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New Type of Spectral Nonlinear 
Resonance Enhances Identification 
of Weak Signals
Rongming Lin, Teng Yong Ng & Zheng Fan   

Some nonlinear systems possess innate capabilities of enhancing weak signal transmissions through 
a unique process called Stochastic Resonance (SR). However, existing SR mechanism suffers limited 
signal enhancement from inappropriate entraining signals. Here we propose a new and effective 
implementation, resulting in a new type of spectral resonance similar to SR but capable of achieving 
orders of magnitude higher signal enhancement than previously reported. By employing entraining 
frequency in the range of the weak signal, strong spectral resonances can be induced to facilitate 
nonlinear modulations and intermodulations, thereby strengthening the weak signal. The underlying 
physical mechanism governing the behavior of spectral resonances is examined, revealing the inherent 
advantages of the proposed spectral resonances over the existing implementation of SR. Wide range of 
parameters have been found for the optimal enhancement of any given weak signal and an analytical 
method is established to estimate these required parameters. A reliable algorithm is also developed 
for the identifications of weak signals using signal processing techniques. The present work can 
significantly improve existing SR performances and can have profound practical applications where SR 
is currently employed for its inherent technological advantages.

Stochastic Resonance (SR) is a unique phenomenon of certain nonlinear systems whereby a generally feeble input 
such as a weak signal is amplified and optimized by the assistance of an entraining white Gaussian noise, or other 
entraining signals such as sinusoids. Due to its simplicity and robustness, it is widely believed that SR has been 
implemented by mother nature on a broad spectrum of physical and biological systems in every feature size scale, 
and has attracted continuous interdisciplinary research interests over the last 3 decades from scientists, engineers, 
biologists and medical practitioners who nowadays routinely deploy SR as a useful tool for their specific appli-
cations. To date, numerous new emerging developments and applications have been discovered and reported as 
discussed in some of the key reviews on the subject matter1–3, since the concept of SR was first put forward as a 
possible explanation of the periodic recurrences of the Earth’s ice ages4–6. Existing research has been largely focus-
ing on the theory and the mechanism, the experimental realizations, as well as important practical applications of 
SR with an objective to better understand and exploit SR for its potential technological advantages.

The first experimental demonstration of SR was accomplished in 1983 based on a noise-driven electronic cir-
cuit known as Schmitt trigger7 in which signal-to-noise ratio was first proposed to characterize SR performance. 
A few years later, notable SR effect was also observed in a bistable-ring laser experiment8 which ignited great 
enthusiasm among physicists. Subsequently, SR had been reported in a wide variety of physical and biological 
systems such as the motion of a Brownian particle9, superconducting quantum interface devices (SQUID)10–12, 
voltage dependent ion channels13, a single-walled carbon nanotube ion channel14, excitable GaAs superlattice15, 
bistable nanomechanical oscillators16, nanoscale resonant-tunneling diodes17, vertical-cavity surface-emitting 
lasers subject to time-delayed optical feedbacks18, receptors in cricket19 and crayfish20, as well as feeding behavior 
of paddle fish21. These indicate that SR has since become a truly interdisciplinary research and increasing evi-
dences have further shown that SR may affect research in medical and environmental sciences.

Once the ubiquitous existence of SR is established through numerous experimental demonstrations, extensive 
research on the theory and mechanism of SR has followed. Nonlinear bistable systems with double-well potentials 
were the classical examples which were extensively analyzed for their SR behaviour22–26. It was generally believed 
that the manifestation of SR effect in bistable systems was attributed primarily to the inherent switching behavior 
between the two competing stable equilibriums. Subsequently however, it was discovered that the possession of a 
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double-well potential was not essential for SR to occur since some nonlinear systems with single-well potentials 
were also found to exhibit prominent SR effect when properly tuned27–29. Furthermore, recent theoretical work 
has shown that SR can occur even in a simplest possible system which consists of nothing more than a signal and 
an entraining noise with a threshold-triggered device30–34, or with a basic integrate-and-fire dynamic mechanism 
typically found in the modeling of information transmission among neurons35–37. Theoretically, it has been firmly 
established that SR occurs when a feeble subthreshold signal is subjected to an additive noise, which enables 
threshold crossings. However, very recent theoretical analysis has shown that signal enhancement can also be 
achieved when a suprathreshold signal passes through a noisy summing network of threshold devices38–41, a 
phenomenon often called superathreshold stochastic resonance (SSR), even though in this case the signal to be 
identified is substantial in its own strength.

