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Abstract: Insufficient intake of beneficial food components into the human body is a major issue for
many people. Among the strategies proposed to overcome this complication, colloid systems have
been proven to offer successful solutions in many cases. The scientific community agrees that the
production of colloid delivery systems is a good way to adequately protect and deliver nutritional
components. In this review, we present the recent advances on bioactive phenolic compounds
delivery mediated by colloid systems. As we are aware that this field is constantly evolving, we have
focused our attention on the progress made in recent years in this specific field. To achieve this goal,
structural and dynamic aspects of different colloid delivery systems, and the various interactions with
two bioactive constituents, are presented and discussed. The choice of the appropriate delivery system
for a given molecule depends on whether the drug is incorporated in an aqueous or hydrophobic
environment. With this in mind, the aim of this evaluation was focused on two case studies, one
representative of hydrophobic phenolic compounds and the other of hydrophilic ones. In particular,
hydroxytyrosol was selected as a bioactive phenol with a hydrophilic character, while curcumin was
selected as typical representative hydrophobic molecules.

Keywords: colloids; phenolic compounds; drug delivery; hydroxytyrosol; curcumin

1. Introduction

Modern trends in food science respond to the growing demand of consumers for a
healthier lifestyle, associated with the consumption of healthier foods [1]. In this context, a
great deal of attention has been paid to the development of food-grade colloid systems that
can protect and deliver functional compounds, and which, at the same time, can be used
as suitable nutraceutical carriers [2]. The extent to which applications of colloid-mediated
delivery systems can be actively incorporated into practical food technology is constantly
evolving and remains a fascinating task. Nutraceutical compounds can act as antioxidant
and anti-inflammatory agents that are able to extend the shelf life of food formulations and
to modulate various human diseases [3–6]. Thanks to these effects, such bioactive molecules
represent a benefit to human health; however, to be effective, adequate formulations are
required to improve their solubility, chemical stability, and bioavailability. These important
parameters are needed to preserve their bioactivity to thus be available to consumers.

Food colloids are made of dispersions of at least two immiscible phases, such as solid
particles in a liquid matrix, lipophilic phases emulsified in an aqueous continuous phase,
gas bubbles entrapped in solid or liquid matrices, etc. These systems find applications in
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many food products [7]. By mixing biopolymers, for example, water and oil, emulsions can
be made. Emulsions are commonly used in many chemical and pharmaceutical industries,
in food chemistry, as well as in biotechnological applications [8–11]. An important issue
related to emulsions is their instability to environmental stresses and their effects on
physico-chemical properties.

To improve the stability of food colloids, surface-active agents are used [12,13]. Among
these, the molecules used in foods are proteins, polysaccharides, and low molecular weight
surfactants. The common features of all these compounds is the coexistence of hydrophilic
and hydrophobic parts in their structures [14]. The importance of surface-active agents in
the manufacture of foods, such as sauces, creams, candies, and packaged processed foods,
has been known for almost a century [15,16].

In addition, other molecules of polymeric nature can be used, and have various
functions, such as gelling, thickening, serving as stabilizing agents, they can be added to
modify the rheology of aqueous suspensions, improve texture properties, slow down starch
degradation, and increase moisture retention [17]. The major source of polymers for food
colloids comes from plants and gums, and are derived from exudates thereof [18].

Encapsulation is a technique used to protect host molecules, slowing down or pre-
venting degradation processes under adverse conditions in food products, or in the upper
gastrointestinal tract. Host molecules can be hydrophilic or hydrophobic, such as vita-
mins, peptides, antioxidants, or probiotics. In a complex system, hydrophilic molecules
are encapsulated in the aqueous part, and lipophilic ones in the oil phase. Examples of
complex structures are emulsions and multilayer emulsions [19,20]. Several researchers
have shown that delivery systems can improve the handling, solubility, chemical stability,
and bioavailability of various lipophilic and hydrophilic bioactive compounds, such as
polyphenols [21].

Among the water-soluble bioactive compounds, an important molecule found in nature
is hydroxytyrosol (HYT) [22]. Hydroxytyrosol (3,4-dihydroxyphenylethanol, 3,4-DHPEA)
is a phenol compound mainly found in components and products of olive plant (Olea
europaea), especially in olive fruits, leaves and extra virgin oil. Generally, HYT is found
as a constituent of complex molecules (HYT derivatives), such as oleuropein and other
secoiridoids [23–28]. HYT in free and derivative form is characterized by strong antioxidant
properties [29], indeed, the European Food Safety Authority (EFSA) states that a daily
intake of 5 mg of HYT and its derivatives are able to prevent low density lipoprotein (LDL)
oxidation [15].

Curcumin (CUR) is a water-insoluble bioactive compound extracted from the rhi-
zome of Curcuma longa [30]. Its use is strongly associated with anti-inflammatory, anti-
carcinogenic, and antimicrobial properties [31,32]. CUR is recognized to have a high
bioactivity among the curcuminoids and a low oral toxicity [33]. It is also considered as ef-
fective against colorectal [34] and pancreatic cancers [35] due to its capacity to meddle with
different biochemical pathways. As a consequence, considering the health benefits [36],
there is increasing interest in using CUR as a bioactive agent in functional foods [37].
Nevertheless, due the low water solubility of CUR hard to incorporate into foods and
beverages, while its low oral bioavailability may reduce its biological activity [33,38,39].
The key aspects that limit the CUR bioavailability are the low solubility in gastrointestinal
fluids and its propensity to experience chemical transformations within the gastrointestinal
tract [40]. These issues may be addressed by encapsulating CUR in food-grade delivery
systems, such as liposomes, nano-complexes, colloidosomes [41,42], emulsions [20,43],
nanoemulsions [44,45], or biopolymer nanoparticles [46,47].

The aim of this review is to present the recent advances in the field of protection
and delivery of bioactive compounds through colloid systems. In particular, emulsions,
particles, and liposomes used as delivery systems are discussed with particular attention to
the biomolecules hydroxytyrosol and curcumin.
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2. Colloid-Mediated Delivery Systems

Various colloid-mediated formulations have been proposed for the vehiculation of
hydrophobic and hydrophilic bioactive compounds [48]. Scheme 1 shows an illustration
representing the systems analyzed in this review.
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Scheme 1. Main colloid-mediated delivery systems.

