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Abstract
Platelets may serve as a perfect peripheral source for exploring diagnostic
biomarkers for Alzheimer’s disease (AD); however, the molecular linkage
between platelet and the brain is missing. To find the common altered and
driving molecules in both brain and the platelet, we performed an integrated
analysis of our platelet omics and brain omics reported in the literature, and ana-
lyzed their correlations with AD-specific pathology and cognitive impairment.
By integrating the gene and protein expression profiles from 269 AD patients,
we deduced 239 differentially expressed proteins (DEPs) appeared in both brain
and the platelet, and 70.3% of them had consistent changes. Further analysis
demonstrated that the altered brain and peripheral regulations were pinpointed
into 10 imbalanced pathways. We also found that 117 DEPs, including ADAM10,
were closely associated to the AD-specific β-amyloid and tau pathologies; and
the changes of IDH3B and RTN1 had a potential diagnostic value for cognitive
impairment analyzed by machine learning. Finally, we identified that HMOX2
and SERPINA3 could serve as driving molecules in neurodegeneration, and they
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Funds for the Central Universities,
Grant/Award Number: HUST: 5003510102 were increased and decreased in AD patients, respectively. Together, this inte-

grated brain and platelet omics provides a valuable resource for establishing
efficient peripheral diagnostic biomarkers and potential therapeutic targets for
AD.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia characterized pathologically by accumulation of
β-amyloid (Aβ) and hyperphosphorylated tau proteins.1,2
However, the current therapeutic studies by targeting Aβ
plaques and tau have been challenged,3 suggesting the
involvement of complex mechanisms in AD. In addition,
one of the bottlenecks leading to the failed drug devel-
opment is the lack of effective and non-brain invasive
biomarkers for the early diagnosis of AD.3 Large-scale,
comprehensive, and impartial molecular analysis of AD
patients is particularly important to identify the complex
mechanisms and potentially effective biomarkers involved
in the pathogenesis of AD, with priority given to the
association with clinical cognitive decline.
Integrated analysis of large, multi-omics datasets is an

effective way to identify key molecular pathways and
potential drug targets.4,5 In brain tissue, previous stud-
ies have integrated multiple genomic datasets including
four brain regions, entorhinal cortex (EC), hippocampus
(HP), temporal cortex (TC), and frontal cortex (FC), to
fully unravel the central pathological regulatory networks
and driver genes of AD.6 Considering the similarities
between neuron and platelet biology, platelets may be
a good peripheral source for exploring AD diagnostic
biomarkers.7 Our latest Huazhong University of Science
and Technology (HUST) platelet proteomics reveals a com-
prehensive subnetwork of cognitive decline in the elderly
and a set of potential biomarkers for the early diagnosis of
AD.8 Studies have shownpotential dysregulation pathways
in AD from different perspectives,9,10 but the integrated
analysis of central and peripheral omics data related to AD
is still missing. This type of analysis is particularly impor-
tant for our understanding to the complex pathological
mechanisms of AD and thus to explore reliable peripheral
diagnostic biomarkers.
Here, we integrated ultra-deep platelet proteomics with

multiple brain regions to reflect the central and peripheral
links during AD. By integrating brain and platelet data,
we identified the disordered networks highly associated
with AD, such as platelet activation, interleukin-18 (IL-18)

signaling pathway, and epidermal growth factor/epidermal
growth factor receptor (EGF/EGFR) signaling pathway, by
which high-confidence targets throughout the center and
periphery of AD were deduced. By co-expression analysis
of the associated omics with the patients’ clinical cogni-
tive decline modules, the role of changed heme oxygenase
2 (HMOX2) and SERPINA3 was highlighted in cogni-
tive impairment. Multiple algorithms demonstrated the
diagnostic value of IDH3B and RTN1 for AD.

2 RESULTS

2.1 Global characterization of brain and
platelet expression profiles of AD patients

By comparing AlzData datasets, we found that 91.8% of
platelet proteins (2696 proteins in AlzData) were also
expressed in the four brain regions, and 8.2% of platelet
proteins were peripheral unique (Figure S1). Furthermore,
72.5% of the proteins were highly conserved in brain and
platelet without significant changes (Figure S1), while
7.9% of the proteins (data i) were significantly changed
in the brain but not in the platelet (Figure S1). The main
enriched pathways were complement and coagulation
cascades, synaptic vesicle cycle, glycolysis and gluconeo-
genesis, blood clotting cascade, and chemokine signaling
pathway (Figure 1A). In addition, we found that 3.2% of the
proteins (data ii) were significantly changed in the platelet
but not in the brain, and themain enriched pathways were
ABC transporters, fatty acid elongation, electron transport
chain, and ribosome (Figure 1B).
Surprisingly, 239 of the 360 differentially expressed pro-

teins (DEPs) in platelets (data iii) were also differentially
expressed in the brain (Figures S1 and 1D), of which 168
(70.3%)DEPs showed a consistent trend of change between
brain and platelets (Figure 1E), and the main enriched
pathways were platelet activation, glucagon signaling
pathway, mitogen-activated protein kinases (MAPK) sig-
naling pathway, EGF/EGFR signaling pathway, vascular
endothelial growth factor A–vascular endothelial growth
factor receptor 2 (VEGFA–VEGFR2) signaling pathway,



YU et al. 3 of 15

Platelet activation

Glucagon signaling pathway

MAPK signaling pathway

EGF/EGFR signaling pathway

VEGFA-VEGFR2 signaling pathway

IL-18 signaling pathway

Fatty acid biosynthesis

Alzheimer's disease

Complement and coagulation cascades

Synaptic vesicle cycle

Glycolysis and Gluconeogenesis

Blood Clotting Cascade

Chemokine signaling pathway

ABC transporters

Fatty acid elongation

Electron Transport Chain

Ribosome

Num=Number of proteins per GO term 

n = 233

Data i

n = 93

Data ii

n = 239

Data iii

(A)

