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Abstract
To generate two cells from one, bacteria such as   use aEscherichia coli
complex of membrane-embedded proteins called the divisome that synthesize
the division septum. The initial stage of cytokinesis requires a tubulin homolog,
FtsZ, which forms polymers that treadmill around the cell circumference. The
attachment of these polymers to the cytoplasmic membrane requires an actin
homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ.
Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric
state in   to control the progression of cytokinesis, including theE. coli
recruitment of septum synthesis proteins. In this review, we focus on recent
advances in our understanding of protein-protein association between FtsZ and
FtsA in the initial stages of divisome function, mainly in the well-characterized 

 system.E. coli
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Introduction
For a cell even as simple as Escherichia coli, splitting in half 
is a complex maneuver that needs to be finely regulated in 
time and space. For this purpose, E. coli has evolved a protein  
complex (the divisome) that spans the cytoplasmic membrane 
and forms a circumferential ring around midcell1. Seen in cross- 
section, the innermost part of this complex, termed the proto-
ring, consists of membrane-anchored cytoskeletal proteins that 
form polymers on the cytoplasmic side2. These polymers interact 
with other proteins that span the membrane and guide the inward 
synthesis of cell wall material, called the division septum, which 
eventually will close to form the poles of the newborn cells.  
Within the proto-ring, FtsZ forms a dynamic scaffold for 
the recruitment of other septum synthesis proteins. FtsA and 
another protein, called ZipA, serve as dual membrane teth-
ers for FtsZ; without either one, FtsZ forms a ring but cannot  
divide, but if both FtsA and ZipA are missing, FtsZ remains  
diffuse in the cytoplasm3. As FtsZ and FtsA are the most  
conserved across diverse bacterial species while ZipA is not, this  
review will focus on these two proteins.

FtsZ, the tubulin homolog
The most highly conserved divisome protein is FtsZ, a  
tubulin homolog. FtsZ assembles into a polymeric ring-like 
structure at the inner surface of the cytoplasmic membrane, 
marking the future division site and organizing the assembly 
of the divisome complex4. The ring then constricts in front of 
the invaginating division septum, reminiscent of the function 
of the actin ring in animal cells. Although early fluorescence  
microscopy studies suggested that FtsZ forms a continuous ring5, 
more recent super-resolution microscopy demonstrated that 
the ring in E. coli actually consists of multiple patches several  
hundred nanometers apart in a circumferential path6,7. Other  
species as diverse as Caulobacter crescentus, Bacillus subtilis,  
Streptococcus pneumoniae, and Procholorococcus show similar  
patchy localization of FtsZ6–10, suggesting that a symmetrical,  
continuous ring of FtsZ is not required for cell division. Indeed, 
mutants of E. coli that constrain active FtsZ to a partial ring 
structure can still divide, although the cells display abnormal  
morphologies11,12. Recent studies have found that many bacterial  
species naturally initiate constriction on one side of the  
division site prior to becoming more symmetrical and that these 
asymmetric constrictions are likely promoted by relatively  
short FtsZ filaments that do not form a continuous  ring  
structure13,14.

Longitudinal interactions within FtsZ protofilaments
Like tubulin, FtsZ binds and hydrolyzes GTP15,16 but forms 
long single-stranded protofilaments in the presence of GTP 
instead of hollow microtubules17 (Figure 1A and Figure 2A). 
Two recent reports demonstrated that in both E. coli and  
B. subtilis cells, FtsZ protofilaments exhibit polarity and undergo 
treadmilling18,19, during which subunits are selectively added to  
one end and removed from the other end (Figure 1A). The 
result is that one or more FtsZ protofilaments migrate as a unit 
around the cell circumference, roughly following the path of the 
ring. Although the movement of each treadmilling filament is  
processive, other FtsZ protofilaments in the same cell can move 

in the opposing direction, so it seems that each protofilament unit  
has its own independent directionality.