Among food-grade emulsifiers lecithin and the mono- and di-glycerides of fatty acids,
medium-chain triglycerides (MCT), isopropyl myristate (IPM) for oils, ethanol (in low
concentrations), and glycerol for aqueous phases are some of the materials approved by
the EFSA and are generally recognized as safe (GRAS) [49].

Food-grade biopolymers include organic polymers, which are widely used to produce
a variety of delivery systems suitable for the encapsulation, protection, and delivery of
bioactive substances. Considering that oral delivery systems of dietary supplements should
be made from food-grade ingredients using economical and reliable processing methods,
one of the most promising approaches to produce food-grade colloid delivery systems is to
use biopolymers, such as proteins and polysaccharides, as building blocks [8,10,11,50]. In
this case, biopolymer-based delivery systems can be assembled from these “ingredients”,
using a variety of bottom-up and top-down methods, including controlled aggregation,
segregation, and/or careful disruption of the biopolymers. In the next sections, we provide
a brief description of the delivery systems mentioned in this review.

2.1. Conventional Emulsions

Emulsions are constituted by three main components [51]: oil (O), emulsifier, and
water (W). Depending on their reciprocal ratios, these organizations can be made by
continuous dispersions of water droplets in oil (W/O), or oil droplets dispersed in water
(O/W), or by bicontinuous systems in the case that they contain almost equal amounts
of oil and water [52]. The principal and simpler types of emulsions are macroemulsions,
microemulsions, and nanoemulsions.

Macroemulsions are characterized by a mean dimension of the dispersed phase on
the order of µm, while in microemulsions the dispersed phase is about 2–50 nm [53], and
in nanoemulsions it is about 50–300 nm. Hydrophilic compounds can be dissolved in the
aqueous phase, while hydrophobic compounds can be dissolved in the oil phase. Nowa-
days, there is growing interest in the formulation of food-grade emulsions as reservoirs
and carriers of bioactive compounds, including phenolic antioxidants.

2.2. Multilayer Emulsions

Multilayer emulsions are systems in which droplets are surrounded by two or more
layers, generally produced by a layer-by-layer technique [54]. This approach consists
of two or more steps of layer adsorption, where charged emulsifiers are first applied to
the surface of the droplets, and then charged emulsifiers or polymers are attracted to the
previously adsorbed layer. The formation of multilayer interfaces is mainly due to the
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electrostatic forces triggered by pH and ionic strength. Variations in these parameters
are able to modify the structure of the interfacial layer (charge density, thickness, and
compactness) and the interaction between the emulsion constituents. It has been reported
that emulsions containing oil droplets surrounded by a multilayer interface have better
stability against external factors, such as heating or thawing, and are more effective in
protecting nutrients from degradation. Therefore, multi-layered emulsions can respond
differently to environmental factors, allowing for an improved delivery of the contained
active ingredients. A few effective multilayer emulsions as delivery systems have been
reported, which are composed of pectin in combination with whey protein isolate [55],
lecithin [56], and β-lactoglobulin [57].

2.3. Multiple Emulsions

Multiple emulsions (or double emulsions) are more complex liquid dispersions con-
sisting of beads containing small droplets of liquid, which are then re-dispersed in the
same liquid (continuous phase). An example of a double emulsion is water-in-oil-in-water
(W/O/W) emulsions, where water droplets are dispersed in oil droplets, which are, in turn,
dispersed in a continuous aqueous phase. Following the same concept, in oil-in-water-in-oil
(O/W/O) emulsions, the continuous phase is an organic solvent. For the realization of these
systems, the inner phase consists of an aqueous (for hydrophilic compounds) or organic
solution (for hydrophobic compounds), while the outer phase is prepared by dissolving
the surfactants [58].

From a practical point of view, this type of system offers several advantages in the
delivery and protection of labile bioactive compounds during storage or digestion [59].
Multiple emulsions in line with the other systems allow for the delivery of both hydrophilic
and hydrophobic bioactive compounds in aqueous and organic media, respectively [60].

2.4. Pickering Emulsions

Pickering emulsions (PE) are defined as emulsions stabilized by colloid micro- or
nano-solid particles at the oil–water interface [61,62]. Overall, the available literature in this
field has considered a large number of colloid particles with a range of physicochemical
properties, such as size or wettability. In Food industry, various substances are commonly
used as stabilizers to produce PE, such as starch particles [63] or chitin nanocrystals [64].
Recently, the effectiveness of using soluble and insoluble whey protein concentrate gum ara-
bic complexes has also been reported [65]. The amount of interface of a PE is mechanically
stronger compared with a conventional emulsion and can provide sufficient steric repulsive
forces to prevent coalescence of the droplets. It has been reported that this system can better
transport bioactive molecules, such as curcumin [66], fatty acids [67], and retinol [68]. It has
also been reported that colloid particles involved in stabilization can be used as interfacial
reservoirs of bioactive compounds [69]. Ultimately, the use of PE loaded with bioactive
compounds lead to a dual functionality, as they provide excellent physical and oxidative
stability to emulsions and also serve as reservoirs for bioactive molecules.

2.5. Gelled Emulsions

Gelled emulsions are complex materials characterized by the simultaneous presence
of emulsion and gel structures [70]. In this type of systems, emulsion droplets are enclosed
in a continuous hydrogel matrix that exhibits positive plastic properties. Gelled emulsions
exhibit several physical and structural properties, such as stability, viscoelasticity, encapsu-
lation efficiency, minimization of phase separation, better control of release kinetics, and
protection of labile components during storage or digestion [71].

2.6. Liposomes

Liposomes are nano- to micro-sized vesicles, comprising a phospholipid bilayer that
surrounds an aqueous core. In such structures, the core encapsulates water-soluble drugs
and the hydrophobic area is responsible for entrapping insoluble agents. Thus, such ag-
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gregates are able to include, and eventually deliver, aqueous or lipid molecules. Within
the bilayer, the hydrophobic tails of the phospholipid groups face each other, while the
hydrophilic heads face the inner core and the outer matrix [72]. This particular structure,
allows hydrophilic substances to be incorporated directly into the core, while the hy-
drophobic substances can be distributed in the bilayer area. Their ability to transport both
hydrophilic and lipophilic fractions, the absence of cytotoxicity, and their biocompatibility
and biodegradability are the reasons for the frequent use of these soft particles in the field
of delivery of bioactive compounds [73]. In addition, the release of encapsulated payloads
can be modulated by changing the fluidity of the liposomal membrane, depending on the
amount of incorporated cholesterol [45]. For these reasons, liposomes are applied and used
in a variety of sectors, such as in the pharmaceutical industry, to increase the bioavailability
of delivered molecules [45,72,74].