(B)

(C)

MECR

SYP

NIT2

PI4KA

STXBP1

ATP1A1

NRGN

YWHAZ

BCKDK

RTN1

POR

PMPCA

PPP3CB

SLC27A2

THNSL1

SLC25A11

USE1

IDH3B

MAP4K2

SMAP1

MFSD6

MCTS1

PDHA1

HMOX2

NDUFA13

ETFB

PRKAR1A

CLPTM1

SRPRA

ACACA

STRN4

TIMM10

RCHY1

DYNLL1

TM9SF2

PANK4

LRPPRC

GFPT1

MCTP1

RTN4

PEF1

STX12

NCKIPSD

KCNA3

TMEM30A

UXS1

BAX

TWF2

GNAS

MRPL24

EFHD2

DDHD2

TACC3

KRT5

PEX14

DPM3

BCAP31

TM9SF4

PMPCB

GNAZ

IVD

BSG

ARMC6

NMT1

MINPP1

GOLPH3L

ABCF1

ITPR1

EXOC7

SCAMP1

DNPEP

QSOX1

CAMK2G

GNPAT

DNAJC13

SLC37A1

CARS2

GNL1

CEP170

GOLGB1

COLEC11

INPP4B

BCL2L13

MLYCD

ANXA11

ETHE1

SPCS3

ATP11B

LNPEP

PHB

LUZP1

CCDC28B

DARS2

CANX

CYLD

NCK2

GCDH

CPT1A

RAB11FIP3

UBR4

ITGA2B

ASAP2

ATP9B

TMEM40

HADH

RAB38

ERLIN1

DECR1

LRRC8D

DHCR7

SLC25A24

SOS1

ZMPSTE24

RNH1

CYB5R1

SLC33A1

TSPAN15

EMD

SLK

KRT10

STT3A

CD82

TBC1D9B

LMAN2L

AKAP13

DUT

TRAF2

YIPF6

JAK2

LRCH1

FAM120A

LSM14A

CLU

RAP1A

KRT1

ADAM10

CD63

ANXA4

FETUB

TSPAN14

RMDN1

MGST2

TAOK1

EEF1D

TBXAS1

CRYL1

RAB9A

EMILIN1

GP1BA

GNAI3

KRT9

PKP2

ERC1

SCARF1

CCDC88A

ITGB3

S100A6

MAP4

RELA

DAAM1

VWF

SEC11A

KIF5B

BANK1

TMEM43

SMTN

HSPG2

PPP4R1

MPL

DNAJB6

ANXA5

MYCT1

GSN

MICALL2

EGF

FNBP1L

KRT14

DGKG

LRCH4

ACAP2

ADPRH

FN1

KRT2

PTTG1IP

TNS1

AHNAK

STK3

GNA13

ITGA2

PTPRC

PLSCR1

RHBDF2

DDAH2

ITPR2

ERBIN

ITGB5

MECR

SYP

NIT2

PI4KA

STXBP1

ATP1A1

NRGN

YWHAZ

BCKDK

RTN1

POR

C8B

MAOB

GMPR

SERPINA3

(D)

Ctrl MCI AD

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 i
n

 p
la

te
le

t s

**

BAX

0 10 20 30

0.0

0.5

1.0

1.5

MMSE

B
A

X

r = 0.334, P = 0.085

Ctrl AD

2

3

4

5

6

G
e
n

e
 e

x
p

re
s
s

io
n

**

Ctrl MCI AD

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 i
n

 p
la

te
le

ts

*

MAOB

0 10 20 30

0.0

0.5

1.0

1.5

MMSE

M
A

O
B

r = -0.398, P = 0.036

Ctrl AD

2.0

4.5

7.0

G
e
n

e
 e

x
p

re
s
s

io
n

***

(H)

(I)

C
1-

n=
14

3
C

2-
n=

53
C

3-
n=

18
C

4-
n=

25

GO:0097435: supramolecular fiber organization

ko04512: ECM-receptor interaction

GO:0045104: intermediate filament cytoskeleton organization

GO:0002576: platelet degranulation

GO:0045055: regulated exocytosis

GO:2001235: positive regulation of apoptotic signaling pathway

GO:0030168: platelet activation

GO:0034109: homotypic cell-cell adhesion

GO:0060627: regulation of vesicle-mediated transport

GO:0002253: activation of immune response

GO:0070201: regulation of establishment of protein localization

GO:0072657: protein localization to membrane

hsa04922: Glucagon signaling pathway

GO:0006635: fatty acid beta-oxidation

GO:0023061: signal release

GO:1904874: positive regulation of telomerase RNA localization to Cajal body

GO:0010256: endomembrane system organization

GO:0072594: establishment of protein localization to organelle

GO:0050821: protein stabilization

GO:0006457: protein folding

20

10

6

4
3
2
0

(G)

C1    C2    C3    C4

ACOT7

RUVBL2

PLA2G15

EIF6

COG7

CCT2

AP3S1

ALDOC

TXNL1

STMN1

CCT4

C9

PRMT5

AHSA1

CAP1

TIMM10B

FLOT2

LMAN2

EIF3J

ARMC8

PEPD

TKT

HPX

CDH1

NENF

FADD

SAR1B

STK38

PACSIN2

ORM1

CFHR2

MAPRE1

APOD

PTPN7

SPAG9

CRTAP

DPYD

IFI35

PAWR

C8B

MAOB

GMPR

SERPINA3

Platelet

AD

Ctrl

MCI

0

50

100

150

200

250

All TC EC FCHP

239

126 119 112

67

(E) (F)Data iii

Sample class

Ctrl

MCI

AD

Date Type

RI

Sample class

EC

FC

HP

TC

Date Type

Ratio

-log10 (Pvalue)

