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We develop a Regression-based Ranking by Pairwise Cluster Comparisons (RRPCC)method to rank clusters of
similar protein complex conformations generated by an underlying docking program. The method lever-
ages robust regression to predict the relative quality difference between any pair or clusters and combi-
nes these pairwise assessments to form a ranked list of clusters, from higher to lower quality. We apply
RRPCC to clusters produced by the automated docking server ClusPro and, depending on the training/val-
idation strategy, we show improvement by 24–100% in ranking acceptable or better quality clusters first,
and by 15–100% in ranking medium or better quality clusters first. We compare the RRPCC–ClusPro com-
bination to a number of alternatives, and show that very different machine learning approaches to scor-
ing docked structures yield similar success rates. Finally, we discuss the current limitations on sampling
and scoring, looking ahead to further improvements. Interestingly, some features important for improved
scoring are internal energy terms that occur only due to the local energy minimization applied in the
refinement stage following rigid body docking.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Besides comprising the largest portion of the dry mass in each
cell, proteins interact with one or multiple other proteins to orga-
nize, regulate and drive cellular functions and communication [1].
Protein–protein interactions govern activities ranging from degra-
dation of specific proteins [2] to complex events such as cell prolif-
eration [3]. Due to their importance, elucidating such interactions
up to atomic detail is necessary for understanding large multicom-
ponent complexes like ribosomes and discovering protein-based
drugs (antibodies, nanobodies, peptides, etc.). While the current
golden standard for determining the structure of protein com-
plexes is X-ray crystallography, crystallizing protein complexes is
extremely time consuming. The latest experimental methods, such
as cryo-EM, are mostly financially restrictive and unfeasible when
considering that there are tens of thousands of interactions that are
yet to be resolved.

Computational docking offers an alternative approach to pre-
dicting the structures of protein–protein complexes based on the
structures of the interacting component proteins. While the com-
putational approach is generally less reliable than X-ray crystallog-
raphy, it generates models that can be validated by simpler
experimental techniques such as cross-linking or site-directed
mutagenesis. The Vajda lab at Boston University has developed
ClusPro, one of the most popular protein–protein docking servers
currently available [4]. Although registration is not required, Clu-
sPro has 17,000 registered users, and in 2020 has performed over
180,000 docking calculations. The server uses the rigid body dock-
ing program PIPER based on the fast Fourier transform (FFT)
approach to evaluating interaction energies. With PIPER, the larger
protein is placed at the origin of the coordinate system on a fixed
grid, the second protein is placed on a movable grid, and the inter-
action energy is written as a linear combination of a few correla-
tion functions. These functions describe the repulsive and
attractive contributions to the van der Waals interaction energy,
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the electrostatic interaction energy, and a pairwise structure-based
potential constructed by the Decoys as the Reference State (DARS)
approach [5], representing solvation effects. The weights of the
energy terms are adjustable parameters and will be discussed fur-
ther in the sequel. Using FFTs, the energy function can be evaluated
for all translations in a single calculation, and only rotations need
to be considered explicitly. Due to the extremely fast sampling,
one can explore billions of the conformations of the two interacting
proteins, and thus perform global docking without any a priori
information on the structure of the complex.

Although PIPER uses an FFT-based approach, which makes it
similar to a number of other FFT-based docking programs, includ-
ing FTDOCK [6], ZDOCK [7], GRAMM-X [8], and HDOCK [9], the
algorithm powering ClusPro has two main differences from these
programs. First, PIPER is the first FFT-based method that uses a
pairwise structure-based potential called DARS [5], which is con-
verted by eigenvalue analysis to the correlation form required for
the FFT approach. The use of the DARS potential substantially
improved the performance of the method. Second, while most
docking methods select the lowest energy structures as the best
models, in ClusPro we consider the centers of the most populated
clusters of the docked structure as predictions of the complex. This
approach enables us to account for the role of entropy in the recog-
nition process, leading to more reliable predictions than methods
using energy values alone. Indeed, we have shown in a recent
paper [10] that using cluster centers rather than the lowest energy
structures improves the accuracy of docking. In this paper we also
compare the performance of ClusPro to that of the two most suc-
cessful docking servers, HADDOCK and SwarmDock [11,12]. We
note that the performance of servers is continuously compared in
the ongoing CAPRI (Critical Assessment of Predicted Interactions)
docking experiments. ClusPro and most of the other popular ser-
vers all participate in CAPRI since 2009, demonstrating their rela-
tive performance.

It is generally recognized that the protein–protein interfaces in
complexes are packed essentially as well as the interiors of pro-
teins, possibly with more polar atoms but without enclosed cavi-
ties and definitely without any steric clashes [13]. Rigid body
docking methods are based on the assumption that the structures
of proteins do not change upon their association. In reality some
conformational changes always occur, and hence rigid body meth-
ods must use ”soft” energy functions that allow for moderate
clashes without increasing the calculated value of the interaction
energy. Reducing the sensitivity of the energy function to steric
clashes implies that the near-native docked structures do not nec-
essarily have the lowest energies, and hence one has to retain a
large number of conformations for further processing. Attempts
to identify near-native structures among the retained structures
may include re-scoring using more accurate energy functions.
The more accurate energy evaluation frequently requires refine-
ment of the structures using energy minimization, thus beyond
the scope of rigid body docking. Since energy minimization is com-
putationally expensive, many docking methods use clustering for
reducing the number of structures prior to refinement.