FtsZ subunit turnover can occur within protofilaments or 
by treadmilling at protofilament ends. This turnover due to  
treadmilling is proportional to FtsZ’s GTPase activity, indicat-
ing that GTP hydrolysis regulates circumferential protofila-
ment migration. Consistent with the role of GTP hydrolysis in  
protofilament turnover and disassembly20, the thermosensi-
tive mutant ftsZ84 exhibits much lower GTP binding and 
hydrolysis activity than wild-type (WT) FtsZ and is unable to  
support cell division at 42°C15,21. Nevertheless, normal GTPase  
activity is clearly not essential for FtsZ function, as ftsZ84  
mutants form normal FtsZ rings and divide normally at the  
permissive temperature.

Through their interactions with other divisome proteins, 
FtsZ treadmilling protofilaments guide the key septal synthe-
sis enzyme, FtsI (PBP3), which harbors the transpeptidase  
activity required for gradual inward cell wall growth  
eventually leading to cell splitting22,23. It is important to note 
that in E. coli, the activity of cell wall synthesis enzymes drives  
septum synthesis independently of FtsZ treadmilling but that 
B. subtilis septal wall synthesis is dependent on FtsZ treadmill-
ing speed18,19. Although FtsZ subunits exchange rapidly within 
protofilaments as well as at the ends24,25, it remains to be seen  
exactly how internal subunits of FtsZ within a proces-
sively treadmilling filament help to guide a moving septum  
synthesis machine26. One possible mechanism is that the septum  
synthesis machine continuously shuttles between different FtsZ  
subunits at the growing end, although it is difficult to imagine  
how this could occur processively. Recent evidence suggests 
that any physical links between FtsZ and the septum synthesis  
proteins are likely indirect27.

It is also not clear how single-stranded FtsZ protofilaments  
treadmill (that is, although they have inherent polarity, why one 
end adds net subunits while the other loses them). A recent study 
suggests a possible mechanism. Examining crystal structures 
of FtsZ, Wagstaff et al. found a correlation between different  
conformational states of FtsZ and the ability to form polymers28.  
The closed form of FtsZ has an incomplete subunit  
interface that correlates with the monomeric state, whereas the 
open form has a more complete subunit interface and can be  
modeled to fit into long straight protofilaments. This differ-
ence in interfaces between closed and open conformations of the 
subunits may result in distinct “on-off” rates from either end; if 
one end has a stronger “on” rate than the other, it would become  
the growing end of the filament. This interesting model awaits  
further experimental confirmation.

As FtsZ polymerization and treadmilling are essential for 
normal septal morphology, the inhibition of those activities 
should inhibit cell division. Indeed, there are numerous endog-
enous regulators that target FtsZ polymerization by various 
mechanisms, although inactivating any one of these regulators  
has only small effects on cell division. For example, the  
SOS-inducible SulA protein sequesters FtsZ subunits to prevent 
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Figure 1. Model for how changing oligomeric structures of FtsA (red) and FtsZ (green) might regulate Escherichia coli cell division. A 
scheme is shown for how FtsZ and FtsA oligomeric states influence and potentially reinforce each other by positive feedback. Depicted are 
their structures on membranes and subunit exchange by treadmilling (curved arrows) (A) and how several treadmilling complexes containing 
these structures at the inner surface of the cytoplasmic membrane might function in the cell for inward synthesis of the division septum (B). 
The large green arrow denotes circumferential movement of a patch of FtsZ-FtsA; blue arrows show the direction of division septum synthesis 
that pushes the cytoplasmic membrane inward. FtsA, filamentous thermosensitive protein A; FtsZ, filamentous thermosensitive protein Z.

polymer formation or growth or both29–31. SlmA, a DNA-bound 
dimer that inhibits FtsZ polymerization over the nucleoid32,33, 
seems to function by binding to the conserved C-terminal pep-
tide of FtsZ and subsequently severing the FtsZ filament34,35 
similar to how another FtsZ inhibitor, MinC, depolymerizes 
FtsZ to prevent inappropriate division at cell poles36. Interest-
ingly, inactivating MinC in the GTPase-defective ftsZ84 mutant  
significantly exacerbates its thermosensitivity37. In addition,  
several peptides and small molecules, either natural or synthetic,  
target FtsZ polymerization and hold promise as potential  
antimicrobials38,39.