Today, we know SR is a general nonlinear phenomenon which occurs in a wide range of nonlinear systems. 
The noise-mediated detection and transmission of weak signals have been found to play significant roles in many 
technological and biological applications. They have been successfully applied in the designs of measurements42, 
in enhanced vibration energy harvesting43 and machine condition monitoring and fault diagnosis44. More impor-
tantly, sensory neurons are typically modeled as nonlinear threshold-controlled biological systems and the simple 
fact that SR exists in these systems offers, for the first time, direct and convincing explanation the intriguingly 
exquisite sensitivity of some animals to weak coherent signals. Massive research has been undertaken to date on 
applications of SR to the modeling of neural systems, as witnessed in some of the recent reviews45,46. However, 
what limits the success of these applications has been that when broad band noise is assumed as an entraining 
signal, the improvement in signal-to-noise ratio tends to be rather limited. Though there is legitimate reason 
why noise was first recommended as a choice for the entraining signal, there has been no evidence to suggest 
that other forms of signals cannot be used, especially if these can further enhance the SR effect. For the identifi-
cation of weak signal which is the major application of SR, the entraining signal, which is a user selected external 
input, should always be so decided as to ensure best signal enhancement. For applications in biological systems 
on the other hand, it may be more realistic to assume that these systems are capable of also internally generating 
other forms of entraining signals such as sinusoids47 in order to achieve best sensibility of weak coherent signals, 
thereby ensuring their own adaptability and survivability. Against the backdrop of such reasoning, high frequency 
sinusoids were suggested as alternative entraining signals to replace random noise and as a result, very similar 
performance of SR has been observed48,49. Such similar performance can be largely expected since, to the weak 
signal, the fast-changing high frequency entraining sinusoid behaves essentially just like noise.

Alongside with the huge research effort in applying SR to weak signal detections and identifications, there 
has been considerable interest in reaping the potential benefits of chaotic behavior of nonlinear dynamic systems 
in the presence of weak signal inputs. Long term outputs of chaotic nonlinear dynamic systems are found to be 
extremely sensitive to slight perturbations in inputs and such high sensitivity can be effectively employed to detect 
weak signals by superimposing them to the inputs and comparing the resultant outputs. The intermittent chaotic 
motion of Duffing’s oscillator was examined for possible identification of weak signals50. A new signal detection 
and estimation method was developed based on the intermittency transition between order and chaos51. An 
effective algorithm was discussed and applied to extract weak signals drowned beneath the noise floor52. Based on 
chaotic oscillators, an information fusion technique was developed for weak periodic signals53. Further, for chaos 
in microsystems, a chaotic MEMS resonant beam sensor was developed for weak signal applications54. Further, 
based on convex optimization, weak harmonic signals can be detected from strong chaotic interferences55. To 
further randomize chaotic responses, a series of chaotic resonators can be connected and synchronized for weak 
signal applications56. More recently, nonisochronous Hopf oscillators were examined for their potentials for weak 
signal identifications57.

Though weak signals can be possibly detected using chaotic characteristics of nonlinear system responses, 
subsequent identification of the signal remains a problem since chaos itself means unpredictability and as a result, 
the exact identification of the very weak signal embedded within largely unpredictable chaotic sequence of data 
becomes practically almost impossible. In the applications of SR however, it is generally believed that it is capable 
of identifying weak embedded signals. Mathematically, SR can be viewed as a process of nonlinear modulations 
and intermodulations among the weak and the entraining signals, resulting in energies being transferred from 
the latter to the former to improve its sensibility, as we will discuss further in much more rigor later in the paper. 
Unfortunately however, when either Gaussian white noise or high frequency sinusoids are chosen as entraining 
signals, desired nonlinear modulations and intermodulations are somewhat discouraged due to the wide-spread 
of energy in the former and the large separation in frequency (from that of the signal) in the later, leading to very 
limited gain of signal enhancement. Here we propose a new and much more effective strategy for driving a system 
into strong spectral resonances and we report that orders of magnitude better signal enhancement which has 
been achieved by employing sinusoidal entraining signals with frequencies in the same range as that of the weak 
signal. By allowing the entraining frequency to be tuned in the range of the weak signal, the underlying mecha-
nism of spectral resonances tend to facilitate greatly increased nonlinear modulations and intermodulations, and 
their associated energy transfers, thereby strengthening the weak signals. Such underlying physical mechanism 
governing the behavior of spectral resonances is examined, revealing the inherent advantages of the proposed 
spectral resonances over the existing implementation of SR. A wide range of parameters have been found to exist 
for the optimal enhancement of a given weak signal and an analytical method has been developed which can be 
applied to estimate these required parameters. A practically reliable algorithm has been proposed for the effective 
identification of weak signals using novel signal processing techniques. The work provides significantly improved 
SR performances, as well as effective methods for weak signal identifications, and can have profound practical 
applications where SR mechanisms are currently employed for its potential technological advantages.
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Results
Significantly improved performance of the proposed spectral resonance.  Current stochastic 
resonance is often considered for the simplest possible nonlinear system representing an over damped bistable 
oscillator described by,