In ClusPro, we retain 1000 structures generated by the rigid
body docking. The unique feature of our server is that the selection
of clusters that are most likely near-native is based on the size of
the resulting clusters rather than their energy values. As has been
shown, this approach is meaningful if we assume that the energy
range of the retained 1000 lowest energy conformations is compa-
rable to the error in the calculation of the energy, and hence does
not allow for further discrimination between near-native and non-
native structures [14]. It is reasonable to assume that ranking the
clusters based on the number of structures is not the best approach
to cluster discrimination, and that there must exist empirical
energy functions to improve the scoring. However, we have shown
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that ranking clusters based on population yields better models
than based on PIPER energies, in spite of the success of the latter
in guiding the search in the process of docking [10]. We made con-
siderable effort to further optimize the potential for specific classes
of protein–protein complexes. In particular, we have developed an
asymmetric version of the pairwise DARS potential for docking and
scoring antibody-antigen pairs, thereby improving the results for
this type of interactions [15]. However, we failed to obtain sub-
stantial improvement for the general case of complexes catego-
rized as ‘‘others” [11], and even for enzyme-inhibitor pairs.

In this paper we describe the use of a Machine Learning (ML)-
based method to improve the ranking of clusters generated by Clu-
sPro, and show that the approach substantially increases the num-
ber of proteins for which the top prediction, denoted as T1, is of
acceptable or better quality (see Methods for the definition of qual-
ity measures). ML methods have previously been used in protein–
protein docking, both for ranking the clusters and for improving
the scoring of models. The Bates group [16] employed a random-
ized tree classifier (an ensemble of randomly constructed decision
trees based on [17]) with 109 molecular descriptors to rank the
clusters of docked structures. The descriptors included statistics
of cluster properties, which were then combined into a pairwise
cluster comparison model to discriminate near-native from incor-
rect clusters. The results have shown improved discrimination, but
were provided only for a few protein complexes. As will be shown,
we adopted some ideas from this paper, but in the context of a very
different ML method. In other papers the ML approach has been
used to directly score docked structures rather than clusters. An
influential scoring method called IRaPPA (Integrative Ranking
of Protein–Protein Assemblies) [12] has been developed by
Fernadez-Recio and co-workers. The method used support vector
machines to combine a large selection of metrics, including bio-
physical models, statistical potentials and composite energy func-
tions. IRaPPA has been used to re-score structures generated by
several docking methods, and showed almost a doubling of accept-
able solutions in the top 10 models for SWARMDOCK and 30% to
75% improvement on pyDock, SDOCK and ZDOCK. While the
increase in performance is impressive, [12] uses on the order of
90 different features, incurring a significant computational cost.
Basu and Wallner [18] also used a support vector machine algo-
rithm for scoring complex models using a potential function they
called ProQDock. They were able to reduce the number of features
to 12. ProQDock was combined with the traditional scoring func-
tions ZRANK [19] and ZRANK2 [20], to form ProQDockZ with
improved performance. More recently, Eismann et al. [21] reported
the use of a neural network-based method called PAUL for select-
ing models of protein complexes. The network architecture com-
bined multiple ingredients that together enabled end-to-end
learning from molecular structures using a point-based represen-
tation of atoms, equivariance with respect to rotation and transla-
tion, local convolutions, and hierarchical subsampling operations.
The method has been combined with previously developed scoring
functions, and improved the identification of accurate structural
models.

The method we have developed to rank the clusters generated
by ClusPro is based on a robust regression approach, not used in
the above applications. Some features depended on the statistical
properties of the clusters, and others were determined by the con-
formation selected as the cluster representative. The proposed
method, called Regression-based Ranking by Pairwise Cluster Com-
parisons (RRPCC), performs pairwise comparisons of clusters, an
approach also used by Bates and co-workers [16]. Learning through
pairwise comparisons sidesteps challenges associated with having
to learn from few samples based on an imbalanced dataset. In par-
ticular, more direct methods would attempt to predict the quality
of a cluster based on the features. However, for any given complex,
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the number of clusters is relatively small (about 50) and most of
them are of low-quality. Instead, for such a complex, one can gen-
erate a balanced dataset of about 2,500 pairwise comparisons. As
will be described, we trained RRPCC on the complexes in version
5.0 of the protein–protein benchmark (abbreviated as BM5) [11].
The method’s performance was evaluated by firstly training it on
2 subsets of protein complexes after splitting BM5 randomly into
three and tested on the third subset (3-fold cross-validation). Sec-
ondly, it was trained using a subset of the complexes (training set)
and tested on a separate subset of 51 protein pairs that were added
to version 4.0 of the Benchmark (BM4) to form BM5 (historical).
The importance of this selection is that the ML based scoring meth-
ods IRaPPA [12], ProQDock, ProQDockZ, PAUL, and RRPCC were all
applied to the same test set, providing information on the perfor-
mance of scoring based on SVMs, neural networks, and regression
methods. As will be discussed, the interesting result is that all
methods yield very similar success rates, in spite of the very differ-
ent ML approaches and the different programs used for generating
the docked structures to be scored. Although the scoring always
improves the ranking of near-native structures among the many
structures generated by the docking, the success rate remains
slightly below 50%, even when considering the top 10 models. As
will be shown, in the majority of cases when the modeling of the
complex fails, the culprit is the insufficient sampling. However,
good conformations are also lost when selecting the final models.
Although in this paper we focus on the development and charac-
terization of a specific protocol to improve the scoring of clusters
of structures generated by ClusPro, we hope to also answer some
general questions related to the properties of ML-based
approaches used for improving the discrimination of near-native
structures.
2. Materials and Methods