Lateral interactions between protofilaments
In addition to longitudinal interactions between FtsZ subunits  
within a protofilament, lateral interactions between protofila-
ments play an important role. Such interactions, which result 

in crosslinking or bundling of FtsZ protofilaments, may be 
facilitated either by intrinsic attraction between FtsZ subu-
nits or through accessory proteins. The general role of Zaps  
(Z-associated proteins), including ZapA, ZapC, and ZapD 
in E. coli, in promoting lateral interactions between FtsZ  
protofilaments is well described in recent reviews40,41 and will 
not be discussed in detail here. Although the loss of any one of 
these proteins has little effect on cell division, inactivation of  
more than one significantly reduces the division efficiency,  
suggesting that they have overlapping roles42. However, it is not 
yet clear whether they work together or whether their mechanisms  
of action are distinct.

The physiological role of intrinsic lateral interactions between 
FtsZ protofilaments is less clear, although several interesting  
mutants of E. coli FtsZ provide clues. FtsZ

R85Q
, for instance, 
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Figure 2. Oligomeric structures of FtsZ and FtsA. Shown are negatively stained transmission electron micrographs of FtsZ (A) and FtsZ* 
(B) from Escherichia coli and lipid monolayers containing minirings of E. coli FtsA (C), FtsA* arcs (D), FtsA + FtsZ (E), and FtsA* + FtsZ* (F). 
Scale bar = 100 nm. Arrows highlight double FtsZ protofilaments (magenta), single FtsZ protofilaments (yellow), or FtsA arcs (green). FtsA, 
filamentous thermosensitive protein A; FtsZ, filamentous thermosensitive protein Z.

is partially defective for cell division and displays lower  
lateral interactions in vitro43,44. Another lateral mutant, FtsZ

R174D
, 

is non-functional for E. coli cell division and is unable to form  
bundled protofilaments in vitro when assembled in millimolar 
Ca++, a condition that stimulates strong bundling45,46. Although 
this deficiency of FtsZ

R174D
 in bundling in vitro has been chal-

lenged recently47, a genetic suppressor screen showed that 
this mutant protein can be rescued for function by amino 
acid changes at the nearby residue L169. Interestingly, proto-
filaments of FtsZ

L169R
, also called FtsZ*, make larger bundles  

than WT FtsZ in vitro (Figure 2A, B) and exhibit lower 
GTPase activity48. Consistently, FtsZ* was able to suppress the  
ability of Kil, a peptide from coliphage lambda that inhibits 
FtsZ function, to depolymerize FtsZ49,50. In addition, amino acid  
substitutions at residues E93 and D86 result in increased FtsZ  
filament bundling34,51–53. Like the substitutions at L169, they are 

still able to function in cell division, although cells with these  
variants have defects, forming spiral-shaped FtsZ structures 
that cause abnormally shaped division septa and deformed cell 
poles. Hyper-bundled protofilaments have lower GTPase activi-
ties that should reduce treadmilling speed, thus perturbing the 
timing of septum synthesis relative to cell growth, leading to the  
observed shape abnormalities.

The accumulated data suggest a model in which lateral inter-
actions between FtsZ protofilaments are regulated for optimal 
function. This is supported by the important role that intrinsic 
lateral interactions play in FtsZs from other species. For exam-
ple, B. subtilis FtsZ protofilaments intrinsically bundle more 
than E. coli FtsZ, and these lateral interactions are mediated 
by the conserved C-terminal peptide of FtsZ54. C. crescentus 
FtsZ also exhibits intrinsic lateral interactions mediated by its  
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C-terminal domain55. Moreover, S. pneumoniae FtsZ forms mostly  
double-stranded filaments, reflecting robust lateral interactions56.

In addition to the Zap proteins, recent evidence indicates that 
other proteins specifically regulate lateral FtsZ interactions  
in diverse species. For example, ARC3, a protein in plant  
chloroplasts, antagonizes the filament bundling of FtsZ2, one 
of three FtsZ homologs used for chloroplast fission57. FzlA and  
FzlC, both FtsZ-binding proteins in C. crescentus, regulate  
lateral interactions between FtsZ protofilaments55, but the ZapA 
homolog in C. crescentus does not affect FtsZ lateral interactions  
in vitro, despite its ability to condense the FtsZ ring in vivo58.