ω α= − + + +x d
dx

U x A t F t( ) sin( ) ( ) (1)

where U(x), Asin(ωt + α) and F(t) are the potential function of the system, the weak periodic input signal to be 
identified and the entraining signal. The potential usually takes the form of U(x) = −(1/2)ax2 + (1/4)bx4 in which 
a = 1 and b = 1 are assumed to be dimensionless in this study since other values of system parameters a and b can 
be transformed to this standard form by making use of rescaled variables2. The entraining signal F(t) can assume 
the form of either a random noise ξ=F t D t( ) 2 ( ) in which ξ(t) is the Gaussian white noise of standard normal 
distribution and D is its strength, or a sinusoid F(t) = C sin Ωt in which frequency Ω was originally proposed to 
be Ω >> ω48. The fundamental mechanism of SR, together with the subsequent signal extraction, can be schemat-
ically illustrated in Fig. 1 in which theapplied entraining signal is supposed to lift the system just out of its poten-
tial wells by overcoming the potential barrier so that the embedded weak signal becomes capable to assist the 
crossings between the two competing stable equilibriums, thereby enhancing the strength and the sensibility of 
the weak signal before it is identified.

Though many important practical applications have been increasingly identified, the current implementation 
of SR using either random or sinusoidal signal with high frequency as an entraining signal is only capable of 
achieving very limited gain of signal enhancement as shown in Fig. 2. An order of magnitude improvement in 
signal-to-noise ratios in the case of random entraining signal (Fig. 2a), or in signal magnification factors in the 
case of sinusoidal entraining signal with high frequency (Fig. 2b,c), is roughly what has been achieved to date for 
the standard bistable system of (1) when SR is provoked and such performances are certainly very inadequate for 
many demanding applications where very weak signals need to be identified.

The choice of random or sinusoidal signal with high frequency as an entraining signal has been proven to 
be unfortunate. Mathematically, SR is essentially a manifestation of nonlinear modulations and intermodula-
tions among the weak and the entraining signals, leading to exchanges in energy and hence improvement in the 

Figure 1.  Fundamental mechanism of SR and signal extraction.

Figure 2.  Current performances of SR with limited signal enhancement. (a) Signal-to-noise ratios from ref.1, 
results of experiment with crayfish mechanoreceptors (filled squares ▪) compared to the electronic Fitzhugh-
Nagumo simulation (diamonds ◆) and the theoretical results (solid curve __). (b,c) Signal magnification factors 
with entraining signal being high frequency sinusoid, numerically reproduced from ref.48.
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strength of the weak signal. However, such exchanges of energy are not best encouraged when a random signal 
or a sinusoidal signal with high frequency is employed, since in both cases very little energy is available for 
exchange around the frequency band of the weak signal, resulting in very limited gain of signal enhancement. To 
further facilitate energy exchanges and hence to further enhance SR performance, it becomes clear that sinusoidal 
entraining signals with frequencies in the same range as that of the weak signal need to be employed. By allowing 
the frequency of the entraining signal to be tuned in the same range as that of the weak signal, the underlying 
mechanism of SR has undergone significant change so as to facilitate maximum possible nonlinear modulations 
and intermodulations and hence the subsequent energy transfers. It becomes now truly possible to tune a sto-
chastic resonator to its true intrinsic resonance of much stronger strength which we call spectral resonance due to 
the fact that the entraining signal in this case is deterministic not random. What we have observed and benefited 
from the existing SR studies to date is in fact just the tip of the iceberg as far as the true potentials of spectral res-
onances are concerned. Significant improvement over performance becomes readily obtainable once the system 
is tuned at/near its strong spectral resonances. For every weak signal to be identified, there exists a wide range of 
parameters in which we can tune the entraining signal so that much stronger spectral resonance can be induced. 
Once the system is driven into its spectral resonance, the signal magnification factor Q, which is defined as the 
ratio between the magnitudes of the output and the input at signal frequency ω, can become very high, as shown 
in Fig. 3 for various parameters of the weak signal and the entraining signal. The initial condition required in the 
computation of system responses for all case studies is set as x(0) = 0 when t = 0. As compared with what have 
been achieved to date as shown in Fig. 2, orders of magnitude further improvement over signal enhancement 
becomes possible. The results also demonstrate that although we have benefitted considerably from stochastic 
resonances, existing studies have not yet addressed the huge hidden potential of strong spectral resonances.

To see what has actually happened at the signal level when strong spectral resonance occurs, we consider a 
specific case in which the weak signal has an amplitude A = 0.0005 and a frequency ω = 0.11, and the entraining 
signal an amplitude C = 0.44605 and a frequency Ω = 0.17. When the weak signal is absent, the waveform of 
the system response appears to be very regular, with a dominant fundamental frequency which is the driving 
frequency Ω = 0.17, together with odd harmonic components, which are normally expected from such a highly 
nonlinear system, as shown in Fig. 4a–c. When the weak signal is added however, even though its magnitude is 
only about 0.1% of that of the entraining signal, much of the entraining energy has been transferred to the weak 
signal through nonlinear modulations and intermodulations greatly boosted at spectral resonance. As we can see 
from Fig. 4d–f that the waveform of the response in this case becomes much more complex, with its spectrum 
showing not only the two input frequencies and their harmonics, but many lower sub-harmonic frequency com-
ponents with frequency values much lower than either of the input frequencies. The emergence of substantial 
sub-harmonic components in overall system response is the hallmark of strong spectral resonance and it can 
be used as a criterion in practice to ascertain whether a true stochastic resonance has occurred. In addition, it is 
worth noting that the response frequency component at the frequency of the weak signal has grown to become 
very substantial despite its feeble origin, as shown in Fig. 4f, indicating that the weak signal has been greatly mag-
nified in the process of strong spectral resonance.