2.7. Solid Particles

Bioactive compounds can also be entrapped within with a polymeric shell or, alterna-
tively, embedded in a polymeric matrix [59]. Generally, we refer to micro-encapsulation for
products with a diameter between 1 and 1000 µm; instead, the term nano-encapsulation
is used when an aggregate’s diameter is between 10 and 1000 nm. The end products of
the encapsulation process are, thus, referred to as micro- or nanoparticles, depending on
the scale, and include both spheres and capsules [75]. Micro- and nano-particles have
been widely studied for drug delivery and various “ingredients” have been used for their
realization [76]; for example, for systems where the bioactive molecule can be enclosed
in a cavity (capsule) surrounded by a unique polymer membrane (wall or shell, solid),
while spheres are polymeric matrix systems in which an active ingredient is uniformly
dispersed [77]. From a general point of view, a capsule has an inner core containing the
bioactive compound and an outer solid polymer shell, while a sphere consists of a solid
matrix in which the active ingredient is dispersed [45].

In recent years, various encapsulated systems have been proposed for the delivery of
hydrophobic and hydrophilic bioactive compounds via encapsulation processes, mainly
differing in terms of the polymeric matrix [78]. In general, emulsion-based techniques [79]
and nanoprecipitation [80] are the commonly used methods for producing bioactive-loaded
particles. Among these, the advantage of using emulsions is that these systems allow
encapsulation of both hydrophilic and lipophilic molecules, depending on the choice
of dispersed and continuous phases and the hydrophilic or lipophilic properties of the
selected bioactive compound. For example, for hydrophobic molecules, the micro- or nano-
precipitation methods resulted as being simpler and less expensive, and do not require
external energy inputs through homogenization or sonication [81].

3. Phenolic Compounds

Phenolic compounds represent the most important class of secondary metabolites that
act as antioxidants at low concentrations [82]. The delivery of these molecules through
efficient carriers represents a great opportunity to improve human health. Phenols can
be classified based on their origin, biological activity, chemical structure, and affinity to
aqueous and oily media (Scheme 2).

In Scheme 2, hydrophilic phenols, such as phenolic acids, phenolic alcohols, flavonoids,
secoiridoids, and lignans, are reported [83]. These compounds are secondary aromatic
plant metabolites, found in a variety of plants, frequently associated with the color and
sensory properties of foods too.
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Important phenolic alcohols found in extra virgin olive oils are HYT and tyrosol [84].
These compounds, together with the elenolic acid or its derivatives found in the structure of
different secoiridoids like oleuropein, demethyloleuropein, and ligstroside [85]. An exam-
ple of bioactive secoiridoid is the dialdehydic form of decarboxymethyl elenolic acid linked
to hydroxytyrosol or tyrosol. Flavonoids mainly include compounds such as flavones,
flavonols, flavanones, flavanols, anthocyans, and derived glucosides (such as luteolin-7-
glucoside and rutin) [86]. Lignans are polyphenols encompassing (þ)-pinoresinol and
(þ)-1-acetoxypinoresinol [87]. Hydrophobic phenolic compounds (Scheme 2) mainly in-
clude flavonoid derivatives, which become more hydrophilic through the glycosylation
of hydroxyl groups. Among them, quercetin and curcumin are very important bioactive
molecules. Lipophilic phenols also include phenolic acid derivatives of which the hy-
drophilicity is reduced through the esterification of carboxyl groups, as in the case of ferulic
acid, p-coumaric acid, and sinapic acid [88,89].

3.1. Hydrophilic Phenols: The Case of Hydroxytyrosol

Presently, various HYT formulations are already on the market as supplements, such
as OleaselectTM (Indena, Milan, Italy) [90], which is based on HYT-rich extracts from
solid olive residues, or Micotirosolo (NutraLabs, Modena, Italy), or Hidroxitirosol plus+
(Granatum, Murcia, Spain).

HTY is a stated resource as a dietary supplement, thus, based on the following reported
current-delivery systems, innovations for novel supplementation patterns and formulations
represent an important nutraceutical molecule to be analyzed. In this respect, various
systems were developed for HYT protection and delivery. Table 1 summarizes the main
colloid-based delivery systems reported in this review.

Table 1. Main colloid-mediated delivery systems for hydroxytyrosol.

Delivery System Applications References

Macroemulsions Antioxidant activity, releasing efficacy, shelf life,
solubility and gastrointestinal stability. [91–95]

Multiple emulsions Antioxidant activity, loading losses [93,94]
Gelled emulsions Antioxidant activity, HYT losses and HYT release [71,96–98]

Liposomes Stability, antioxidant activity [72,99–104]
Solid particles Loading capacity, in vitro antioxidant activity [105–110]
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3.1.1. Macro and Multiple Emulsions for HYT

Among the available approaches for the delivery of HYT, emulsion-based systems
represent one of the most widely studied solutions. Chatzidaki and co-workers [91]
developed two edible W/O dispersions: an emulsion that remains kinetically stable and a
microemulsion that is spontaneously formed, transparent, and thermodynamically stable.
Both systems contained medium chain triglycerides (MCT) as a continuous phase and were
used as carriers of HYT. The results indicated that both systems exhibited good potential
for food applications, with the emulsion providing a slightly better HYT release, while
the microemulsion provided a better storage ability owing to the higher thermodynamic
stability. The work of Flaiz et al. [93] showed that W/O, W/O/W and gelled W/O/W
dispersions can be employed as storage and release system of HYT for food applications.
Encapsulated HYT showed a good scavenging activity against free radicals and decreasing
permeability due to the interactions of bioactive compounds with the surfactants used in the
formulation. In multiple emulsions (W/O/W) for HYT, the delivery and antioxidant ability
loss was higher due to the higher compartmentalization degree, compared to conventional
W/O emulsions.

In a parallel study, Almeida et al. [95] determined the interfacial molarities of the
HYT and HYT fatty acid esters, with chain lengths of 1 to 16 carbons, in intact olive
O/W/Tween 20 emulsions. The overall findings highlighted that the distribution and
interfacial molarities were consistent with the “cut-off” effect of a pseudo-phase model,
and that it was simply a natural consequence of the differential solubility of antioxidants in
the aqueous, interfacial and oil regions of the emulsion. Costa et al. [92] employed a set
of HYT esters with different hydrophobicity and fish O/W emulsified systems containing
droplets of different sizes to evaluate the effect of droplet size (emulsion vs. nanoemulsion,
see Figure 1), surfactant, and oil volume fractions on oxidative stability. The results
showed a correlation between antioxidant efficacy and the concentration of antioxidants
in the intermediate zone. Interestingly, in both emulsified systems, the highest interfacial
concentration and antioxidant efficacy was found for HYT octanoate.
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permission from [92]. Copyright 2020, MDPI).