Notation:We use boldfaced lowercase letters to denote vectors,
ordinary lowercase letters to denote scalars, boldfaced uppercase
letters to denote matrices, and calligraphic capital letters to denote
sets. All vectors are column vectors. For space saving reasons, we
write x ¼ ðx1; . . . ; xnÞ to denote the column vector x 2 Rn. For any
matrix A, we let aij denote its ði; jÞ element, Ai the ith row and, with
some abuse of our conventions, Aj the jth column. I denotes the
identity matrix. We use prime to denote the transpose of

a vector, and kxkp ¼ ðPn
i¼1jxijpÞ

1=p for the ‘p norm, where p P 1.
For any matrix A 2 Rn�m, we will refer to a vector
ðaij; i ¼ 1; . . . ;n; j ¼ 1; . . . ;mÞ containing all entries of the matrix
as the vectorized form and by kAkp we will denote the ‘p norm of

that vector, i.e., kAkp ¼ ðPn
i¼1

Pm
j¼1jaijjpÞ

1=p.
2 Code is available upon request.
2.1. Scoring Functions

A collection of physicochemical scoring functions and statistical
potentials were used to generate 129 features we examined to
derive our cluster ranking model. We leveraged the docking pro-
gram PIPER [22,14] which calculates van der Waals (repulsive
and attractive) interactions, electrostatic (Coulombic and Born)
forces, and a statistical potential called DARS [5]. PIPER uses a lin-
ear combination of these five scores to compute a composite score
and select the 1,000 lowest scoring models. These conformations
are then clustered using the all-atom pairwise Root Mean Squared
Deviation (RMSD) as the distance metric, generating clusters with
a radius of up to 10 Å RMSD and a minimum number of 10 struc-
tures per cluster. From each cluster, a representative is selected to
be the cluster center – the conformation with the largest number
of neighbors within the cluster. Two conformations are considered
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neighbors if their iRMSD – the RMSD of backbone atoms on the
interface between the receptor and ligand among the two confor-
mations – is no more than 10 Å.

ClusPro features. From each cluster we use its cardinality
(which is the only feature ClusPro uses for ranking), the total Clu-
sPro composite score and individual energy terms for the cluster
representative, statistics (mean, variance, skewness, kurtosis) of
these energy metrics over all cluster members, and statistics of
RMSD distances between cluster members.

SOAP features. A second statistical potential named Statistically
Optimized Atomic Potential (SOAP) [23] of each cluster representa-
tive was obtained. SOAP was calculated with MODELLER release
9.21 developed by S̆ali and coworkers. Three different SOAP poten-
tials were considered: ðiÞ a pairwise score of atomic interactions
within the protein–protein interface; ðiiÞ an atom-specific score
of solvent accessibility for all atoms; and ðiiiÞ a score using ðiÞ
and ðiiÞ to obtain an assessment score for the target model.

ROSETTA features. The conformation of the cluster representa-
tive structures was also evaluated using ROSETTA release version
3.11 – a suite for computational modeling and analysis of protein
structures [34]. We calculated energy terms that included: ðiÞ
interaction potentials between bonded and non-bonded atoms;
ðiiÞ intramolecular terms that involved bonded atoms, such as
intra-residue Lennard-Jones (LJ) potentials between atoms, the like-
lihood of backbone angles, and penalties for unlikely atomic
arrangements [24,25]; and ðiiiÞ terms that play significant role on
interface formation, such as intra-residue attractive and repulsive
LJ potential between atoms, solvation energy, electrostatic poten-
tial, and hydrogen bonding.

CHARMM features. For each cluster representative we used
CHARMM22 [26] to extract features related to bond stretches,
bond angles, torsion angles, and improper angles (out of plane
bending) contributions, as well as non-bonded interaction terms
like two-atom and three-atom Van der Waals energies calculated
with a LJ potential.

Stability features. A final set of features is related to the stabil-
ity of the cluster representatives. To that end, we started from the
cluster representative and separated the two proteins. An in–house
program (libmol2), based on ideas from [27,28], was used to per-
form 10 steps of limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) minimization with the alpha carbons fixed to
remove potential clashes at the interface. 2 Both ROSETTA and
CHARMM22 energy terms were calculated before and after perform-
ing such minimization. The CHARMM22 parameter set is the
extended version of the CHARMM19 united atom parameter set,
which uses only polar hydrogens, whereas the nonpolar hydrogens
are represented by the increased radii of the nonpolar group. This
type of parameterization reduces the total number of atoms by
almost 50% with very little impact on accuracy, particularly because
we use the minimization of the CHARMM potential only for the
removal of steric clashes rather than structure prediction. Since
the computing time changes with the square of the number of
atoms, the united atom representation leads to major reduction
of the computing time. In fact, minimization of the large number
of structures generated by the docking would not be possible using
an all-hydrogen potential. After evaluating the ROSETTA energy
terms of the minimized structure, the ligand was moved 100 Å away
from original position near the receptor. After obtaining the
CHARMM22 energy terms of the separated structure, it was mini-
mized in the same way as before using libmol2. Finally, the
CHARMM22 and ROSETTA energy terms of the separated and mini-
mized structure were obtained. A complete list and brief description
of all features is in supplementary Table S4.
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2.2. Evaluation Criteria and DockQ