Another important observation from our studies is the self-scaling effect of a spectral resonance. As the 
weak signal amplitude becomes smaller, a strong spectral resonance has the innate ability to increase the signal 

Figure 3.  Magnification factors showing strong spectral resonances at different weak input and entraining 
signal parameters. (a) A = 0.001, ω = 0.17 and Ω = 0.10. (b) A = 0.0005, ω = 0.11 and Ω = 0.17. (c) A = 0.0005, 
ω = 0.17 and Ω = 0.19. (d) A = 0.001, ω = 0.07 and Ω = 0.13 (all parameters are non-dimensionalized).
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magnification factor Q in order to maintain a decent level of sensibility. This is perhaps the key mechanism 
behind the exquisite sensitivity of some animals to extremely weak coherent signals. The presence of the weak 
signal is more important than its actual strength. Once a weak input signal is there and is felt by the system, in the 
case of strong spectral resonance, the system will manage somehow to grow the weak signal through nonlinear 
modulations and intermodulations to a level that it can be adequately sensed and identified. Such a salient feature 
is illustrated by examining the signal magnification factors of spectral resonances under different input strengths 
of a weak signal. As shown in Fig. 5, the signal magnification factor Q increases substantially as the strength of the 
weak signal decreases. In the meantime nevertheless, the parameter region in which strong spectral resonance 
occurs becomes narrower as Q increases, indicating perhaps an increased difficulty in tuning the resonator to its 
strong spectral resonance.

Prediction of optimal parameters of entraining signal.  As we have shown that for every weak signal, 
there exists an optimal entraining signal whose amplitude C and frequency Ω can be so tuned that strong spectral 
resonance can be excited, leading to significant improvement of the weak signal before it can be identified. The 
selection of the entraining frequency Ω is not so critical since it is only required to be chosen in the range as that 
of the weak signal. However, the optimal amplitude of the entraining signal C needs to be determined in order to 
achieve best possible signal enhancement. Physically, such an optimal amplitude C should be so selected that it 
just enables the system to move out of its potential wells and, to a first order approximation, can be derived based 
on the theory of linearized nonlinear systems. For lower values of C, the system will vibrate at one of its stable 
equilibriums with small amplitude of vibration. The system in this case is said to be linearized and behaves effec-
tively as a linear system with its transfer function as,

Ω =
Ω +

H
ai

( ) 1
2 (2)

which is shown in Fig. 6a for the standard case of interest a = 1, where i is the complex notation ≡ −i 1 . 
Vibration response amplitude predicted based on (2) becomes very accurate for lower values of C until just before 
the onset of strong spectral resonance region as shown in Fig. 6b for a particular entraining frequency Ω = 0.17. 
However, substantial deviations occur around the strong spectral resonance region where the required optimal 

Figure 4.  Periodic response under sinusoidal entraining input and strong spectral resonance under combined 
signal and entraining inputs. (a) Entraining signal. (b) Response signal. (c) Spectrum of response signal in (b). 
(d) Combined signal and entrain inputs. (e) Response of stochastic resonance. (f) Spectrum of response signal 
in (e).
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value of C lies. As a result, the linearized transfer function of (2) cannot be used to accurately derive the optimal 
value of C. Instead, we can use the harmonic balance method57 to accomplish such a task. Under the sinusoidal 
excitation of the entraining input, when the system just moves out of its potential wells and is oscillating between 
the two competing stable equilibriums, one can assume, to a first-order approximation, that the vibration 
response of the system be written as φ= Ω +x t a b t( ) / sin( ). Upon substituting this assumed solution into (1) 
and by equating the amplitudes of the fundamental frequency component at both sides of the equation, the fol-
lowing can be established,

Figure 5.  Magnification factors computed with different magnitudes of weak input signals, showing self-scaling 
characteristics of strong spectral resonances. (a) A = 0.025. (b) A = 0.005. (c) A = 0.001. (d) A = 0.0002.

Figure 6.  Linearized characteristics of spectral resonator and the prediction of optimal entraining 
parameters. (a) Transfer function of the linearized bistable system. (b) Comparison of linearly predicted and 
actual responses showing strong spectral resonance region. c Predicted optimal entraining parameters. (d) 
Numerically computed entraining parameters at specific weak signal input of A = 0.001 and ω = 0.07.
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which is shown in Fig. 6c for the standard system of a = 1, b = 1. The predicted optimal C value based on (3) is 
only approximate due to the fact that only the fundamental frequency is considered and balanced in harmonic 
balance method54, but it becomes handy in practice to have a close value to start with to tune the resonator and 
it does correlate well with our numerical “experimental” results of the optimal parameter region in which true 
stochastic resonance occurs for the case of a weak signal input of A = 0.001, ω = 0.07, as shown in Fig. 6d.