In addition, multiple emulsions have been proposed by Cofrades et al. [94] to evaluate
the oxidative stability of lipid-cooked meat systems, in which pork back fat was replaced
by a double emulsion prepared with HYT within an inner aqueous phase and chia oil as
the lipid phase. The reported results demonstrated that multiple emulsions prepared with
chia oil had good stability and a homogeneous structure. Strikingly, multiple emulsions
containing HYT showed good antioxidant capacity in the early days of storage, although
the level of efficiency depended on the loading method. However, HYT seemed to exert
less antioxidant capacity when included in the inner aqueous phase of multiple emulsions.



Molecules 2022, 27, 921 8 of 24

3.1.2. Gelled Emulsions for HYT

In addition to the expected stability, which is related to the degree of compartmental-
ization of emulsion-based systems, the bioaccessibility of HYT should also be taken into
consideration. In this regard, recent studies showed that gelled emulsions offered a better
protection of bioactivity and also a better bioaccessibility compared to simple and double
emulsions [96]. While the reducing capacity of the tested emulsions was not altered in the
oral phase, in vitro digestion models showed that antioxidant activity was greatly reduced
in both the gastric and intestinal phases.

Moreover, gelled emulsions formulated with perilla oil as the lipid phase, and a source
of n-3 fatty acids combined with HYT in the inner aqueous phase stored over 30 days at 4 ◦C,
presented excellent water- and fat-binding properties and, compared to the control without
HYT, the encapsulation of the bioactive compound increased its antioxidant capacity by up
to 12-fold after preparation, although this declined during the storage period [97] (for a
schematization of the system, see Figure 2).
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Freire et al. [71] also developed gelled double emulsions as delivery systems for HYT
and n-3 fatty acids in healthy pork patties. Specifically, the effect of partial and total
replacement of pork back fat with gelled double emulsions, containing perilla oil as the
lipid phase and HYT, on the composition and properties of pork patties was investigated.
The results demonstrated that the presence of perilla oil as the lipid phase in gelled double
emulsions increased the susceptibility to lipid oxidation during the storage of fresh patties.
In concert with this, the antioxidant capacity of HYT seemed to be related to its location at
the oil–water interphase.

Contextually, Munoz-Gonzales and co-workers [98] formulated emulsion gels with
olive oil, polyphenol extracts, and soy protein. Here, the emulsions were assembled
by mixing soy protein, alginate, water, and polyphenol extracts, using a homogenizer.
Subsequently, the olive oil was gradually added to the mixture to form an emulsion
gel. Overall, the phenolic compounds appeared to become trapped in the emulsion gel
matrix network and the textural behavior of the emulsion gels may be related to their
structural features.

3.1.3. Liposomes for HYT

Among the various positive aspects in the field of delivery systems, liposomes stand
out for their advanced ability to deliver active molecules to a site of action. In this re-
spect, research on liposome technology has progressed from “conventional vesicles” to
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a “new” generation of liposomes, in which long-circulating liposomes are obtained by
modulating lipid composition, size, and the charge of the vesicle. Particularly, liposomes
with sizes ranging from 100 to 400 nm, with a good encapsulation efficiency of HYT were
prepared [104]. Compared to free HYT, HYT-loaded liposomes had better stability and a
slower release in vitro. In addition, for these systems, higher radical scavenging activity
was found in comparison with free HYT, probably because HYT was fully encapsulated
inside liposomes, and lisposomes were able to protect the drug. Thus, prolonging the
biological activity of the payload, the obtained preparation had the potential to act as a
delivery carrier for further improving the biological functions of HYT in vivo.

HYT was also successfully encapsulated in zwitterionic liposomes [72]. In the cited
study, a cytotoxicity assay of the liposomal preparation toward human chondrocytes
showed that liposomes were not cytotoxic at the investigated concentrations. In addition to
the pure form of HYT, the properties and the antioxidant activity of a series of HYT esters
with different carbon chain lengths (C4, C8, C12, and C18) incorporated in liposomal vesi-
cles, were measured [99]. Particularly, the distribution of HYT long chain esters was proven
to depend specifically on their lipophilic chain length. Their distribution within the system
was found to be very important because it was related to different antioxidant behaviors.

Moreover, HYT esters, synthesized enzymatically from cuphea oil, can be distributed
and remain at the aqueous interface of phospholipid–liposomes. This also reduces or
prevents liposome rupture by reducing the tension of the liposome membrane, which is an
important component for liposome fusion and rupture [102]. Consequently, the investigated
HYT esters showed the ability to increase the stability of liposomes. As a consequence, an
increased stability of liposomes equates to a longer durability, longer shelf-life, and longer
circulation in the system. As matter of fact, HYT esters can be designed for the protection of
liposomal systems. Other research has addressed this issue and evaluated the antioxidant
activity of formulations against the oxidation induced by 2,2′-azobis(2-amidinopropane)
hydrochloride [103] (Figure 3).
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The synthetized HYT derivatives were able to protect liposomes from induced oxida-
tion, and the rank of activity was influenced by the alkyl chain length of the HYT esters, the
C12 derivative being the most active antioxidant, with an increase in the oxidative stability
of liposomal preparation of 2.2 times when compared with the control. The incorporation
of HYT esters in liposomes improved the antioxidant capacity of the HYT derivatives by
about 2.8 times. Thus, HYT-synthesized esters increased general liposomal and oxidative
stability and, in parallel, this study also demonstrated the potential to improve the ox-
idative stability of sensitive fatty acids in food applications. Therefore, by improving the
antioxidant activity of hydrophilic phenolic compounds with high free radical scavenging
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activity (such as HYT), the loaded liposome preparations can effectively be utilized in
food industry.

However, the structural changes in the systems have also been linked to the pH of the
environment [101]. In fact, both size and surface charge were found to be pH dependent.
By taking into account some chemical parameters, it was observed that liposome diameters
typically increase from pH 5.5 to pH 10. Zeta potentials values, on the other hand, were
found to be well below −25 mV at all explored pH conditions, with the lowest values (and
thus, the best liposome stability) at the two extremes of pH 5.5 and pH 10.