F IGURE 1 Changed pathways and dysregulated molecules in brain and platelet of Alzheimer’s disease (AD) patients. To fully
understand the central and peripheral dysregulated pathways, we performed pathway enrichment analysis on the molecules of the three
modules: (A) unchanged in platelets but changed in the brain (data i); (B) changed in platelets but unchanged in the brain (data ii); (C)
changed in both brain and the platelet (data iii). (D) The heat map shows the differential molecular expression profile of central and platelets
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IL-18 signaling pathway, fatty acid biosynthesis, and AD
(Figure 1C). Specifically, 126, 119, 112, and 67 DEPs iden-
tified in TC, EC, HP, and FC regions of the brain were
also significantly changed in the platelet (Figure 1E). By
principal component analysis (PCA) analysis, 239 DEPs
could effectively distinguish cognitive impairment from
non-cognitive impairment (Figure 1F), though the changes
of these 239 DEPs could not distinguish mild cognitive
impairment (MCI) from AD groups. These data further
support the diagnostic value of platelet in AD.
According to the central and peripheral consistence,

we further divided the 239 DEPs into four clusters: clus-
ter 1 (C1) contains 143 uniformly decreased molecules,
cluster 2 (C2) contains 53 platelet-decreased but brain-
increased molecules, cluster 3 (C3) contains 25 uniformly
increased molecules, and cluster 4 (C4) contains 18
platelet moderately increased but brain-decreased
molecules (Figure 1D,E). Many AD-related molecules
were on the top-altered proteins, that is, the most altered
molecules in clusters 1 and 4, such as synaptophysin
(SYP), 14-3-3 protein zeta/delta (YWHAZ), reticulon-1
(RTN1), and complement component C8 beta chain
(C8B) (Figure 1D). Gene ontology (GO) pathway anal-
ysis showed that these DEPs were enriched in multiple
dysregulated pathways, such as platelet degranulation,
regulated exocytosis, platelet activation, regulation of
vesicle-mediated transport, fatty acid beta-oxidation,
positive regulation of telomerase RNA localization to
Cajal body, protein stabilization, and protein folding
(Figure 1G). We also found that the high-risk genes (ref:
https://www.disgenet.org/home/), such as BAX11 and
MOAB,12 were respectively, decreased and increased in EC
and platelet, and the changes were slightly correlated with
Mini-Mental State Examination (MMSE) (BAX: r = 0.334,
p = 0.085; MAOB: r = 0.398, p = 0.036; Figure 1H,I).

2.2 Machine learning establishes
efficient diagnostic models for AD

Notably, 24 molecules were significantly dysregulated
in all four brain regions and platelets, providing good
clues for further exploration of diagnostic biomarkers or
potential therapeutic targets (Figure 2A,B). The increased

candidate proteins include (1) alpha-1-antichymotrypsin
(ACT/SERPINA3), an acute phase serum glycoprotein
involved in complement and inflammatory pathways as
a serine protease inhibitor,13 and it can promote Aβ
polymerization.14 (2) Guanosine monophosphate reduc-
tase, a regulator in AMP-activated protein kinase (AMPK)
and adenosine receptor pathways, involved in AD-like
tau hyperphosphorylation15 (Figure 2B). The significantly
decreased candidate proteins in both central and platelets
include (1) isocitrate dehydrogenase (NAD) subunit beta
(IDH3B), an enzyme that can catalyze isocitrate decar-
boxylation to form alpha-ketoglutarate in tricarboxylic
acid cycle (TCA), a significant reduction of IDH3B was
also reported previously in cerebrospinal fluid and blood.16
(2) RTN1, a protein co-immunoprecipitated with BACE1
and can inhibit BACE1 activity.17 (3) YWHAZ, a highly
conserved chaperone molecule involved in cell signal
transduction, cell cycle regulation, transcription, etc., and
the level of 14-3-3 is decreased in theADbrains (Figure 2B).
By using machine learning, that is, the leave-one-out

method, we constructed diagnosticmodels using the above
identified 24 DEPs from four AD brain regions and the
peripheral platelet with data in platelet (Figure 2C). Six
proteins (IDH3B, RTN1, SRPRA, YWHAZ, SERPINA3, and
DDAH2) with top discriminating power were identified
with area under the curve (AUC) >0.75 and F1 score >0.7
(Figure 2C), among which platelet IDH3B showed the
strongest diagnostic value with AUC of 0.88 and accuracy
of 0.75 (Figure 2C). By further maximizing permutation
analyses for the above six molecules, we found that the
platelet IDH3B and RTN were the best combination for
identifying cognitive decline with AUC of 0.92, accuracy
of 0.82, F1 score of 0.87, recall of 0.90, and precision
of 0.87 (Figures 2D and S2A). In central system, IDH3B
and RTN1 also showed strong diagnostic efficiency in
EC subset with an AUC of 0.86 and an accuracy of 0.82
(Figures 2D and S2B). Further fivefold cross-validation
results also showed that combination of IDH3B and RTN1
had good diagnostic efficacy with an average AUC of 0.99
(Figure 2E). Additionally, the expression level of IDH3B
and RTN1 was consistently decreased in the AD brains
and the platelet (Figure S3A,C,E,F). Correlation analysis
showed that IDH3B and RTN1 were moderately correlated
with MMSE (Figure S3B,D).