Method of identification of weak signals.  The ultimate objective is obviously to identify its frequency 
and magnitude once the presence of the weak signal is detected through spectral resonance. Here we propose a 
strategy to accomplish such a task. For every unknown weak signal to be identified, an entraining signal with a 
frequency in the operating frequency range is first selected. The required amplitude C of the entraining signal is 
then obtained based Eq. (3), which takes the system to the region of strong spectral resonance. Fine tune further 
the C value so that strong spectral resonance is established. Such an application is best performed with a real-time 
data acquisition and analysis system. One of the salient features of strong spectral resonance, as discussed earlier, 
is the emergence of strong sub-harmonic components present in the response spectrum, as typically shown in 
Fig. 4f. Under strong spectral resonance, one of the prominent spectral lines present in the overall response spec-
trum must be due to the weak signal, in addition to the one of the entraining frequency. To distinguish whether a 
selected spectral line is that of the weak signal, we can drive the system with an entraining signal at that selected 
frequency and if we only observe regular response spectra (no spectral resonance) by varying the amplitude, then 
that selected frequency must be that of the weak signal. Otherwise, we need to examine further other remaining 
prominent spectral lines until the desired frequency is found. Such an elimination procedure works in practice 
because when the two frequencies of the weak and the entraining signal become very close, the nonlinear inter-
modulation effect is lost, leading to responses of clean and regular spectra. Once the frequency has been identi-
fied, the actual amplitude of the weak signal can be recovered using the multi-dimensional spectral resonance 
characteristic transfer function  ω ΩA C( , , , ) of the system, which is defined as the ratio between the output 
response and the input weak signal at the signal frequency ω. Such an identification process is similar to that of a 
linear system where measured responses are used together with system transfer functions H(ω) to compute the 
unknown input signals. However, the characterization of  ω ΩA C( , , , ) requires more detailed measurements or 
numerical experiments due to its multi-dimensionality. Figure 6d shows a typical such transfer function obtained 
with specific weak signal frequency ω and amplitude A. To see how the proposed strategy works, consider the 
identification of a weak signal of ω = 0.23 and A = 0.001. First, an entraining frequency in the range is selected as 
Ω = 0.20. The required amplitude C is computed based on (3) and is then fine-tuned until strong spectral reso-
nance occurs, as shown in Fig. 7a,b. Then the two prominent frequencies in the response spectrum (ω = 0.17 and 
ω = 0.23 as shown in Fig. 7b) are selected as possible signal frequency for further examinations. For the case of 
ω = 0.17, when the entraining signal input is changed to Ω = 0.17 strong spectral resonance again occurs as shown 
in Fig. 7c,d, ruling out the possibility that the frequency of the weak signal is ω = 0.17. For the case of ω = 0.23, 
when the entraining signal input is changed to Ω = 0.23, no obvious stochastic resonance occurs and the response 
waveform becomes regular, as shown in Fig. 7e,f, indicating that the frequency of the weak signal is indeed 
ω = 0.23. Once the frequency is confirmed, actual amplitude can be determined using the known transfer func-
tion priorly determined as discussed.

Furthermore, we examine the effect of random noise on the performance of spectral resonance and weak sig-
nal identification. The weak signal input is assumed to be contaminated by similar magnitude of Gaussian white 
noise so that the system equation of motion can be written as,

ω α δξ= − + + + Ω +x d
dx

U x A t C t t( ) sin( ) sin ( ) (4)

where δ is a parameter used to control the noise level. Generally, we have observed that noise contamination on 
input signal does not alter significantly the spectral resonance characteristics of the system, as shown in Fig. 8b 
in which similar optimal signal magnification Q is achieved when the input signal is tainted by a considerable 
amount of Gaussian white noise, as shown in Fig. 8a. Nevertheless, the system response in the presence of noise 
becomes more irregular in waveform as shown in Fig. 8c and there appears some noticeable noise power spec-
trum in the low frequency range as shown in Fig. 8d, where input parameters for this case are set as A = 0.001, 
δ = 0.001 and C = 0.4195.

Finally, we can demonstrate that noise input signal alone, in the absence of weak signal, will not lead to mis-
identification. First, it is worth mentioning that the handling of random noise in numerical integration is not 
straightforward58 and some kind of low-pass filtering is always required to “smooth” the noise signal. In our 
numerical implementation, for a given required integration time step and time duration, a series of Gaussian 
random noise data points are first generated at each time step. Then, during the integration process, the values of 
the noise signal within each time step required during the numerical integration process are then computed using 
linear interpolation based on the two end-values of the time step. Such a numerical interpolation is somewhat 
equivalent to passing the true white Gaussian noise through a low-pass filter with a Nyquist frequency being 
the sampling frequency59. For the same input parameter setting of Fig. 8c,d but with weak input signal being 
removed (A = 0, δ = 0.001, C = 0.4195), the vibration response and its spectrum are shown in Fig. 9. We can 
see that the vibration response in this case becomes very regular, involving only harmonics which are generally 
expected. Nevertheless, since the system is being driven to the vicinity of double-well oscillation, the absence of 
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Figure 7.  Identification of signal frequency. (a) Time response of spectral resonance. (b) Spectrum of time 
response in (a) showing prominent frequencies as possible signal frequency. (c) Time response of spectral 
resonance when entraining signal changed to one of the suspected but incorrect frequencies. (d) Spectrum 
of time response in (c). (e) Time response of a periodic signal when entraining signal changed to one of the 
suspected but correct frequencies. (f) Spectrum of time response in (e).