FtsA, the actin homolog for cell division
FtsZ–FtsZ interactions, whether lateral or longitudinal, are  
clearly important for cell division. Nevertheless, several other 
proteins that interact directly with FtsZ also regulate FtsZ–FtsZ 
interactions. One is the aforementioned ZipA, which is narrowly  
conserved in the enterobacteriaceae and forms membrane- 
tethered homodimers59. Another is SepF, which is present in a 
diverse group of Gram-positive bacteria. In B. subtilis, SepF  
assembles into sharply curved protofilaments at the membrane  
that regulate FtsZ assembly60,61 and has been proposed to act like  
a bacterial homolog of spectrin62.

For the purposes of this brief review, we will focus on the most 
well characterized and highly conserved FtsZ interactor, FtsA, 
an actin homolog that binds ATP and forms polymers63–66. FtsA  
differs from actin in that it uses its C-terminal amphipathic helix 
for binding to the cytoplasmic membrane67 and binds directly to 
the conserved C-terminal peptide of FtsZ68. As a result, FtsA 
molecules provide important membrane tethers and poten-
tial guides for treadmilling FtsZ polymers. As FtsA binds to 
a region of FtsZ that also interacts with other key divisome  
proteins such as ZipA and is implicated in lateral interactions 
between protofilaments, it is important to understand how FtsA  
and FtsZ interact in vitro.

Until very recently, understanding this interaction was compli-
cated by the difficulties in purifying active E. coli FtsA (EcFtsA) 
containing the amphipathic helix. However, earlier studies of 
FtsA from S. pneumoniae (SpFtsA), which was more amenable  
to purification, provided some important clues about FtsA  
function. Purified SpFtsA polymerizes bidirectionally in solution  
and its polymerization is facilitated upon membrane  
binding or when its C-terminal end is removed. Both polym-
erization and membrane attachment depend on ATP binding,  
suggesting that ATP induces a conformational switch to liberate  
FtsA’s C-terminal amphipathic helix for membrane binding  
and to induce polymerization69–71. Complementary physiological  
studies of SpFtsA are now catching up with its biochemi-
cal characterization72,73 which should greatly facilitate our  
understanding of FtsA function in this species and others.

Recent studies using purified EcFtsA (hereafter referred to as 
FtsA) indicate that it, too, can polymerize, but only on membranes 

and not as linear polymers74. When added to lipid monolay-
ers, FtsA assembles mainly into closed minirings containing 
12 subunits each. These minirings, 20 nm in diameter, can be 
single or grouped into arrays (Figure 2C). FtsZ, in the pres-
ence of GTP and near physiological concentrations, forms  
long single-stranded protofilaments that are strikingly aligned 
by these FtsA minirings but spaced apart by more than 15 nm  
(Figure 2E). Notably, using fluorescence microscopy of puri-
fied FtsZ and FtsA on supported lipid bilayers, Loose and 
Mitchison75 also observed the assembly of FtsZ into aligned 
polymer rafts on top of membrane-bound FtsA, although the  
ultrastructure of FtsA polymers was not examined. Consistent 
with the tendency of FtsZ protofilaments to curve under some  
conditions76–78, these aligned FtsZ polymers form large circular 
vortices that swirl unidirectionally by treadmilling. This behav-
ior probably reflects the directional treadmilling of individual  
FtsZ complexes observed in cells18,19.

Just as mutants of FtsZ that decrease polymerization or GTPase 
activity are defective in cell division, mutants of FtsA that com-
promise the ATP-binding site or FtsA–FtsA interactions also 
have cell division phenotypes. Amino acid substitutions that 
inactivate EcFtsA function mostly map to the ATP-binding site 
and decrease ATPase activity, implicating nucleotide binding 
and hydrolysis in normal FtsA function79. A very recent study 
showed that ATP binding and hydrolysis by E. coli FtsA promote  
membrane remodeling80, analogous to the ability of ATP 
to promote membrane binding of S. pneumoniae FtsA71. 
Such an activity might stimulate membrane invagina-
tion during septation. Likewise, residue substitutions at the 
subunit interface of B. subtilis FtsA that are predicted to  
affect FtsA oligomerization inhibit its cell division activity68. 
Surprisingly, however, many substitutions at or near the  
subunit interface that decrease FtsA self-interaction actually 
enhance FtsA activity. For example, the R286W substitution  
in E. coli FtsA (FtsA*) results in a gain of function, bypass-
ing the requirement for several other cell division proteins, 
including ZipA, and permits cells to divide at abnormally short 
cell lengths81–83. Other FtsA*-like substitutions have similar  
gain-of-function characteristics79,84,85.