(data iii). All 239 differentially expressed molecules were divided into four clusters (C1, C2, C3, C4). (E) A statistical summary of 239
differentially expressed molecules in brain regions and platelets. (F) Principal component analysis (PCA) confirmed the efficiency of
differential proteins in platelets. (G) The four clusters of different molecules are enriched in different biological processes. The -log10(P) was
used to define the enrichment strength of biological processes. (H and I) Expression of representative high-risk genes BAX and MAOB in
platelets and entorhinal cortex, and their correlation with Mini-Mental State Examination (MMSE). Stars represent significant correlations:
*p < 0.05; **p < 0.01; ***p < 0.001. EC, entorhinal cortex; FC, frontal cortex; HP, hippocampus; IL, interleukin; MCI, mild cognitive
impairment; TC, temporal cortex

https://www.disgenet.org/home/
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F IGURE 2 Machine learning identifies biomarkers that can effectively distinguish cognitive impairment from normal cognitive
population. (A) Venn analysis of differential molecules in four brain regions and platelets. (B) Twenty-four molecules were significantly
differentially expressed in all four brain regions and platelets. (C) Twenty-four co-differentially expressed molecules were modeled and
analyzed by the leave-one-out (LOO) algorithm, and the corresponding area under the curve (AUC) and F1 scores were obtained, according to
AUC >0.75 and F1 score >0.7, six candidate biomarkers were selected. The red boxes are the six candidate proteins. (D) Based on the LOO
algorithm, the under the receiver operating characteristic curve (ROC) for combination biomarkers (IDH3B + RTN1) in platelets and different
brain regions. (E) Based on the fivefold cross-validation, the under the ROC for combination biomarkers (IDH3B + RTN1) in platelets. AUC
was based on true-positive rate and false-positive rate: true-positive rate = [true positive/(true positive + false negative)]; false-positive
rate = [false positive/(true negative + false negative)]; precision = [true positive/(true positive + false positive)]; recall = [true positive/(true
positive + false negative)]. In addition, F1 score = 2 × (precision × recall)/(precision + recall). AD, Alzheimer’s disease; EC, entorhinal cortex;
FC, frontal cortex; HP, hippocampus; MCI, mild cognitive impairment; TC, temporal cortex
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2.3 The network linkage analyses reveal
AD pathology-correlated brain and platelet
molecules

To characterize the association of the dysregulated
molecules with the AD-specific Aβ and tau pathologies,
we referred to genome-wide gene expression analyses
and databases related to the development of amyloid or
tau pathology,18 which were also applied in the AlzData
dataset. Surprisingly, a total of 117 (49% in the data iii) DEPs
were strongly associated with the AD pathologies, further
reinforcing the value of platelet in developing biomarkers
for the early diagnosis of AD (Figure 3A). Specifically,
Aβ-related molecules accounted for 14.6% (n = 35, i.e.,
YWHAZ, GSN), tau-related molecules accounted for
4.2% (n = 10, i.e., PRKAR1A), both Aβ- and tau-related
molecules accounted for 11.3% (n = 27, i.e., RTN1/4, CLU,
S100A6), and AD string genes [protein–protein interaction
(PPI)] accounted for 18.8% (n = 45, i.e., PPP3CB, BAX,
ADAM10) (Figure 3A,B).
By integrating all 117 AD-specific Aβ- and tau-related

molecules, a complete central and peripheral regu-
latory network reflecting AD pathogenesis was con-
structed (Figure 3C). By which, FN1, YWHAZ, EGF,
ADAM10, HMOX2, CANX, CYLD, PDHA1, RAP1A could
be the pivotal molecules in this complex network, which
deserves further investigation. Further GO enrichment
analysis revealed that AD pathology-related differential
molecules were mainly involved in platelet activation,
VEGFA−VEGFR2 signaling pathway, AD, MAPK signal-
ing pathway, glucagon signaling pathway, and biological
processes such as blood coagulation, cell components such
as focal adhesion, andmolecular functions such as calcium
ion binding (Figure 3D).

2.4 A comprehensive analysis identifies
hub molecules and platelet biomarkers for
AD-like cognitive impairment

To explore the driving molecules for changed central or
peripheral networks in AD, we adopted weighted correla-
tion network analysis (WGCNA) to analyze the relation-
ships of the subjects’ common diseases, including age, sex,
MMSE score, basic diseases such as hypertension and coro-
nary heart disease, AD pathology such as Aβ, high-risk
gene APOE, with DEPs observed by brain and platelet
omics.
Integrating the AlzData database, including gene sets of

four brain regions: EC,HP, TC, and FC, the 2994 previously
identified platelet proteins8 were divided into modules by
the module eigengene (ME) (Figure 4A, red in the heat

map represents DEPs or differentially expressed genes).
We observed that six modules, that is, calmodulin binding
(MEmagenta), poly(A) RNA binding (MEyellow), adeno-
sine 5’-triphosphate (ATP) binding (MEblack), GABAer-
gic/glutamatergic synapse (MEpurple), complement and
coagulation cascades (MEgreenyellow), and SNARE inter-
actions in vesicular transport (MEgrey), were significantly
correlated to the external information, such as age, sex,
MMSE scores, hypertension, etc. (Figure 4B). The MMSE
score was significantly correlated with MEgreenyellow
(r = -0.40, p < 0.05) and MEpurple (r = 0.38, p < 0.05)
(Figure 4B). Gene significance for MMSE was signifi-
cantly correlated with greenyellow (r = 0.344, p < 0.01)
and purple modules (r = 0.418, p < 0.01), respectively
(Figure 4C,D), and HMOX2, UQCRH, C9, and SERPINA3
were identified as hub proteins (Figure 4C,D).
By Venn logic analysis to the 239 DEPs, we found that

the decreasedHMOX2and increased SERPINA3 in platelet
(in theMEpurple andMEgreenyellowmodules, Figure 4E)
showed favorable consistency in different brain regions
(Figure 4F). Biochemical experiments and integration
analysis verified that the decreased HMOX2 and increased
SERPINA3 could be hub molecules, show showed good
consistency in the central and peripheral systems of AD
patients and the AD transgenic mice, and was consistent
with the proteomics results (Figures S4 and S5). SERPINA3
was increased in the HC of 5×FAD19 and hTaumicemined
from our previous proteomic datasets (Figure S5G,H).20