Figure 8.  Effect of noise on spectral resonance. (a) Weak input signal contaminated by substantial random 
noise. (b) Comparison of spectral resonance strengths with and without noise. (c) Time response of spectral 
resonance with input contaminated by noise showing increased irregularity in wave form. (d) Spectrum of time 
response in (c) showing low frequency noise spectrum.
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the weak signal input has led to significant changes in the response (as compared with that of Fig. 8c), resulting 
in single-well oscillations and a spectrum possessing all harmonic components including DC which is obviously 
absent in Fig. 8d due to its largely symmetric double-well oscillation. Though the spectrum is contaminated by 
noise, it is clearly defined and does not indicate that there is another input signal frequency. In addition, it is inter-
esting to note that the input noise only affects the troughs of the response curve, the peak values are not much 
affected, as shown in Fig. 9a.

It is worth pointing out that the frequency values of the signals investigated are low since for the particular 
system parameter settings of a = 1 and b = 1, the system behaves somehow like a low-pass filter and as a result, it 
becomes difficult to excite the system into strong spectral resonances at high frequencies. In practice, for a given 
range of application frequencies, the non-dimensionalized system parameters a, b and γ need to be accordingly 
tailored to facilitate better system responses, where γ is the damping coefficient of the general system equation 
of motion,

γ ω α= − + + + + Ωx ax bx A t C tsin( ) sin (5)3

Energy transfer between frequencies of nonlinear systems.  We have demonstrated the existence of 
a new type of nonlinear spectral resonances and how it can be employed to better enable detection and identifi-
cation of weak signals. It remains to explain the possible physical mechanism behind such spectral resonances. 
Rigorous treatment of a topic as such seems to be difficult and the authors only seek, with the help of numerical 
results, to provide some premature explanations in order to start some further and more fruitful discussions on 
this important issue. For a linear system, we all know that it possesses unique (first-order) transfer functions H(ω) 
between the system output and input which completely describe the system characteristics. In this case, a mono-
tone (pure sinusoid) input results in a monotone output with the same frequency except that its magnitude and 
phase are properly determined by the transfer functions H(ω) at the said frequency ω. Hence for linear systems, 
there does not exist energy transfer between different frequencies. For a nonlinear system however, not only its 
first-order transfer functions, which represent the behavior of the linear/linearized part of a nonlinear system, 
but also its higher-order transfer functions, which characterize the system nonlinearities, are required in order 
to fully describe a nonlinear system60,61. The first-order transfer functions predict the vibration responses at the 
fundamental excitation frequencies, while the higher-order ones predict those at the harmonic and combina-
tional frequencies62. A monotone input to a nonlinear system is known to lead to the spread of the input energies 
to harmonic frequency components. This has been shown in Fig. 4a–c for the present nonlinear bistable system. 
In the case of symmetric response, only odd harmonics are present (see Fig. 4a–c). However, this is obviously not 
always the case and for some input parameters, the vibration response can become asymmetric, resulting in all 
harmonics including DC components, as shown in Fig. 10a,b (Ω = 0.17, C = 0.44). Such observations lead us to 

Figure 9.  Vibration response and spectrum with random noise but no weak signal input. (a) Vibration 
response. (b) Response spectrum showing all harmonic components and noise contamination.
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the general modulation behavior of nonlinear systems to generate harmonic frequencies in the case of monotone 
inputs,

ω = Ω ∈n n Z( ) (6)n

where Ω is the input frequency, Z is a set of integers including zero. Some harmonics may not be present due to 
their magnitudes being zero for the particular system and input parameters under consideration.