Evans et al. [100] explored the bilayer properties of synthesized tyrosol and hydrox-
ytyrosol double-chained phospholipids. In their study, the size, shape, surface charge,
and tendency to form supported bilayers on silica surfaces were investigated. The au-
thors performed dynamic light scattering, TEM, zeta potential and fluorescence anisotropy
measurements, and concluded that tyrosol and HYT phospholipids formed liposomes of
~85 nm in diameter, with a surface charge of about −25 mV. Furthermore, it was found that
the surface adsorption of both liposomes was influenced by the phospholipid concentration
and the presence of calcium.

The same research team enzymatically trans-esterified both HYT and tyrosol from
olive oil processing into effective lipophilic antioxidants using cuphea oil [102]. Their work
demonstrated that HYT and tyrosol esters partitioned and resided at the aqueous interface
of phospholipid liposomes. The partitioning was shown to be similar for both tyrosol and
HYT derivatives. Overall, both tyrosol and HYT derivatives showed the ability to reduce
or prevent the rupture of liposomes. Considering that tyrosol and HYT esters synthesized
from cuphea oil increased liposomal stability, this suggests that this type of liposome can
be potentially used in the food industry.

3.1.4. Solid Particles for HYT

Solid particles represent also good delivery systems. For example, the encapsulation
of HYT in pectinate beads was studied and outcomes showed a good entrapment efficiency
and in vitro release [106]. In fact, beads were able to entrap HYT in sufficient amounts
to reach the colon (around 50%), maintaining concentrations of pectin-bound HYT after
two hours at gastric pH. Thus, considering that, thanks to HYT-loaded pectinate gel beads,
a good amount of HYT was able to reach the colon (20–30%), this system demonstrated
to be a good colon-targeted delivery system for HYT in order to help prevent or relieve
chronic inflammatory bowel disease.

Flaxseed protein isolate and its phenolic complexes with HYT were studied with the
aim of developing plant-based natural emulsifiers with improved interfacial and oxida-
tive activity [110]. Particularly, the complexation of flaxseed protein isolate with HYT
significantly increased the diffusion rate at a low emulsifier concentration (0.1 mg mL−1).
Moreover, the emulsions stabilized by the formation of the complexes between flaxseed
protein isolate and HYT had a higher antioxidative stability compared to the control, but,
on the contrary, the stability of the system resulted in being lower. Therefore, it can be
considered true that the fabrication of specific complexes can allow HYT delivery, but, at
the same time, both the advantages and limitations (as in this case) of the final product
must be taken into account, where formulation definition represents the most important
step for effective delivery systems.

Ethyl cellulose is another suitable material for the production of solid particles. In
this context, microparticles were produced using the double emulsion solvent evaporation
technique of Paulo and Santos [109] (see Figure 4).
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From the investigation it was ascertained that the maximum encapsulation efficiency
and product yield were 88% and 82%, respectively. The HYT-loaded ethylcellulose mi-
croparticles were almost stable in the temperature range of 30 ◦C to 280 ◦C, and the
antioxidant capacity remained above 50%, which is within the effective concentration range
for many beneficial biological effects. Moreover, in the study, gastrointestinal resistance
was achieved as well. HYT was demonstrated to be able to form a 1:1 inclusion complex
with β-cyclodextrin, thus leading to a freeze-drying and spray-drying solid particle system
for its delivery, while retaining its antioxidant capacity [108].

Moreover, it is also possible to co-deliver HYT with other payloads, such as syringopi-
croside [107]. Another nanocarrier for the delivery of HYT is characterized by the presence
of monomethoxypolyethylene glycol-poly (lactic-co-glycolic acid) (mPEG-PLGA). The
obtained system resulted in nanoparticles with an encapsulation efficiency of 32% for
both HYT and syringopicroside; in contrast, drug loading was 12%. Moreover, in vitro
drug release patterns showed relatively prolonged drug release, while pharmacokinetic
studies demonstrated that the half-life and residence time of the co-loaded nanoparticles,
in vivo, were prolonged significantly. For this reason, this delivery system demonstrated
the potential to improve the bioavailability of two bioactives, showing a sustained release
effect, prolonging drug circulation time in blood. In addition to conventional precipita-
tion methods for loaded solid particles, there is an alternative approach for solid lipid
particles, namely membrane emulsification [105]. This method ensures good encapsula-
tion efficiency (< 90%, when the process is carried out at room temperature), low energy
consumption (1.1·106 J m−3), and high dispersed phase concentration (> 40%). In addi-
tion, it is not complicated and is therefore extremely attractive for the production of lipid
matrix-based carriers.

3.2. Hydrophobic Phenols: The Case of Curcumin

Having established CUR’s safety in normal doses [111], it is possible to affirm that
this bioactive molecule represents a useful tool as a dietary supplement. Apart from
following re-called formulations, as in the case of HYT, many curcumin-based supplements
are widely available on the market and many examples can also be easily found on the
web, such as Tumeric Complex (Bioeva, Rome, Italy), Curcumin 95 (Jarrow Formulas,
Los Angeles, CA, USA), and Curcuma Forte (LongLife, Milan, Italy) [112]. In addition, in
this case, starting from the well-studied available delivery systems, scientific innovations for
CUR supplementation represent a very interesting research field. The main colloid-based
delivery systems discussed for CUR are summed up in Table 2.
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Table 2. Main colloid-mediated delivery systems for curcumin.

Delivery System Applications References

Macroemulsions Encapsulation efficiency, stability, and bioaccessibility [113–121]

Nanoemulsions Dispersibility, digestion, release kinetic, stability, antioxidant capacity,
encapsulation efficiency [43,122–129]

Pickering emulsions
Stability, release kinetic, encapsulation efficiency, temperature response,

digestibility, bioaccessibility, cytotoxicity,
anticancer/antifungal/antimicrobial activities

[41,127,130–135]

Multilayer emulsions Stability, bioaccessibility, antioxidant activity, digestibility, permeability,
and bioeffectives [136–140]

Liposomes Solubility, stability, anticancer activity, adsorption, release kinetic [42,141–147]

Solid particles Encapsulation efficiency, bioaccessibility, stability, antioxidant activity,
biocompatibility, and in-vitro gastrointestinal release kinetic [45,148–157]

3.2.1. Macroemulsions for CUR

As expected, among the suitable solutions, emulsion-based techniques represent a
useful approach for the realization of CUR delivery systems. In particular, O/W macroemul-
sions provided protection to the encapsulated CUR against chemical degradation [118].
This system was quite simple to fabricate, which would be advantageous for many com-
mercial applications with the aim of enhancing the bioaccessibility of the molecule [119]. To
ensure a high transfer of CUR from the initial pure powder formulation into emulsion lipid
droplets, a suitable temperature and droplet size needs to be found [121]. CUR’s solubility
in emulsion was found to increase with temperature and with the type of emulsifier, and
was found to be higher with surfactants than with proteins. Bioaccessibility, on the other
hand, increased using proteins as emulsifiers since they protected CUR from chemical
degradation in simulated gastrointestinal conditions [120].