2.5 Integrated bioinformatics and
machine learning establishes
high-confidence targets and models for AD
diagnosis and drug development

By gene network function and molecular integration
analyses, we classified the DEPs into the following 10
clusters: AD, platelet activation, neutrophil degranulation,
VEGFA–VEGFR2 signaling pathway, EGF/EGFR signaling
pathway, lipid metabolism pathway, fatty acid biosynthe-
sis, glucagon signaling pathway,MAPK signaling pathway,
and IL-18 signaling pathway (Figure 5, red represents
increased, blue represents decreased, and the inner and
outer circles represent platelets and TC brain regions),
all of which were closely related to neurological diseases
including AD.21–26
We also observed that the AD-related molecules,

including ADAM10, PPP3CB, RTN4, BAX, ITPR1, ITPR2,
NDUFA13, FADD, RELA, TRAF2 and MAP4K2, SOS1,
and ERBIN, were the most significantly enriched nodes
(Figure 5). ADAM10 showed the highest connectivity in
the whole pathway and a decreased consistency in the
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EXOC7 ALDOC DECR1 FADD NCK2 SCARF1 CAP1

SLC37A1 STMN1 CLU SPAG9 CPT1A ITGB3 HPX

BCL2L13 TKT CD63 IFI35 ITGA2B KIF5B CDH1

ANXA11 PACSIN2 ANXA4 ASAP2 HSPG2 SAR1B

SLC25A24 MAPRE1 SOS1 MPL PAWR

ZMPSTE24 APOD

TRAF2 CRTAP

EEF1D

Rich factor

F IGURE 3 High-rank differentially expressed proteins (DEPs) and the complex linkage network correlated to Alzheimer’s disease (AD)
like β-amyloid (Aβ) and tau pathologies in brain and platelet. (A) Pie chart showing the proportion of molecules correlated with Aβ, tau, or
Aβ and tau. (B) Specific molecules correlated with Aβ, tau, or Aβ and tau. (C) A regulatory network of AD pathologically related differential
molecules, and the size of the circle indicates its importance in the pathogenic network. (D) Kyoto Encyclopedia of Genes and Genomes
(KEGG) and wiki pathway enriched in AD pathology-related proteins. The X-axis represents the rich factor, the bubble size represents the
number of targets enriched in terms, and the color indicates the p-value

central and peripheral during the cognitive impairment
process, indicating its important role in AD.
Together, the comprehensive integrative analysis of

platelet and brain omics data demonstrated that themolec-
ular changes in platelet can well reflect the pathological
mechanism of the brain in AD patients, which provides
high-confidence platelet targets for future large-scale val-
idation in AD-related population (Figure 5), highlighting
the key regulator role of HMOX2 and SERPINA3 in AD, as
well as the potential diagnostic value of RTN1 and IDH3B.

3 DISCUSSION

AD is an irreversible and devastating neurodegenerative
disease, and with the aging of the population, the impact is
becoming more and more serious. Therefore, the develop-
ment of convenient and stable peripheral biomarkers for
AD early diagnosis is greatly needed.
With advances in proteomics, large-scale protein expres-

sion profiles of brain and peripheral biological fluids have
revealed complex molecular mechanisms and effective
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F IGURE 4 Upstream driving regulators of cognitive impairment revealed by weighted correlation network analysis (WGCNA). (A)
WGCNA cluster dendrogram generated by unsupervised hierarchical clustering of all proteins in the entire platelet proteomic data set based
on topological overlap, followed by branch cutting, revealing the network modules coded by different colors. The genes corresponding to
different brain regions were matched with platelet proteome data in columns 2–5, with red representing differentially expressed molecules.
Functional categories enriched by representative modules. (B) The correlation between module eigengenes (MEs) and clinical phenotype,
such as age, sex, Mini-Mental State Examination (MMSE) score, hypertension. The values in the heatmap are Pearson’s correlation
coefficients. Stars represent significant correlations: *p < 0.05; **p < 0.01. (C) The proteins with significantly reduced expression in mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) were significantly positively correlated with MMSE and top hub proteins. (D) The
proteins with significantly reduced expression in MCI and AD were significantly positively correlated with MMSE and top hub proteins. (E)
Venn analysis of differentially expressed proteins (DEPs) and MEpurple or MEgreenyellow modules showed that the MEpurple module had
25 DEPs and the MEgreenyellow module had nine DEPs. (F) Differential expression heat map of representative molecules in MEpurple or
Megreenyellow modules. DEG, differentially expressed gene; EC, entorhinal cortex; FC, frontal cortex; HP, hippocampus; TC, temporal cortex
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Platelet

Down Up

TC

Down Up

Hubs

Brian

Platelet

Brain tissue

Cerebrovascular

High-confidence targets

throughout the center and

periphery of AD

SERPINA3, HMOX2, RTN1,
IDH3B, FN1, YWHAZ, EGF,
ADAM10, RAP1A, etc.

F IGURE 5 The altered brain and platelet key proteins and their network linkage in Alzheimer’s disease (AD) patients. Protein–protein
interaction (PPI) network was constructed by integrating key dysregulated pathways and related proteins (increased molecular: red;
decreased molecular: blue; high-confidence targets throughout the center and periphery of AD: green). DEG, differentially expressed gene;
DEP, differentially expressed protein; TC, temporal cortex