In the case of dual-tone inputs with signal frequency ω and entraining frequency Ω, the situation becomes much 
more complex, not only harmonics of ω and Ω are present in the output due to modulations, but also frequency 
components ±n1ω ± n2Ω due to the intermodulations between the two frequencies where n1 ∈ Z and n2 ∈ Z are inte-
gers. Such intermodulation process then continues until all distinct frequency components are established. Again, 
depending on the nature of a nonlinear system and input, some of these components may be absent. So, the process 
of transferring energies between the frequencies in a typical nonlinear system can be summarized below:

Initial modulations to produce harmonics components:

ωΩ = Ω = Ω = ...i j i j, ( , 1, 2, 3, ) (7)i j

First stage intermodulations to generate new frequency components:

ωΩ = ± Ω ± Ω = ± ± Ω ∈ ∈ +n n in jn n n Z k Z( , , ) (8)k ki i kj j ki kj ki kj

Further intermodulations to spawn more new frequencies:

Ω = ±Ω + ±Ω = ± Ω ± Ω + ± Ω ± Ω ∈ +n n n n l m n Z( ) ( ) ( ) ( ) ( , , ) (9)l m n mi i mj j ni i nj j

The process continues until all distinct frequencies are produced, though some of them may be absent since 
their amplitudes being zero for the particular nonlinear system and forcing conditions under consideration. To 
briefly illustrate how this process works, we can examine the results shown in Fig. 4d–f in the case of dual-tone 
input. Since ω = 0.11 and Ω = 0.17, it is not possible for the modulations and intermodulations to eventually 
produce a DC component, since we know that 11 and 17 are co-prime numbers. The first peak is at a frequency of 
0.01 which is produced through the steps: 0.17–0.11 = 0.06, 3 × 0.06 = 0.18, 0.18–0.17 = 0.01. Since there is 0.01 
frequency component, we can expect all multiples of this frequency which are the peaks shown in Fig. 4f. The 
even multiples are absent due to the symmetric nature of the particular response. To shed more insight, we exam-
ine another case of ω = 0.12, A = 0.001, Ω = 0.18 and C = 0.45 whose vibration response and spectrum are shown 
in Fig. 11a,b. Since in this case the two input frequencies are no longer co-prime numbers, a DC component will 
be generated: 0.18–0.12 = 0.06, 3 × 0.06 = 0.18, 0.18–0.18 = 0. The smallest frequency becomes 0.06 and all the 

Figure 10.  Asymmetric response showing all harmonics and DC components. (a) Vibration response. (b) 
Response spectrum.
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modulations and intermodulations cannot generate any frequency which is smaller than 0.06. As a result, we see 
a strong DC component and peaks at all the multiples of 0.06, both even and odd.

From the process of modulations and intermodulations, we can see clearly how the input energy, which is origi-
nally confined to the input frequencies is redistributed/transferred to other frequencies. Under optimal system and 
input parameters, many of these frequencies resulting from the modulations and intermodulations fall on the signal 
frequency, leading to significant enhancement of the weak signal to be extracted. On the other hand, how much 
energy each frequency receives depends very much on the linearized transfer functions of the system under that par-
ticular input/excitation condition62, since for a nonlinear system, these transfer functions are very much dependent 
on input (or output). As a result, by tuning properly the strength C of the entraining signal input, it becomes possible 
to obtain large desired vibration response at the frequency of the weak input signal, leading to the observed spectral 
resonance. Furthermore, modulations and intermodulations are better facilitated when nonlinear dynamic systems 
are considered, especially when detection and identification of dynamic periodic weak signals are of interest, though 
the existence of spectral resonances in systems with static thresholds cannot be ruled out. Further research studies 
are warranted in this direction. Finally, the intermodulation process requires at least two distinct frequencies to 
work, but questions remain whether more frequencies with more than one entraining inputs become better capable 
of enhancing weak signals. We are currently working on this and results will be reported in due course. Our intuitive 
observation is that further improvement is possible, but significant gain is less likely.

The preceding analysis can perhaps also be applied to explain the mechanism behind signal enhancement of 
stochastic resonances under the original setting in which the entraining signal is a white/pink Gaussian noise 
with strength D63. The input energy spectrum is distributive over a wide frequency range in this case and these 
frequency components undergo intermodulations with the frequency and its harmonics of the weak signal. The 
strength of the output signal at signal frequency again depends on the system transfer functions associated with 
the particular input, which, in turn, is a function of the input signal strength D of the Gaussian noise. At some 
optimal D values, signal enhancement becomes possible in which the system is said to be undergoing stochastic 
resonance. Physically, optimal D values ensure that the modulation time scale, which characterizes the dynamics 
of the weak periodic signal, and the escape time scale, which measures the noise induced escapes over the poten-
tial barrier, are properly matched to facilitate the growth of stochastic resonances3. However, due to the wide 
spread of the input energy, the resultant share of energy of each frequency becomes rather limited, leading to 
inadequate modulations and intermodulations and suboptimal signal enhancement.

