higher confidence. ESR1 binding sites are more 

Fig. 6 Convert gene IDs from one form to another. Select the required clade, the species and the genome build. 
Select the “Genes and Gene Predictions” group of tables, the appropriate track (e.g., Ensembl genes), the 
desired table (this will be one that maps the gene ID one has to the gene ID one requires), paste the list of gene 
IDs (this will be checked for unknown IDs by the system), select that output should be “selected fields from 
primary and related tables,” and then select “get output.” On the resulting screen it is possible to select the 
desired fields to obtain the gene ID of interest
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likely to be consistent between different ChIP datasets if they 
possess a classical ESR1 recognition motif or are located in a 
region of open chromatin (as assessed by DNase-seq) [24]. 
BETA will supply a measure of motif enrichment within the 
peaks supplied and estrogen receptor motifs should be signifi-
cantly enriched in direct gene targets. Motif scanning software 
such as FIMO can be used to assess whether specific ESR1-
binding sites contain estrogen receptor recognition motifs and 
this can assist in the selection of high-confidence gene targets 
[27]. There is a wealth of data on chromatin state or RNA 
polymerase II binding in many cell types with and without 
estrogen stimulation available from databases like UCSC 
Genome Browser. These can be downloaded and intersected 
with candidate direct gene targets just as in Subheading 3.1 to 
select high-confidence direct gene targets. Gene targets con-
taining an estrogen receptor recognition motif, a DNase 
hypersensitivity peak, and with a nearby RNA polymerase II 
ChIP-seq peak in addition to an ESR1 ChIP-seq peak are 
highly likely to be direct estrogen targets [28].
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