diagnostic models for the progression of AD. Bai et al.,23
through the combination of Aβ and tau pathological depth
in AD human brain tissue, revealed A wide range of pro-
tein differential expression and significant dysregulation
of 17 pathways in the progression of AD. Matthias Mann’s
team identified more than 20 cerebrospinal fluid proteins
and a series of potential candidate biomarkers including
tau, SOD1, PARK7, and YKL-40 that were associated with
AD pathology in three independent cohorts.10 Recently,
Ip’s team identified 429 AD-related dysregulated plasma
proteins, creating a highly efficient diagnostic model.27
In addition, proteomics identified ANXA5, VGF, GPM6A,
and ACTZ are new signature proteins in AD extracellular
vesicles.28 However, with the innovation of technology,
the comprehensive and in-depth disclosure of platelet
expression profile seems to be neglected. In fact, compared
with cerebrospinal fluid and plasma, platelets are more
stable, and have many neuron-like biological characteris-
tics, which are ideal source for discovering biomarkers for
early diagnosis of AD.7 In this study, we used tandemmass
tags (TMT) tags combined with liquid chromatography—
mass spectrometry/mass spectrometry technology to
comprehensively outline the platelet protein expression
profile during cognitive impairment and integrate them
with brain gene expression profile data for analysis, fur-
ther WGCNA and subsequent bioinformatics analysis, the
protein connection network, related pathological modules
and specific cell type positioning were fully characterized,

reflecting the potential linkage mechanism between
central and peripheral in AD. Scientists have also used
different sources of samples from different persons for the
analysis,16,29 exactly as has done in our current study. By
this type of integrated analysis, wehave revealedmolecular
connections between brain and platelet, which is impor-
tant not only for further in-depth mechanism studies, but
also for the diagnosis of AD by using platelet samples.
Firstly, integrating all 360 differential platelet pro-

teins, we found that 239 of them were also differentially
expressed in the central system, and 70.3% of them showed
central and peripheral consistency, suggesting that AD
may be a systemic molecular disorder rather than a simple
brain omics case. Due to the depth of platelet proteome,
we can construct the linkage network between central
and peripheral systems in the progression of AD including
10 main pathways. Consistent with our previous analy-
sis, this further highlights the systemic synergistic role of
AD, platelet activation, and lipid metabolism pathways in
AD.8 Excitingly, we identified 117 proteins that may drive
the progression of AD through enrichment analysis of Aβ,
tau pathology, and AD high-risk genes. PPI analysis high-
lighted the key regulatory roles of FN1, YWHAZ, EGF,
ADAM10, HMOX2, CANX, CYLD, PDHA1, and RAP1A
in AD pathology. In fact, FN1 had been shown in our
previous analysis to play a role in platelet activation and
has a greater diagnostic value, which was positively cor-
related with MMSE.8 YWHAZ, a member of the 14-3-3
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protein family, is involved in the regulation of brain neural
development and signal transduction,30 while ADAM10 is
associated with Aβ, the hallmark pathology of AD, which
are also considered to have great application value in
the clinical diagnosis of dementia.31,32 PDHA1, pyruvate
dehydrogenase E1 component subunit alpha, is a key com-
ponent of glucose metabolism, and its deficiency can lead
to lactic acid accumulation and impair learning and mem-
ory in mice.33 Interestingly, our data showed that it was
significantly reduced in the central and peripherally in
patients with AD.
Based on the existing 24 dysregulated molecules in four

brain regions and platelets, we constructedmodels for cen-
tral and peripheral diagnosis. We found that the combined
biomarkers of IDH3B and RTN1 could well identify peo-
ple with or without cognitive impairment, whether it was
peripheral platelets or central EC, which gave me great
confidence that peripheral lamina molecules could indeed
reflect the changes of central pathological mechanism.
Interestingly, IDH3B, isocitrate dehydrogenase (NAD) sub-
unit beta, primarily catalyzing the decarboxylation of
isocitrate into alpha-ketoglutarate in the TCA.34 TCA
was a very important link in glucose metabolism,35 and
fluorodeoxyglucose-positron emission tomography was a
marker of specificity and sensitivity to identify MCI.36
The expression changes of IDH3B may be an alternative
way to detect brain glucose metabolism disorders in AD
patients. RTN1 inhibits amyloid precursor protein process-
ing by blocking BACE1 activity,37 and it was significantly
reduced in the brains of AD patients,38 which was con-
sistent with our results. RTN1 is a biomarker worthy of
attention, and its reduction may contribute to the early
pathologic formation of AD, namely Aβ deposition.17
Secondly, based on the WGCNA analysis, we revealed

the MMSE-related modules at the overall level of the
proteome, highlighting the hub genes of the HMOX2 and
SERPINA3, which are consistent with the trend in central
brain regions, and significantly decreased and increased
in AD. HMOX2 is a key rate-limiting enzyme in heme
metabolism, promoting the decomposition of heme into
CO, ferrous ions, and biliverin, which are involved inmany
physiological processes.39 The deficiency of HMOX2 leads
to iron metabolism obstacle, causing iron deposition.40
Ferrous ions themselves can also participate in subsequent
redox reactions.40,41 Therefore, HMOX2 deficiency is also
associated with the production of reactive oxygen species
and inflammatory factors,40,42 and HMOX2 has a certain
neuroprotective effect on cerebral hemorrhage injury.42
In addition, the database of over one million people
reveals that heme metabolism may be the key to health
and life expectancy.43 Furthermore, the complement
inflammation-related molecule SERPINA3 is increased in
AD and promotes Aβ aggregation and amyloid production,
which has been widely reported.14,44,45 Interestingly, a

recent study showed that APOE4 specifically upregulates
ACT levels in the brain and promotes microglia activation
in aging mice.46

4 CONCLUSIONS

For the first time, the linkage network between AD brain
and platelets was constructed, providing rich resources
for understanding the pathogenesis of AD and large-scale
biomarker validation. In addition, highlighting the key reg-
ulator role of HMOX2 and SERPINA3 in AD, as well as the
potential diagnostic value of RTN1 and IDH3B.Overall, the
integration of central and peripheral omics is novel, reflect-
ing the huge application potential of proteomics-driven
precision medicine in AD.
The main limitations of the current study are as follows:

the brain tissue and platelets samples were obtained from
different AD subjects, only a small sample size was used
for the proteomic analysis to minimize the impact on the
accuracy of proteomics data, which could be improved in
future studies.