One model arising from these data proposes that, at least in 
E. coli, when an FtsA subunit is not engaged with another 
FtsA subunit in an oligomer, it is free to interact with later- 
division proteins, helping to drive cytokinesis forward84. In  
support of this idea, purified FtsA* does not form closed minir-
ings on lipid monolayers but instead mostly short arcs with the 
same curvature (Figure 1A and Figure 2D)74. These arcs, with  
potentially free protein domains available at subunit ends 
unlike in minirings, might be more likely to interact with  
late-division proteins84. In addition, the dynamics of treadmill-
ing might be significantly influenced by the oligomerization  
state of FtsA on the membrane and its ability to tether FtsZ 
to the membrane (see “A role for FtsA in regulating lateral  
interactions between FtsZ protofilaments” section below). 
Future high-resolution electron microscopic studies with purified 
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FtsA bound to other cell division proteins on membranes 
should help to test this model and to elucidate factors that  
regulate treadmilling dynamics.

A role for FtsA in regulating lateral interactions 
between FtsZ protofilaments
As mentioned above, minirings of E. coli FtsA inhibit lateral 
interactions between FtsZ protofilaments. If FtsZ bundling is 
important for cell division to proceed, the prediction is that 
FtsA minirings switch to a form that promotes FtsZ bundling. 
FtsA* may be an example of this form because when FtsZ is 
assembled on lipid monolayers seeded with FtsA* arcs, FtsZ  
protofilaments are no longer separated by more than 15 nm 
and instead become highly bundled, with lateral distances of 
about 7 nm74. This stimulation of FtsZ bundling by FtsA* has 
also been observed in solution86, indicating that some behav-
iors in solution may mimic effects seen on the membrane.  
Strikingly, when the FtsZ* hyper-bundled variant is assem-
bled on lipid monolayers with FtsA*, large sheets of FtsZ* 
with protofilaments spaced about 5 nm apart are formed  
(Figure 2F). This over-bundling suggests that FtsA*-mediated 
bundling of FtsZ is synergistic with the intrinsically increased 
bundling of FtsZ*. The physiological consequences are clear, 
as cells with both FtsA* and FtsZ* do not divide normally,  
often exhibiting twisted cell division septa48. Interestingly, 
when FtsZ* is added to lipid monolayers containing FtsA  
minirings, the minirings become disrupted74, hinting at a positive  
feedback loop (see further below in this section).

It is not yet known which molecular mechanisms control either 
intrinsic or FtsA-mediated FtsZ lateral interactions or which 
residues are involved in direct contacts. Nonetheless, such inter-
actions likely involve not only the core polymerizing domain 
and C-terminal peptides of FtsZ but also the conserved, intrinsi-
cally disordered linker that connects them87–90. Recent results  
indicate that changing the length of the linker in E. coli FtsZ 
can also alter the distance between bundled protofilaments, 
although the effects on lipid membranes with natural FtsZ tethers  
have not yet been explored90.

An attractive model to explain these results is that FtsA minir-
ings antagonize bundling of FtsZ protofilaments by holding 
them apart for some period of time and that this constraint is 
a key checkpoint in the progression of cell division in E. coli  
(Figure 1A). In this model, gain-of-function variants of FtsA such 
as FtsA* ignore this checkpoint because they do not form minir-
ings on the membrane and instead would transition directly to 
FtsA*-like non-miniring oligomers. One consequence of this  
transition would be premature bundling of FtsZ protofila-
ments. Although the overall morphology of the FtsZ ring does 
not change much during constriction8,9,91, a more condensed 
state of FtsZ91,92, potentially caused by increased protofilament  
bundling, is thought to be important for promoting septum  
formation (Figure 1B). Indeed, in FtsA*-like mutants that may  
prematurely bundle FtsZ, cell division is accelerated, potentially  
by bypassing a checkpoint, resulting in cells that divide at  
shorter cell lengths and overcome perturbations to the  
normal cell division pathway such as inactivation of ZipA.  
Considering the ability of bundled FtsZ to disrupt FtsA  