CAPRI, the community-wide competition for protein docking,
uses three conventional parameters to assess submitted conforma-
tions: ðiÞ Fnat (fraction of the number of true interface residue con-
tacts accurately predicted to that of falsely predicted ones), ðiiÞ
iRMSD (RMSD of backbone atoms on the interface when the model
is superposed on the native), and ðiiiÞ LRMSD (RMSD between
ligand backbone atoms when the receptors are aligned). Based on
these parameters, there are four categories of accuracy. A predic-
tion is considered high quality if Fnat P0.5 and LRMSD 61.0 Å or
iRMSD61.0 Å. It is ofmedium quality if 0.3 6Fnat < 0.5, and LRMSD
65.0 Å or iRMSD 62.0 Å, or if Fnat P0.5 but LRMSD > 1.0 Å and
iRMSD > 1.0 Å. It is of acceptable quality if 0.1 6Fnat < 0.3 and
LRMS 610.0 Å or iRMSD 64.0 Å, or if Fnat P0.3 but LRMSD > 5.0
Å and iRMSD > 2.0 Å. Finally, the prediction is incorrect if none
of the above categories apply. DockQ [29] is a program 3 which
combines the three metrics non-linearly to produce a score and cat-
egorizes models as acceptable if that score is P0.23, as medium
quality with values P0.49, and as high quality with values P0.8.
[29] verified that DockQ matched with previous CAPRI experiments
well.
2.3. Benchmark and Decoy Generation

We consider here 38 antibody-antigen (ab-ag) complexes, 88
enzyme-containing complexes, and 101 others-containing com-
plexes from version 5.0 of the well-established protein docking
benchmark (BM5) [11]. Note that two targets of the 40 ab-ag com-
plexes, and one of the others-containing complexes are excluded
because DockQ failed to evaluate the quality of the models due
to the large size of the complexes. Since these three classes of pro-
teins fundamentally differ in how they interact with their comple-
mentary proteins and in their respective energetics, the models
were trained and tested separately. Two validation strategies were
used to test the algorithm. First, each class of complexes was split
into 3 approximately equal sets. In a process called 3-fold cross-
validation, the algorithm was trained on two of the folds and tested
on the remaining fold; this was repeated three times, each leaving
out a different fold for testing. In a second validation strategy,
which we call historical, the algorithm was trained on Benchmark
4.0 (BM4) [30] and tested on the 51 new cases added onto BM4
to form BM5 (of the 55 cases, two failed in both SWARMDOCK
and ClusPro, and two more failed in SWARMDOCK due to their
size).
2.4. Enriching Starting Poses

Due to the imbalance in terms of extremely low number of
good (acceptable or better) models compared to incorrect mod-
els, we sought to enrich the number of good models in the top
30 clusters retained from PIPER. As mentioned in Section 2.1,
PIPER was used to provide 1,000 models for a specific composite
score that is a linear combination of five component scores. Typ-
ically, PIPER is run using a fixed composite score determined by
a set of five coefficients that multiply the component scores. For
our purposes, however, we run PIPER using 50 different coeffi-
cient sets, each set resulting into 30 clusters of docked confor-
mations. Given that computing the individual energy scores is
by far the most computationally expensive task, we note that
using multiple coefficient sets does not add any significant com-
putational overhead; all that is needed is computing different
3 http://github.com/bjornwallner/DockQ/
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combinations of individual energy scores that are computed
once, and re-clustering each time.

The cluster centers of each of the clusters produced (50� 30)
were re-clustered using the same clustering procedure. In this
clustering of cluster centers, we used used a 9 Å radius for antibod-
ies and a 19 Å radius for enzyme-containing and others-containing
complexes. Once these clusters of cluster centers were formed, we
added back the conformations in the original cluster associated
with each cluster center, removing any duplicate models. This pro-
duced ‘‘mixed” clusters, containing conformations scored by differ-
ent coefficient sets and, possibly, multiple original cluster centers.
For each mixed cluster, we selected as representative the original
cluster center associated with the largest original cluster. With this
strategy, the number of unique cases with acceptable quality
increased by 3, 9, and 7 in antibodies, enzymes, and others, respec-
tively. The number of unique cases with medium quality increased
by 1, 10, and 5 in antibodies, enzymes, and others, respectively.
The details of the impact of this strategy are shown in supplemen-
tary Table S5.

2.5. The RRPCC Method

Suppose we have a training set of N protein complexes, indexed
by l ¼ 1; . . . ;N. For each complex l, we generate a set of nl clusters
containing PIPER-selected conformations, as described earlier.
Each cluster i ¼ 1; . . . ;nl, of complex l has an associated cluster rep-
resentative and a vector pl

i 2 Rd of d features associated with the
cluster and the cluster representative, generated to include all fea-
tures we outlined earlier. In addition, for every cluster i of complex
l, we denote by ql

i the DockQ score of the cluster representative.
Rather than using regression to predict the DockQ scores, which

would equally penalize deviations for either low quality and high
quality clusters, we seek to predict the difference of DockQ scores
for any pair of clusters corresponding to the same complex. Specif-
ically, for any clusters i; j of a complex l we define slij ¼ ql

i � ql
j and

seek to find a matrix of coefficients x 2 Rd�d which solves the fol-
lowing regularized regression problem:

minx
1
g
XN

l¼1

Xnl

i¼1

Xnl

j¼1;i–j

½ðpl
iÞ0Xpl

j � slij�
2 þ lkXk22; ð1Þ

where g ¼ PN
l¼1nlðnl � 1Þ and l > 0 is some scalar regulating the

strength of the regularizer. It is straightforward to see that the
above problem can be written in a more conventional ridge regres-
sion form:

minx
1
g
XN

l¼1

Xnl

i¼1

Xnl

j¼1;i–j

½ðvl
ijÞ0x� slij�

2 þ lkxk22; ð2Þ

where vl
ij is the vectorized form of pl

iðpl
jÞ0, and x is the vectorization

of X. We elect to use ridge regressions, rather than the ordinary
least squares regression, because it has been shown to be robust
to potential outliers in the training set, assuming a dense model
(i.e., almost all features are informative) [31,32].