5 MATERIALS ANDMETHODS

5.1 Study design

To find reliable periphery biomarkers and hub molecules
for AD diagnosis and therapeutic targets, we performed
an integrated analysis to our platelet omics dataset8
with the brain region-specific omics datasets from Alz-
Data database (http://www.alzdata.org/).6 In our recent
high-throughput mass spectrometry analysis of the HUST
peripheral platelet proteome dataset, a total of 4165 pro-
teins were identified, which has been the most in-depth
platelet proteomics on cognitive decline providing awealth
of data for the systematic study of potential biomarkers
of AD. It should be emphasized that recruitment of the
28 Han people (10 MCI, 9 AD, and 9 Ctrl) applied in the
platelet proteome dataset was based on the MMSE score47
andNational Institute on Aging and the Alzheimer’s Asso-
ciation Guidelines,48 with consideration of AD high-risk
genes and the elderly metabolic diseases and exclusion of
other mental disorders, such as brain trauma, schizophre-
nia, etc.
The AlzData has 20 Genome Sequencer Enhanced

(GSE) series dataset, including 540 human postmortem
brain tissues (AD= 269, Ctrl= 271), four brain regions (EC:
39 vs. 39, HP: 74 vs. 65, TC: 52 vs. 39, FC: 104 vs. 128), and
thousands of gene expression data through cross-platform
standardization, providing valuable resources for under-
standing the pathological mechanism of AD, searching for
potential drug targets, and early diagnosis of biomarkers.

http://www.alzdata.org/


YU et al. 11 of 15

AlzData database

EC (Ctrl=39, AD=39); HP (Ctrl=66, AD=74)
TC (Ctrl=39, AD=52); FC (Ctrl=128, AD=104) 

ain

HUST-Platelet proteomics

(age-/sex-matched) Ctrl=9, MMSE=29-30;
MCI=10, MMSE=18-23;AD=9, MMSE=2-17

High-confidence targets throughout the center and periphery of AD

WGCNA

Hub molecules

DEPs or DEGs

Venn analysis

GO; KEGG; PPI AD pathology 

related molecules

Key pathway related molecules

Machine learning

AUC; accuracy

24 co-differentiated molecules

F IGURE 6 Rationale and workflow of the present study. A systematic transformation pipeline, including bioinformatics analyses, such
as weighted correlation network analysis (WGCNA), Venn analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO),
and protein– interaction network (PPI), and machine learning, was constructed to integrate the central and peripheral multiple omics data.
Using this platform, the central–peripheral linkage network, the hub molecules, and candidate diagnostic biomarkers were identified. AD,
Alzheimer’s disease; AUC, area under the curve; DEG, differentially expressed gene; DEP, differentially expressed protein; EC, entorhinal
cortex; FC, frontal cortex; HP, hippocampus; HUST, Huazhong University of Science and Technology; MCI, mild cognitive impairment;
MMSE, Mini-Mental State Examination; TC, temporal cortex

Platelet proteomics dataset was normalized by Perseus
platform, which contains a comprehensive portfolio of
statistical tools for high-dimensional omics data anal-
ysis covering normalization, pattern recognition, time-
series analysis, cross-omics comparisons, and multiple-
hypothesis testing.49 And multiple datasets of brain
genomics in AlzData have been already normalized.6
Specifically, all processed expression data from the same
brain region were merged by algorithm ComBat in R
package inSilicoMerging.50,51
To integrate platelet omics with brain datasets and dis-

ease phenotypes, we used WGCNA, differential molecular
analysis, Venn analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG), and PPI network analysis (Figure 6), by
which the common altered brain and platelet molecules
closely associated with cognitive impairment, and multi-
ple driving genes and potential biomarkers for cognitive
decline were revealed.

5.2 Animals

The 5×FAD [B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286-
V)6799V] mice (male, 28–32 g, 6/8/10-month, n = 7)

and control mice (wild-type, male, 28–32 g, 6/8/10-
month, n = 6) were obtained from the Jackson
Laboratory (Maine, USA). 3×Tg [stock no: 34830,
129S4.CgTg(APPSwe,tauP301L)1LfaPsen1tm1Mpm/Mmjax]
mice (male, 32 g, 7-month) and P301L (male, 24–32 g,
3/6/12-month, n= 8–9) and wild-type mice (male, 24–32 g,
3/6/12-month, n = 7–8) were a gift from Prof. Xifei Yang
(Shenzhen Center for Disease Control and Prevention).
All animals were housed in a 12-h–12-h light–dark cycle
environment with unlimited access to drinking water and
food. All animal experiments were approved by the Ethics
Committee of Tongji Medical College.

5.3 Weighted gene co-expression
network analysis of HUST platelet
proteome dataset and AlzData

The R package WGCNA is used to analyze gene co-
expression networks,52,53 including building networks,
identifying modules, associating modules with external
information, studying module preservation across differ-
ent data, and finding key drivers inmodules of interest.54,55
Specifically, the expressionmatrix includes two expression
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matrices for all genes and differential genes, and a cor-
relation graph for each module is obtained by clustering
according to the expression level of each gene, and then
hierarchical clustering tree shows each module, with the
gray genes not included in the module. The adjacencies
matrix was transformed into topological overlap matrix
(TOM), and then the geneswere divided into different gene
modules based on TOM’s difference measure. Here, for
the analysis of the overall proteome data, we set the soft
threshold power as 9 (scale-free R2 = 0.85), the cut height
as 0.25, and the minimummodule size as 30 to identify the
key modules. Calculating the correlation matrix between
traits and genes, only continuous traits can be calculated,
and if they are discrete variables, they are converted to a
0–1 matrix when constructing the sample table. The mod-
ules of interest were specified for analysis and the genes
within themoduleswere obtained (p< 0.05), and the genes
highly correlatedwith traits were also key genes in the trait
correlation model.