Feng et al. [114] developed CUR-rich emulsions using debranched starch as an in-
terface material. These emulsions were more stable than those stabilized with Tween 80
and lectin. Interestingly, molecular dynamics simulations showed that the water bridge
between the debranched starch and CUR may play an important role in the complexation
process, thus contributing to better performance of the emulsion.

In another study, Kharat and co-workers [116] considered the effect of droplet surface
area on the kinetics of CUR degradation using emulsions with different mean droplet di-
ameters. The authors observed that the rate of CUR degradation increased with decreasing
droplet size, and they concluded that this was attributable to the fact that CUR exchange
between the interior and exterior was faster in small droplets.

Li et al. [117] investigated the effect of the degree of substitution of octenyl succinic
anhydride (OSA) on the properties of starch microparticles (SMPs)-stabilized emulsions
encapsulating CUR. Overall, they found that higher degrees of substitution led to a lesser
extent of OSA-modified SMPs digestion, less droplet flocculation, and coalescence during
the digestion and the higher bioaccessibility of CUR in the emulsion.

In this context, Cheng et al. [113] developed tunable high internal phase emulsions
(HIPEs) formulated using lactoferrin-gum arabic complexes, where CUR was used as the
model lipophilic nutraceutical to investigate the potential of HIPEs to improve the photo-
stability of encapsulated bioactives. The authors found that HIPE-stabilized complexes
showed gel-like structures, good creaming stability, and excellent environmental stability,
showing potential use in semi-solid foods to improve textural characteristics or nutritional
profiles. Lastly, Hamad et al. [115] proposed a novel approach to prepare spray-dried
encapsulated CUR powders. Specifically, the effects of surfactants (Tween 80, lecithin, and
chitosan) on the characteristics of CUR-based emulsions, as well as on the physicochemical
properties of the resulting spray-dried encapsulated powder, were determined. Overall,
the results of this study can be considered a guide for the development of a stable formu-
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lation of CUR emulsions that can be converted into an encapsulated powder form using
spray drying.

3.2.2. Nanoemulsions for CUR

When encapsulated in nanoemulsions, the dispersibility of CUR in water can be in-
creased 1400-fold compared to the raw biomolecule [128]. Sari et al. reported that CUR is
slowly released from nanoemulsions in simulated gastro-intestinal digestion conditions [43].
Accordingly, nanoencapsulation of highly lipophilic and unstable compounds, such as
CUR, is an effective approach to increase the solubility, bioaccessibility, and to protect the
molecule from degradation. The choice of optimal formulation represents an essential as-
pect for the stability of CUR-loaded nanoemulsions and to preserve the antioxidant capacity
of loaded CUR [122]. In particular, Tween 20 and sucrose monopalmitate allow to obtain
delivery systems with a high encapsulation efficiency. The addition of lecithin ensures
the formation of long-term stable nanoemulsions that can also preserve the antioxidant
capacity of the bioactive compound.

Kharat et al. [125] prepared CUR nanoemulsions with added antioxidants and found
that CUR retention during storage declined differently using different antioxidants. The
stabilizing effect of ascorbic acid increased with concentration (0–300 µM). Taken together,
these observations form the basis for the production of CUR-enriched foods and beverages
with increased bioactivity.

Other authors enzymatically prepared monoacylglycerides and diacylglycerides struc-
tured with conjugated linoleic acid (CLA), medium chain fatty acids (MCFA), andω-3 fatty
acids (ω-3 FA), used to assemble nanoemulsions employed as carrier systems of lipophilic
active compounds with a low bioavailability, such as CUR, which need to be protected from
the environment [124]. Contextually, Richa et al. [129] developed polysaccharide-based
nanoemulsions for the stabilization and entrapment of CUR (see Figure 5).
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In that work, the authors investigated two different oil carriers, namely olive and
castor oil, and various polysaccharides, namely levan, fucoidan, alginate, guar gum, and
κ-carrageenan, for their entrapment efficiency for CUR. Interestingly, the smallest particle
size was observed after ultrasonic treatment when fucoidan was used as an emulsifier. It
was also found that the highest encapsulation efficiency was exhibited by κ-carrageenan
irrespective of the carrier oil. Additionally, the release kinetics of the nanoemulsions were
in direct correlation with the encapsulation efficiency. Of note, a synergistic increase in
the antioxidant potential of the polysaccharide-based nanoemulsions containing CUR
was detected. In another study, Espinosa-Andrews et al. [126] aimed to determine the
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optimal conditions to produce CUR nanoemulsions using ultrasonication stabilized with
hydroxylated lecithin, using a response surface methodology to evaluate some physical
characteristics. The overall results highlighted that the nanoemulsions remained stable
during 15 days of storage at 20 ◦C and against aggregation in a pH range from 7.0 to 3.0.
The authors concluded that this type of nanoemulsion system could be used as a natural
colorant in beverages.

The potential of heterogeneous systems, such as oil-in-water (O/W) nanoemulsions,
has been exploited as an oral delivery system for CUR. Among the proteins, sodium
caseinate is generally used as food ingredient in food industry. The combination of na-
noemulsions, stabilized by a blend of caseinate and Tween 20, demonstrated that the
presence of Tween 20 ensured steric stabilization, promoting the use of sodium caseinate
as an emulsion stabilizer [11]. In a recent study, Cuomo et al. [123] demonstrated that
the blend of protein/surfactant-stabilized nanoemulsions is a suitable solution to deliver
CUR. The nanoemulsions proposed in the study provided a high intake of CUR with a
low fat content. The use of such delivery systems helps to overcome the limitations of
oral bioavailability associated with the low solubility of some compounds in foods and
beverages. The results of the study showed that nanoemulsions stabilized with proteins
and surfactants are a suitable solution for CUR. The use of such delivery systems helps
to overcome the limits in oral bioavailability related with the scarce solubility of some
compounds in food preparations and beverages.