Define the matrix V 2 Rg�d2 with rows fvl
ij; l ¼ 1; . . . ;N; i; j ¼ 1;

. . . ;nl; i – jg and the vector s ¼ ðslij; l ¼ 1; . . . ;N; i; j ¼ 1; . . . ;nl;

i– jÞ. By solving the optimality conditions, it can be easily shown
that an optimal solution of (2) can be written in closed-form as:

x ¼ ðV0V þ lgIÞ�1V0s: ð3Þ
For large enough lg;V0V þ lgI is positive definite and the inverse
exists.

Given x, we can use it to rank clusters in a newly presented pro-
tein complex as follows. Suppose the new ‘‘test” complex denoted
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by t has nt clusters. For any pair of clusters i; j of complex t, we can
estimate the relative merit of these clusters by

ŝtij ¼ ðpt
i Þ0Xpt

j :

Comparing a cluster i with every other cluster, we compute a score
for cluster i given by

s
^t
i ¼

1
nt � 1

Xnt

j¼1;j–i

ðpt
i Þ0Xðpj

jÞ; i ¼ 1; . . . ;nt: ð4Þ

Ordering these scores provides a ranking of the clusters.
2.6. Feature Selection

To improve the prediction performance and avoid overfitting
during training the predictive model, we select a subset of the fea-
tures using three different feature selection and dimensionality
reduction methods:

1. Univariate linear regression test: We regress the output variable

in (2) on each feature in Vl
ij and, using the mean and standard

deviation of the corresponding coefficient in x, we compute a
p-value associated with the null hypothesis that the coefficient
is zero. We remove features (i.e., set to zero the corresponding
coefficient) whose p-value exceeds 0:05.

2. Principal Component Analysis (PCA): After standardizing the
input features, we use Singular Value Decomposition (SVD) to
project the standardized data to a lower dimensional space.
The dimension of the subspace is selected by the least number
of principal component which contribute 98% of the total vari-
ation in the dataset. Then, we select the top 45 original features
which have the largest contribution to the principal
components.

3. Elastic net regularization: We add an ‘1-norm regularizer to (2)
and tune its strength using 5-fold cross-validation. As is well
known, such an ‘1-norm term can be seen as convexifying the
original subset selection problem (which is an integer program-
ming problem)[33] , and suppresses the coefficients of features
that are not included in the optimal subset. We remove features
whose absolute coefficient is below a certain threshold.

3. Results

We designed, evaluated, and trained RRPCC for antibodies,
enzymes, and other complexes, separately. We present results
from the two validation strategies, 3-fold cross-validation and his-
torical, outlined in Section 2.3. We present the key results here,
while further details on parameter tuning, experimental settings,
and the complete list of complexes can be found in the supplemen-
tary materials.

In case we do not have enough information to determine the
class of proteins the structure being docked belongs, we developed
a combined model for enzymes and other complexes; results from
this model are included in the supplementary materials. Antibod-
ies were not included in this combined model because antibodies
can be differentiated from the other two categories (i.e., enzymes
and other complexes) based on their amino acid sequences. This
is due to their unique features such as: ð1Þ the presence of heavy
and/or light chain (note: both chains need not be present for iden-
tifying a sequence as an antibody), ð2Þ the presence of complemen-
tarity determining regions (CDR loops) which are easily
identifiable due to the unusual number of aromatic residues, and
ð3Þ the presence of the constant region which contains essentially
the same amino acid sequence in all antibodies of the same class.
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3.1. 3-Fold Cross-Validation

The complexes were split into three subsets of roughly equal
size. Two subsets were used for training and one for testing. This
gives rise to three folds, depending on the subset retained for test-
ing. Table 1 presents the ranking results for antibodies, enzymes,
and others. In this table, the RRPCC columns use our method and
the ClusPro columns rank the clusters in decreasing order of their
size. Tk; k 2 f1;5;10g, denotes the total number of (test) complexes
where a (ranking) model is able to raise at least one medium or
acceptable cluster to the top k clusters. We also provide the total
number of complexes in each fold with an acceptable or better
(#Acc) and medium or better (#Med) cluster, which provides an
upper bound on what a ranking method can achieve. The rows
labeled ‘Total’ simply add the number of complexes in each column
for each type of complex, providing a metric of performance across
folds and protein complexes. The last row simply adds all partial
totals. Percentages within parentheses indicate the percentage
improvement of RRPCC over ClusPro for the corresponding metric.
As seen in Table 1, RRPCC is able to improve T1 for Acceptable or
better predictions by 14%–50% for antibodies, enzymes, and others
across the three folds and by 24% for the corresponding ‘Total’ met-
ric. For Medium or better predictions, T1 improves by 10%–25%
across the three types of complexes and folds, and by 15% for the
corresponding ‘Total’ metric. According to the overall ‘Total’, T5

an T10 are equal or better for RRPCC.
3.2. Benchmark 5 as the Test Set

In the second validation setting, we train the model on Bench-
mark 4.0 (BM4) [30] and test on complexes added in Benchmark
5.0 (BM5). Table 2 presents the performance comparison of ClusPro
against RRPCC. Interestingly, our ranking algorithm improves Clu-
sPro’s T1 performance (‘Total’) by 100% for both Acceptable or bet-
ter predictions and Medium or better predictions, while T5 and T10

performance is equal or slightly better for RRPCC. A more detailed
comparison of RRPCC and ClusPro, including how they fare in rank-
ing the highest quality cluster for each complex, can be found in
the supplementary materials.
3.3. Comparing Against Other Methods