5.4 Differential expression analysis

After normalization of all omics, t-test was used for pair-
wise comparison analysis (Ctrl vs. MCI; Ctrl vs. AD; MCI
vs. AD), p-value <0.05 was considered as significant, and
data were expressed as mean ± SEM.

5.5 Principal component analysis

The R package FactoMineR was used for PCA to visual-
ize the differences between different groups and samples.
Then PCA analysis was performed for the differentially
expressed molecules in the platelets. The different groups
in the result diagram of all PCA were represented by
different colors.

5.6 PPI network construction and
KEGG analysis

The main steps of analysis include three steps: first,
the protein interaction network was obtained from the
STRING database, then KEGG enrichment analysis was
performed using metascape (https://metascape.org/gp/#/
main/),56 and finally PPI networks were correlated with
the key pathways of enrichment in cytoscape software
(version 3.8.2).57
First, a PPI network was constructed using STRING

database version 11.5 (https://string-db.org/),58,59 select-
ing “multiple proteins” and uploading a list of protein
names, and designating the species under “organism” as

Homo sapiens. PPI networks consist of nodes represent-
ing target proteins and edges representing protein-protein
interactions, and are further analyzed and adjusted in
cytoscape software (version 3.8.2). Then, the list of genes
was submitted in metascape, the species was selected
as H. sapiens, and GO and KEGG analyses were per-
formed, and the original data of enrichment results were
derived. Finally, the PPI network tab-separated values
(TSV) file was imported from the STRING tool into
cytoscape, the node size indicated the link degree, the
outer ring color indicated the change in the expression
of the corresponding gene in the brain center (TC), and
the inner ring color indicated the change in expres-
sion of the gene in the peripheral blood (blue indicates
downregulation, red indicates upregulation), while orange
nodes represent enrichment pathways associated with
them.

5.7 Analysis of potential targets related
to AD pathology

To characterize the association of the dysregulated
molecules with the AD-specific Aβ and tau pathologies,
we referred to genome-wide gene expression analyses
and databases related to the development of amyloid or
tau pathology,18 which were also applied in the AlzData
dataset. The genetic symbols of the target proteins were
entered into the AlzData dataset, and their correlation
with Aβ and tau pathologies was found, and the PPI
network of AD and the PPI network connection of AD
high-risk genes (APP, MAPT, APOE, PSEN1, and PSEN2)
was connected.

5.8 Machine learning

To evaluate the diagnostic efficiency of potential biomark-
ers, we employed a classic machine learning approach
called cross-validation with random forests, which was
widely used in the field of life sciences to find the best diag-
nostic model.10,60 Specifically, all samples were divided
into k sample subsets, among which k - 1 subsets were
taken as the training set and the remaining subset was
taken as the validating set. When k = n (n is the number
of samples), it is the method of leave-one-out cross-
validation: only one sample as the validating set each time,
and the other samples are the training set. After n cycles,
the data can be demonstrated to the maximum extent, and
the model obtained is closest to the real result. In order to
further demonstrate the reliability of the data, when k = 5,
it is fivefold cross-validation: four subsets are taken as the
training set each time, and the remaining subset is the

https://metascape.org/gp/#/main/
https://metascape.org/gp/#/main/
https://string-db.org/
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validating set, and the mean value is taken to obtain the
indicators to determine the diagnostic model.

5.9 ELISA andWestern blotting
validation assays

ELISA kits, ELK1547 and ELK8981 (ELK Biotechnology,
Wuhan, China), were used to determine the expression
level of HMOX2 in human and mouse plasma, respec-
tively. Western blotting analysis was carried out by fol-
lowing the established procedure by using anti-HMOX2
primary antibody (1:1000, abcam, ab90492, polyclonal,
Rabbit) or anti-β-actin primary antibody (1:1000,ABclonal,
AC026, monoclonal, Rabbit) or anti-SERPINA3 primary
antibody (1:500, ABclonal, A2803, polyclonal, Rabbit) and
horseradish peroxidase (HRP)-linked secondary antibody
(1:3000, Thermo Fisher Scientific, 31460, anti-Rabbit), and
the blots were developed by using a chemiluminescence
kit (ECL, Pierce, Thermo Fisher Scientific, 32209).

5.10 Immunofluorescence

Brain sections were permeabilized with 0.5% TritonX-
100 in phosphate-buffered saline (PBS) for 30 min at
room temperature, blocked with 5% bovine serum albu-
min in PBS, and incubated with anti-HMOX2 primary
antibody (1:300, abcam, ab90492, polyclonal, Rabbit) or
anti-SERPINA3 primary antibody (1:200, ABclonal, A2803,
polyclonal, Rabbit) for 24 h at 4◦C. The second day, the
brain sections were washed with 0.1% TritonX-100 in
PBS for three times and incubated with Alexa Fluor 488
secondary antibodies (1:300, Jackson ImmunoResearch,
111-545-003, anti-Rabbit) for 1 h at room temperature. Then,
the brain sections were washed with 0.1% TritonX-100 in
PBS for three times and incubated with 4’,6-diamidino-
2-phenylindole (DAPI) for 10 min. Finally, brain sections
were washed with 0.1% TritonX-100 in PBS for three times
and covered with 50% glycerin in PBS. Pictures were
visualized by LSM710 (Zeiss Carl LSM 710, Germany).

5.11 Statistical analysis

The student’s t-test was used to evaluate the level of sig-
nificance between the two groups with SPSS 24.0 software
(Statistical Program for Social Sciences Inc., Chicago, IL,
USA) and GraphPad Prism software 9 (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). The data were expressed
as mean ± SEM and p-values <0.05 were considered to be
significant.
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