3.2.3. Pickering Emulsions (PE) for CUR

CUR can also be successfully encapsulated in more complex emulsion-based systems,
such as in PE. In this respect, emulsions stabilized with chitosan/tripolyphosphate nanopar-
ticles showed a positive effect on the emulsion stability against aggregation under different
conditions [41], and the release profile of CUR from this system showed a sustained release
over an extended period of time.

Another effective stabilizer material is starch [133]. Starch-stabilized PE showed
an encapsulation efficiency of CUR of about 80%, retaining and gradually releasing the
bioactive during storage and simulated oral (from 69.6% to 95.3%) and gastric digestion
(from 82.4% to 86.2%), reaching the intestine, which represents a desirable trait since most
nutrient adsorption occurs there.

Milled cellulose-stabilized PE are a novel food-grade formulation for the encapsu-
lation and delivery of CUR, as reported in a study by Lu and Huang [131]. The study
showed that the bioaccessibility of CUR encapsulated in these systems was higher than in
conventional emulsions. The use of nanocellulose-stabilized PE has also been proposed for
CUR encapsulation [127], showing positive effects on storage stability at different pH val-
ues, on sustained release, and for in vitro cytotoxicity against fungi and pathogen bacteria
(Gram-positive and Gram-negative), demonstrating antifungal and antimicrobial effects

Wei and Huang [134] developed high internal phase PE stabilized by ovotransferrin–
gum arabic particles as CUR delivery vehicles. This PE significantly improved both the
extent of lipolysis and CUR bioaccessibility. In the study by Lv and co-workers [132], whey
protein isolate (WPI) gel particles were fabricated via high hydrostatic pressure treatment
and homogenization and the potential of using the particles as food-grade stabilizers to
form PE and emulsion gels were studied, also in relation to CUR load.

In a parallel study, chitosan/gum arabic nanoparticles were prepared and their poten-
tial use in stabilizing PE and the delivery of CUR were evaluated [130]. It was found that
chitosan and gum arabic mainly interacted electrostatically, and the obtained nanoparticles
were about 100 nm. This type of PE exhibited high CUR loading and enhanced CUR
protection during storage and release during in vitro digestion.

Recently, Zhu et al. [135] tuned the complexation of carboxymethyl cellulose/cationic
chitosan to stabilize a PE suitable for CUR encapsulation (see Figure 6).
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These emulsions exhibited gel-like behavior and were stable to various environmental
influences, such as pH, salt, temperature, and long-term storage. In addition, the authors
showed that they efficiently encapsulated CUR, which had a lower rate of degradation.

3.2.4. Multilayer Emulsions for CUR

Layer-by-layer assembly can successfully change the surface characteristics of CUR-
loaded nanoemulsions, allowing the formation of chitosan- and alginate-based multilayer
emulsions [139]. These nanosystems were found to be very stable to changes in temperature
and pH under storage conditions. In particular, the deposition of chitosan and alginate leads
to the formation of a stable multilayer structure, mainly due to electrostatic interactions
between the polyelectrolytes.

Lower bioaccessibility values were observed in in vitro digestion for multilayer na-
noemulsions when compared to simple nanoemulsions, [140] due to the fact that polyelec-
trolyte layers prevented the release of CUR from the multilayer. The degradation of CUR
during digestion was also lowered by the protective effect of the multilayer, which steri-
cally hindered CUR from enzymatic or free radical action. Whey proteins isolate-stabilized
chitosan-based multilayer nanoemulsions can also significantly increase CUR antioxidant
activity, enhancing also its apparent permeability coefficient in Caco-2 cells by 1.55-fold,
thus improving its anticancer activity [138].

In a study by Leiva-Vega et al. [136], the authors investigated the influence of interfacial
structure on physical stability and the antioxidant activity of CUR multilayer emulsions.
Specifically, CUR was dissolved in coconut oil and encapsulated in multilayer emulsions,
prepared via layer-by-layer deposition. The antioxidant activity of the emulsified CUR was
maintained during a 6-day light exposure, where it decreased significantly in free CUR
from day 0 onwards.

Sabet et al. [137] developed a positive–negative–negative delivery system (as shown
in Figure 7) to protect CUR against the gastric phase with the aim of releasing it in the
small intestine.

The results showed that this system was more resistant against gastric proteolysis
compared with a primary emulsion and two bilayer emulsions. Remarkably, almost 84% of
the original CUR was efficiently released in the small intestine, compared to less than 20%
in other delivery systems.
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3.2.5. Liposomes for CUR

In recent research, coated vesicles were demonstrated to be a more efficient delivery
systems than conventional ones [142]. In the study, it was shown that CUR, loaded in
the bilayer of liposomes coated with chitosan, was better absorbed through the digestive
tract than CUR loaded into bare anionic liposomes, due to interactions occurring among
chitosan and the other charged molecules of the digestion fluids.

Li et al. [144] used thiol derivatives of chitosan to cover liposomes loaded with CUR
and the liposomes resulted effective for the treatment of MCF-7 cell line. Tai and col-
leagues [145] demonstrated that molecular weight and the concentration of chitosan play
an important role in stabilizing this kind of system. In particular, both low- and high-
molecular weight coatings resulted in better photo and thermal stability.

In recent work, a long-circulating delivery system of liposomal CUR by coating with
albumin was developed [146]. In this work, the authors found that liposomes coated with
albumin were more spherical, more homogeneous in size, and significantly larger than
uncoated counterparts. In addition, the authors investigated the impact of the coating
albumin on the release of CUR and phagocytosis using mouse Raw264.7 macrophages
in vitro. The overall results demonstrated that the presence of albumin enhanced liposome
structure stability and slowed down the release of CUR, and that macrophage phagocytosis
of CUR-loaded liposomes was significantly reduced.

In another study, folated pluronic (FA-F127)-modified liposomes for the delivery of
CUR were fabricated [39]. It was demonstrated that the effects of FA-F127 modifications
on average particle size, PDI, CUR encapsulation efficiency, and microstructure were not
significant. Furthermore, compared with nonfolated F127 liposomes, FA-F127 liposomes
exhibited significantly higher cytotoxicity towards KB cancer cells.