We compared the RRPCC ranking of the ClusPro-generated clus-
ters with the original ClusPro and the neural network implementa-
tion by Dror et al. [21] in Table 3. In the table, a ‘*’ in the Tk column
indicates that the method places a cluster with an acceptable or
better representative in the top k clusters. [21] used the ATTRACT
docking system and the Statistically Optimized Atomic Potential
(SOAP) for ranking the models. Upon implementation of their neu-
ral network method, PAUL, they reported improvements on 23 of
the 55 complexes added to BM5 (ATTRACT did not yield any good
solutions in the top 1,000 poses for the rest of the complexes). As
shown in Table 3, ClusPro actually performs better than
ATTRACTPAUL�SOAP for both T5 and T10 in regards to the number
of acceptable or better solutions in these 23 cases. RRPCC ranking
raises ClusPro performance above these alternatives. It should be
noted that this set of complexes is biased, in the sense that it only
contains complexes where ATTRACT was able to find acceptable or
better solutions.

In addition to PAUL, the total number of cases with high, med-
ium and acceptable quality from ClusPro and RRPCC were com-
pared with SWARMDOCK before and after implementation of
their Machine Learning (ML) enhancement method (IRaPPA) [12]
(we refer to this method as SWARMDOCK-ML). The results are in
Table 4, using 51 of the 55 added cases to BM5 [10]. While



Table 1
Performance comparison of ClusPro and RRPCC using 3-fold cross-validation.

Acceptable or better Medium or better

RRPCC ClusPro RRPCC ClusPro

l T1 T5 T10 T1 T5 T10 T1 T5 T10 T1 T5 T10 #Acc #Med

Antibody

Fold 1 1 3 6 7 1 6 6 2 3 3 1 3 3 8 3
Fold 2 1 3 6 7 3 7 8 3 4 4 3 4 4 10 7
Fold 3 1 3 7 7 2 5 8 2 5 5 2 3 5 11 5

Total 9 (50%) 19 21 6 18 22 7 (17%) 12 12 6 10 12 29 15

Enzyme

Fold 1 10 9 16 17 6 16 16 4 7 9 3 7 7 21 14
Fold 2 10 9 14 18 8 14 17 4 6 10 4 7 9 23 10
Fold 3 10 3 12 17 3 13 17 3 5 7 3 5 7 22 12

Total 21 (24%) 42 52 17 43 50 11 (10%) 18 26 10 19 23 66 36

Others

Fold 1 10 3 8 9 2 8 9 1 2 2 0 2 2 11 4
Fold 2 10 5 8 10 4 8 9 1 3 4 1 2 4 16 6
Fold 3 10 8 10 12 8 10 12 3 5 5 3 5 5 19 7

Total 16 (14%) 26 31 14 26 30 5 (25%) 10 11 4 9 11 46 17

Total 46 (24%) 87 104 37 87 102 23 (15%) 40 49 20 38 46 141 68

Table 2
Performance comparison of ClusPro and RRPCC using BM5 additions as the test set.

Acceptable or better Medium or better

RRPCC ClusPro RRPCC ClusPro

l T1 T5 T10 T1 T5 T10 T1 T5 T10 T1 T5 T10

Antibody 10 4 (100%) 7 8 2 7 7 3 (50%) 3 3 2 3 3
Enzyme 1 4 (100%) 7 7 2 7 7 2 (100%) 4 4 1 4 4
Others 1 2 (100%) 7 7 1 6 7 1 1 1 0 1 1

Total 10 (100%) 21 22 5 20 21 6 (100%) 8 8 3 8 8

Table 3
Case by case results for ClusPro with and without RRPCC-based ranking compared with ATTRACT results ranked by SOAP and PAUL-SOAP.

ClusPro RRPCC SOAP PAUL-SOAP

PDBID Type T1 T5 T10 T1 T5 T10 T1 T5 T10 T1 T5 T10

2VXT A – * * – * * * * * * * *
3L5W A – – – – – * * * * * * *
3MXW A * * * * * * * * * * * *
4DN4 A – * * – * * – – * – * *
4G6J A – – – – – – – – – – – –
4G6M A – * * * * * – * * – * *
2A1A E – – – – – – – – – – – –
2GAF E – * * – – – – – – – – –
2YVJ E * * * * * * * * * * * *
3A4S E * * * * * * – * * * * *
3H11 E – * * * * * – * * – * *
3K75 E – – – – – – – – – – – –
3PC8 E – – – * * * * * * * * *
3VLB E – * * – * * * * * * * *
4HX3 E – – – – – – – – – – – –
1M27 O – * * – * * – – – – – –
2GTP O – – – – – – – – – – – –
2X9A O – * * – * * – – – – – -
3BX7 O – – * – * * – – – – – -
3DAW O – * * * * * – – * – – *
3F1P O – – – – * * – * * – * *
3L89 O – * * – * * – – * – * *
3S9D O * * * * * * * * * * * *

Antibody 1 4 4 2 4 5 3 4 5 3 5 5
Enzyme 2 5 5 4 5 5 3 5 5 4 5 5
Others 1 5 6 2 7 7 1 2 4 1 3 4

Total 4 14 15 8 16 17 7 11 14 8 13 14

Type: Antibody containing (A), Enzyme containing (E), and Others (O).
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Table 4
Comparing RRPCC-based ranking with the original ClusPro and SWARMDOCK.