minirings in vitro74, we propose that factors that bundle FtsZ and  
factors that disrupt FtsA minirings act in the same pathway to  
promote septation. As FtsZ becomes more bundled, FtsA minir-
ings are disrupted, which promotes more FtsZ bundles, which 
in turn disrupts more FtsA minirings. Therefore, according 
to this model, the increased bundling of FtsZ and decreased  
oligomerization of FtsA reinforce each other in a positive 
feedback loop that helps to maintain constriction of the inner  
membrane in the forward direction in concert with septum 
synthesis. Genetic evidence suggests that FtsEX, an ATPase 
complex that senses septum synthesis but also contacts FtsZ 
and FtsA, may be involved in such a feedback loop, as the  
FtsX protein likely regulates FtsA’s oligomerization state93,94. 
As more mechanistic details in the FtsA–FtsZ interaction are 
revealed, interesting parallels with actin and tubulin in eukaryotic 
cells should emerge. For example, FtsA control of FtsZ bundling  
is reminiscent of F-actin bundling by septins95.

Although the above model is based on in vitro data and FtsA 
minirings have not yet been observed in E. coli cells, other 
genetic data support the idea that FtsA antagonizes FtsZ bundling. 
For example, a moderate excess of FtsA in E. coli cells lacking 
the FtsZ bundling proteins ZapA or ZapC significantly exac-
erbates the cell division defects caused by ZapA/C deficiency 
alone; conversely, excess FtsA can rescue cell division deficien-
cies in cells with over-bundled FtsZ caused by excess ZapA74.  
FtsA minirings are reminiscent of the structures formed by 
B. subtilis SepF but differ from the straight filaments formed 
by T. maritima FtsA reported by Szwedziak et al.96. We  
speculate that FtsA proteins from distinct bacterial species  
assemble into a variety of forms and that the miniring 
form is potentially exclusive to E. coli and related gamma- 
proteobacteria that have multiple FtsZ membrane tethers but 
need to impose a checkpoint delay on septum formation. In  
bacteria with only one membrane anchor, perhaps FtsA polym-
erization into straight actin-like filaments serves to tether more  
FtsZ to the membrane and consequently reduce its treadmilling, 
keeping septation in check by a different mechanism.

Interestingly, gain-of-function mutants in other essential E. coli 
divisome genes (ftsL and ftsB) have similar properties as ftsA*, 
hinting that other parts of the cell division apparatus, includ-
ing multiple periplasmic proteins with no known enzymatic 
activities, are also involved in regulating the progression of  
septum formation85,97. It is notable that the FtsZ bundling- 
stimulator FtsA* can rescue the toxicity caused by excess 
ZapC, which is the opposite of what would be predicted if ZapC 
also induces FtsZ over-bundling98. These effects may reflect  
the increased ability of FtsA* to recruit downstream divisome  
proteins. Clearly, the effects of gain-of-function mutants such as 
FtsA* cannot be limited to FtsZ bundling alone.

Conclusions and perspectives
We have discussed important recent breakthroughs in our under-
standing of how FtsZ and FtsA interact to organize bacterial  
cell division, mainly in E. coli but also increasingly in other model 
systems. FtsZ protofilaments treadmill around the circumference 
of the division ring and are connected—directly or indirectly—
to the membrane and periplasmic peptidoglycan synthesis 
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machinery by FtsA and other proteins to construct the  
septum. The next key challenge is to elucidate the mechanism  
of treadmilling and how it guides septum synthesis. In  
addition, important new evidence for the role of lateral inter-
actions in FtsZ function and the ability of FtsA’s oligomeric 
state to regulate these interactions, including the roles of ATP  
and GTP in these processes, needs to be explored more in 
detail. These experiments should be greatly facilitated by 
improved lipid membrane systems, such as lipid monolay-
ers, supported lipid bilayers, and lipid discs, as well as rapidly  
improving direct visualization methods such as super-resolu-
tion microscopy and cryo-electron tomography. Finally, it is 
not yet settled whether the primary purpose of dynamic FtsZ 
filaments is to generate a physiologically relevant inward  
constriction force, supported by experiments with liposomes99,  
or to interface with the septal synthesis machinery and respond  
flexibly to numerous inputs100,101 or to do both.
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