Contextually, De Leo and co-workers [143] loaded CUR in Eudragit-coated liposomes
to create a gastro-resistant carrier, able to protect its load from degradation and free it at
the site of absorption in the colon region. The authors investigated the physicochemical
properties of the systems and studied the uptake of vesicles by Caco-2 cells and the
antioxidant activity in cells. The results showed that the polymeric coating dissolved at
pH > 7.0, releasing liposomes and allowing them to enter Caco-2 cells.

Chen et al. [42] investigated the stability and the release of CUR-loaded liposomes with
varying contents of hydrogenated phospholipids, demonstrating that the latter increased
liposomal CUR encapsulation and improved the stability of liposomes. In addition, hydro-
genated phospholipids slowed down CUR release from liposomes in simulated digestion.
Moreover, the modified phospholipids, contributed to denser lipid packing in liposomal
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membranes. In another paper, the authors modified CUR-loaded liposomes with edible
compounds to improve their ability to cross the blood–brain barrier [141]. More in detail,
the research explored the potential of food grade sialic acid, polymerized sialic acid, and
their oxidized forms to conjugate with wheat germ agglutinin on liposomes to deliver
CUR to the brain. The results showed that CUR was entrapped in liposome with high
encapsulation efficiency. These liposomes showed a good permeation rate with respect to
the endothelial cells of the blood–brain barrier. Overall, this study highlighted how the
surface modifications can improve the function of liposomes as carriers for brain disease.

3.2.6. Solid Particles for CUR

Compared to the emulsion-based methods, nanoprecipitation approach is simple, cost-
effective and does not require energy inputs. By selecting appropriate solvent mixtures,
it is possible to first obtain the precipitation of uniform drug-loading nanoparticles and
then of the polymer molecules covering the particles, thus forming drug–core polymer–
shell structures.

Using this method, extremely stable and high CUR loading nanoparticles with a high
encapsulation efficiency were obtained [151].

In particular, considering that the shellac natural resin, used in both the pharmaceu-
tical and food industries, is more soluble in weak alkaline conditions, by using PBS or
HEPES buffers at pH 7.4 it was demonstrated that CUR precipitated first, followed by
the polymer [45]. Solid lipid nanoparticles prepared using tristearin and polyethylene
glycole-enriched emulsifiers have been demonstrated to be able to control the absorption
of orally administered CUR under simulated gastrointestinal conditions, enhancing its
bioavailability [148].

Other studies showed that encapsulation in modified rice starch was able to improve
CUR’s solubility, stability, bioavailability, and biocompatibility [152]. The obtained nanopar-
ticles possessed excellent colloid stability, which protected the bioactive substance from
UV degradation and heat exposure. Thus, CUR loaded in nanoparticles showed better
antioxidant activity than free CUR.

In particular, a recent study confirmed that the encapsulation approach based on more
complex matrices could enhance the effectiveness of the final system [154]. As a matter of
fact, the zein–shellac binary matrix employed for CUR’s encapsulation provided a higher
encapsulation efficiency than that of individual components. The system prevented also
CUR degradation, induced by thermal treatment and UV light radiation, and exhibited
a great ability to sustain the release of the bioactive in both PBS medium and simulated
gastrointestinal tract conditions.

Through a simple pH-shift method, CUR-loaded nanoparticles stabilized using sodium
caseinate and gum arabic were prepared [153]. These systems were stable in a pH range of
2–7 and in presence of NaCl. Moreover, they also showed high encapsulation efficiency.
Similarly, Zhan et al. [157] entrapped CUR in whey protein isolate (WPI) and zein compos-
ite nanoparticles using a pH-driven method. The results highlighted that nanoparticles
exhibited the smallest size at a WPI-to-zein mass ratio of 8:2. Furthermore, the increase in
the zein level improved the thermal stability of CUR-loaded WPI–zein composite nanopar-
ticles. In addition, it was found that the solubility of CUR was significantly enhanced by its
encapsulation in WPI–zein composite nanoparticles.

In the work by Yuan et al. [156], the authors fabricated and characterized zein nanopar-
ticles with a dextran sulfate coating as vehicles for the delivery of CUR. Specifically,
zein/dextran sulfate composite nanoparticles were fabricated via an antisolvent precipi-
tation method at pH 4.0 with an optimal zein-to-dextran sulfate ratio of 1:2 (w/w). These
nanoparticles exhibited good stability relative to pH, heating, and storage. Interestingly,
the nanoparticles displayed no toxicity toward normal colonic epithelial cell lines and be-
haved as efficient vehicle for CUR, with high encapsulation efficiency. In this context, Wei
et al. [155] developed core–shell pea protein–carboxymethylated corn fiber gum composite
nanoparticles as a carrier for CUR (see Figure 8).
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In this work, pea protein–CUR complexes were formed at pH 7.0 and successively
coated with carboxymethylated corn fiber gum via hydrophobic interactions to form
complexes. These nanocomposites exhibited excellent encapsulation performance for CUR,
showing also good water dispersibility and high chemical/thermal stability. Furthermore,
these nanocomposites showed even higher antioxidant and radical scavenging activities
than simple CUR. In another work, the authors proposed solid lipid nanoparticles stabilized
by sodium caseinate–lactose Maillard conjugate encapsulating CUR. In this study, it was
found that the entrapment efficiency was more than 90% when CUR was 2.5% and 5.0% of
the lipid mass. In addition, these nanoparticles were stable during 30-day storage and also
greatly enhanced the antioxidant activity of encapsulated CUR.

4. Concluding Remarks

This review provides an overview of the latest results on available colloid carrier
systems for bioactive substances and presents two representative studies on hydrophilic
(hydroxytyrosol) and lipophilic (curcumin) molecules. Considering the beneficial effects
of their consumption, improving the bioavailability and efficacy of in vivo bioactives
through appropriate delivery systems is a very interesting challenge in both the food
and pharmaceutical fields. In this sense, colloids have offered several alternatives for
the realization of a wide range of delivery systems in recent years. In particular, these
substances can be used for the preparation of colloid systems, such as molecular complexes,
emulsion-based systems, particles, and vesicles, and all are suitable solutions to achieve
the above-mentioned goal. It is, therefore, clear that all reported delivery systems show
promising and attractive benefits for the protection and release of both hydrophilic and
lipophilic bioactive substances. This is a very important aspect in the context of promoting
novel healthy food supplements. However, this research is in constant development and
this is not the end point. Instead, it could be a starting point for researchers to improve
and/or develop novel colloid-mediated delivery systems.
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