ClusPro RRPCC SWARMDOCK SWARMDOCK-ML

T1 T5 T10 T1 T5 T10 T1 T5 T10 T1 T5 T10

High 0 1 1 0 1 1 0 0 0 0 0 0
Medium 3 7 7 6 7 7 5 9 9 5 10 12
Acceptable 2 12 13 4 13 14 0 5 6 7 8 10

Total 5 20 21 10 21 22 5 14 15 12 18 22
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SWARMDOCK-ML places an acceptable or better solution at the top
for more complexes, RRPCC ranking significantly improves ClusPro
in this category and is slightly below SWARMDOCK-ML. RRPCC
outperforms SWARMDOCK-ML in the T5 and T10 metrics, benefit-
ing from the fact that ClusPro was already competitive there (bet-
ter in T5 and slightly below in T10). The detailed results are shown
in Table S6 of the Supplement.

It is worth noting that with fewer features and only 2 minimiza-
tion steps (the only computationally expensive steps; cf. Section 2.1
and the generation of the stability features), RRPCC improves on
ClusPro as much and often more than IRaPPA does on SWARM-
DOCK. Comparing these ML-based enhancements to the impact
of the neural network on ATTRACT, it is noteworthy that the former
actually lead to a more significant improvement compared to the
original docking method they are based upon. PAUL leads to per-
formance improvements of 14% in T1, 18% in T5, and 0% in T10. This
improvement is significantly lower when compared to the
improvements by RRPCC which doubles T1 and IRaPPA which
improves SWARMDOCK’s T1 metric by 140%.
3.4. Predictive features

One of the advantages of the regression-based method we used
is that it becomes possible to compare the importance of different
features, which is not possible with neural network-based meth-
ods (used in [21]) or ensembles of decision trees (used in [16]).
In order to compute the contribution of each feature in the model,
we define a ‘feature’ score. Specifically, solving the regression
problem in (1), yields a matrix of coefficients x ¼ ðxijÞDi;j¼1. Feature
Fig. 1. The most important features in Enzymes. The first two features, var-mem-Elec
mincomp-hbond-sr-bb (backbone-backbone hydrogen bonds close in primary sequence
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i; i ¼ 1; . . . ;D, is involved in the ith row and ith column of x. We
compute a cumulative score for feature i by:

zi ¼
XD

j¼1

ðxij þ xjiÞ � xii; i ¼ 1; . . . ;D: ð5Þ

Figs. 1–3 show the score of each feature in Enzymes, Antibodies
and Others, respectively. Fig. 4, shows eight common features
which are important for all three sets of complexes. The descrip-
tion of all features (and the corresponding labels used) are pro-
vided in the supplemental Table S4; which uses the following
common abbreviation: var (variance), mem (members), bb (back-
bone), PREMIN (before minimization), and POSTMIN (after
minimization).

The feature importance scores shown in Figs. 1–3 reflect differ-
ences among the three sets of complexes. Enzymes, known to be
more rigid and inflexible upon complex formation, have as the
two most dominant features metrics pertinent to intermolecular
interactions (long-range hydrogen bond energy and Coulombic
electrostatic potential). Antibodies, on the other hand, show that
intramolecular energies evaluating phi and psi backbone angles
based on Ramachandran maps before and after CHARMM22 mini-
mization have the most impact. Similarly, Others show intramolec-
ular energy terms such as reference energy of each amino acid,
bonded angles’ energy, and pre- and post-minimization proline
ring closure energies. This indicates that protein minimization
and ensuing energy calculations are essential for protein com-
plexes showing flexibility on the protein–protein interface.

Despite the difference in the top 2–3 most dominant features, it
is still surprising that non-interface related potentials are preva-
(variance of Coulombic electrostatics potential of each member of the cluster) and
), are both relevant to intermolecular interactions.



Fig. 2. The most important features in Antibodies. The first two features are movedcomp-rama-prepro (Ramachandran preferences) and var-mem-Elec (variance of
Coulombic electrostatics potential of each member of the cluster).

Fig. 3. The most important features in Others. The first three features are piper-ref (reference energy of each amino acid), mincomp-pro-close and piper-pro-close (proline
ring closured energy and energy of psi angle of preceding residue).
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lent in all three protein classes. Though it is difficult to draw defini-
tive conclusions, it is evident that both pre- and post-minimization
potential values of non-interface bonded and non-bonded interac-
tions of good docking poses are distinct from bad ones. This might
signify that refinement of protein complex models, and their
respective response to the minimization, are strong indicators to
how good the model originally was. Since RRPCC is doing a pair-
wise comparison, it is not hard to imagine the change (instead of
the actual value) in these potentials pre- and post-minimization
might be indicative of good models.

According to Fig. 4, the common eight features among the three
classes of proteins are: ð1Þ statistically optimized atomic potential
developed by Sali and colleagues (SPPS) [23], ð2Þ improper dihedral
angle energy, ð3Þ population of cluster (size), ð4Þ proline ring
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closure energy and psi angle of preceding residue (pro_close) after
separating the proteins and minimization with CHARMM, ð5Þ
Lennard-Jones repulsive energy between atoms of different resi-
dues after minimization, ð6Þ Lennard-Jones repulsive energy
between atoms of different residues before minimization, ð7Þ pro-
line ring closure energy and psi angle of preceding residue (pro_-
close) of the complexes (before separation) and after
minimization with CHARMM, and ð8Þ total weighted score of
ROSETTA calculated energies. This suggests that size, the only fea-
ture that ClusPro technically uses for ranking, is a potent feature
but is not alone in determining better ranking. Five ROSETTA scores
are also prominent as they offer a more fine-tuned perspective of
interactions between atoms of different residues. This is expected
since ClusPro’s energy potentials, especially the DARS potential,



Fig. 4. The common eight features in all three classes of protein complexes.
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are more coarse-grained. Since the goal is to discriminate between
poses with different interfaces, the results show, as expected, that
interface-related potentials (features 1, 3, 4, 5 and 8) dominate the
list of common important features.

4. Discussion

As shown in Tables 1 through 4, RRPCC significantly improves
the ranking of ClusPro clusters. When training on a randomly
selected subset of complexes containing 2/3 of BM5 and testing
on the remaining 1/3 of the complexes, RRPCC increases by 24%
the number of test complexes where a cluster of acceptable or bet-
ter quality is ranked first. The corresponding improvement for
clusters of medium or better quality is 15%. When training on
the version 4.0 of the benchmark [30] and testing on the new com-
plexes added in BM5, the number of test complexes where an
acceptable or better quality cluster is ranked first increases by
100%, and the number of test complexes where a medium or better
quality cluster is placed at the top is also increased by 100%. RRPCC
does not impact as much the quality of the top 5 or top 10 clusters;
it mostly pulls the better cluster to the top of the rank.

The combination of RRPCC–CluPro compares well against a
number of alternative methods, but there is a remarkable conver-
gence of performances. Although ClusPro, RRPCC, SwarmDock, and
PAUL-SOAP were all tested on the BM5 set, the comparison to the
neural network based PAUL-SOAP is somewhat limited, because
the latter was used to score docked structures generated by the
program ATTRACT [21], which produced near-native structures
only for 23 of the 55 complexes. Thus, scoring was limited to this
subset of 23 targets, and ClusPro was already competitive with
PAUL-SOAP in terms of T5 and T10 (Table 3). However, using RRPCC
was required to match T1. RRPCC also improved the T5 and T10

results, but only by adding one good solution for each.
The comparison between ClusPro, RRPCC, and SwarmDock were

more interesting (see Table 4), since these methods were tested on
the 51 (out of 55) complexes added to BM5 that we could process
using the SWARMDOCK server [10]. In addition, from the literature
[18], we also had T1 and T10 results for ZRANK, ZRANK2, ProQDock,
and ProQDockZ mentioned in the Introduction. RRPCC–ClusPro
outperformed SWARMDOCK-ML in terms of T5 (21 vs. 18), the
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two methods had the same performance in T10 (22 for both), but
SWARMDOCK-ML outperformed RRPCC–ClusPro in T1 (12 vs. 10).
Based on Basu and Wallner [18], the T1 values were 8 for both
ProQDock and ProQDockZ, and 4 and 10, respectively, for ZRANK
and ZRANK2. Looking at the T10 results, ZRANK2 had a correct
model for 16 targets, ZRANK had 17, ProQDock had 20 and ProQ-
DockZ had 23. Considering these values as well, the best T1 perfor-
mance of 12 is achieved by SWARMDOCK-ML, the best T5 of 21 by
ClusPro-RRPCC (we have no data for ZRANK, ZRANK2, ProQDock
and ProQDockZ), and the best T10 value of 23 by ProQDockZ, but
SWARMDOCK-ML and ClusPro-RRPCC were very close with 22
good structures each. This comparison shows that in spite of the
different methodologies, all scoring tools provide very similar suc-
cess rates, with a difference of one or two complexes. However, it is
also necessary to note that even the best success rates are some-
what moderate, e.g., in T10 acceptable or better models are
obtained at most for 23/51 = 45.1% of the complexes in BM5.
The different methods do not all fail on the same targets, and either
ClusPro-RRPCC or SWARMDOCK-ML are able to identify an accept-
able or better model for 28 of the 51 targets in T10. It is interesting
to understand where the failures are coming from. The 51 targets
in the test set are categorized as 29 easy (rigid body), 16 medium
difficulty, and 6 difficult (flexible). Among the total number of clus-
ters generated by ClusPro and enriched by the use of multiple
parameters as described in 2.4, we find acceptable or better models
for 20, 6, and 3 in these classes. Thus, the sampling produces
acceptable or better structures only for a total of 29 targets. As
shown in Table 4, using cluster ranking by RRPCC, we find such
structures in T10 only for 22 of these 29 targets. Thus, further
improvements are important both in sampling and ranking, since
good solutions are lost for 22 and 7 targets, respectively, in these
computational steps.

The training of RRPCC selects different features to use for rank-
ing, depending on the type of the complex, thus providing insight
on what ‘‘discriminates” good clusters. Over the entire set of com-
plexes, RRPCC leverages several features in addition to cluster size
used by ClusPro, including a statistically optimized potential by
Sali et al. [23]. However, the most important features differ among
the different types of complexes. Enzymes tend to form more rigid
complexes, and leverage electrostatic and long-range hydrogen
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bonding energy terms. The antibody-antigen pairs leverage
intramolecular energy terms evaluating the likelihood of psi and
phi backbone angles. Finally, the other-type complexes rely on
energy terms for specific amino acids, bonded angles, and proline
ring closure. We emphasize that some of these features are con-
stant when assuming rigid proteins, and become variable only
due to the local minimization of the CHARMM energy. Thus, the
improved discrimination is partly achieved due to going beyond
the rigid body approximation. We attempted to apply the regres-
sion method by restricting consideration to rigid body features,
and observed a drop in performance. The number of acceptable
or better models in T1 and T5 was reduced to 7 and 18, respectively,
from 10 and 21 shown in Table 4 (data shown in the Supplement,
Table S7). While the need for features representing internal energy
changes due to local minimization was unexpected, the results
shows that the rigid body assumption limits the accuracy of energy
evaluation and hence the ability to locate the most native-like
docked structures.
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