Discussions
Stochastic resonance has recently attracted massive research interests due to its enormous potentials for impor-
tant practical applications. However, the current state-of-the-art of the research yet suffers very limited perfor-
mance from the inappropriate choice of entraining signals. To further improve performance of existing SR, we 
have reported a new type of spectral resonance and how it can be harnessed for improved identification of weak 

Figure 11.  Asymmetric response and its response spectrum from dual-tone input excitation. (a) Vibration 
response. (b) Response spectrum.
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signals. Such spectral resonance is much stronger than the conventional stochastic resonances discussed to date 
and it offers orders of magnitude better signal improvement than what is currently possible. When sinusoidal 
entraining signals with frequencies in the same range as that of the weak signal to be identified are employed, the 
underlying mechanism of spectral resonance tends to facilitate increased nonlinear modulations and intermod-
ulations, thereby enhancing energy transfers and improving the strength and sensibility of the weak signals. For 
every given weak signal, there exists an optimal domain of entraining parameters to which strong spectral reso-
nances can be tuned. We have shown that signal magnification factors in the range of thousands can be possibly 
achieved. An essential criterion on the onset of strong spectral resonance has been defined as the emergences of 
substantial sub-harmonic frequency components in the overall response spectrum, based on extensive numerical 
experiments. Such a criterion is practically important since it provides a definitive guide for tuning a nonlinear 
spectral resonator, as well as the process of identification of the weak signals. Furthermore, our studies have 
shown that strong spectral resonances possess unique self-scaling characteristics. As the strength of the weak 
input signal reduces, a true stochastic resonance has the innate ability to accordingly increase the output signal 
strength in order to maintain a decent level of sensibility. Such characteristics are believed to be the possible 
mechanism behind the exquisite sensitivity of some animals to extremely weak coherent signals.

The emergence of strong spectral resonance requires an entraining signal which has the right strength to just 
overcome the potential barrier and to drive the system out of its potential wells so that the additive weak signal 
is enabled to assist the crossings between the two competing stable equilibriums. As a result, there usually exists 
a narrow optimal parameter region in which a resonator can be tuned. We have developed a practically useful 
method which can be used to estimate the required optimal parameters. These estimated parameters become 
very useful and can make the tuning of a strong spectral resonance a much easier task to accomplish in practice. 
Though there also exists similar time-scale matching condition2 from which optimal noise strength D required 
for stochastic resonance in the case of entraining noise can be estimated, practical implementations become much 
more difficult due the randomness of the signals and above all, the performances remain much to be desired.

An effective strategy for the eventual identifications of weak signals through spectral resonances has been 
proposed and demonstrated. The proposed method works the best in practice with real-time data acquisition 
and signal processing capabilities. The system is first tuned to its strong spectral resonance to enable the weak 
signal to be enhanced. Signal frequency is then identified and its magnitude determined from the system response 
using the correlation technique. Finally, the true strength of the weak input is recovered. The process of the final 
recovery of signal strength can be considered as a generalization of input identifications using measured output 
signals and known system transfer functions which, in the present case, are multi-dimensional spectral resonance 
characteristic transfer functions obtained through detailed prior characterization. The effect of noise on spectral 
resonance has been assessed. The presence of noise leads to increased irregularity in response waveform under 
a strong spectral resonance and contributes noticeably to the low frequency response spectrum, but it does not 
substantially undermine the maximum capacity of the spectral resonator.

In conclusion, the present work seeks to stimulate some fruitful discussions on the underlying mechanisms 
of stochastic resonances and how to further improve their performances for better identification of weak signals. 
A new type of spectral resonance, which has been proven to be more capable than the existing SR, has been dis-
cussed, together with some preliminary explorations on its possible mechanism. The results have revealed the 
hidden potentials of spectral resonances and provided a new benchmark for future research efforts and directions. 
Though the analyses have been made based on bistable nonlinear systems, the fundamental mechanism and most 
of the established salient features are believed to be generally applicable to many other nonlinear systems known 
to exhibit spectral resonance behavior.

Methods
Numerical simulations.  Numerical simulations were performed using Matlab as a computational platform. 
A highly accurate 5th-order Runge–Kutta integration scheme proposed by Dormand and Prince64 with tight accu-
racy and step size control is used for all nonlinear time-domain response predictions under various system input 
parameters. Matlab built-in fast Fourier transform routines are used for the computations of response spectra in 
frequency-domain. The extraction of a frequency component from a given response x(t) can be accomplished by 
using the correlation technique60. Suppose that a general response x(t) of a nonlinear system, which embodies a 
number of discrete frequency components, can be written as,

∑ ω φ= +
=

x t a t( ) sin( )
(10)n

N

n n n
1

If we would like to extract the ωn frequency component embedded in x(t), we can first multiply x(t) by a sinu-
soid at ωn and numerically integrate the product,

∫ω ω ω= +
τ

τ+
X

T
x t t t dti( ) 2 ( )[ sin( ) cos( )] (11)n

T
n n

where τ is a time delay to allow steady-state response to be established. Then, the modulus and phase of X(ωn) 
are the amplitude an = |X(ωn)| and the phase ϕn = ∠X(ωn) of the ωn frequency component respectively. The inte-
gration of (11) is numerically carried out through summations over all the discrete time steps. Such a correlation 
technique has been proven to be very accurate when integration over adequate time period T is performed60.

Derivation of linearized transfer function H(Ω).  When the amplitude of the entraining input signal 
is low, the nonlinear system vibrates with low vibration amplitude around one of its stable equilibriums and 
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the system behaves very much like a linear system, possessing a linearized transfer function which effectively 
describes its dynamics. The equation of motion of (1) in this case can be written as,

− + = Ωx ax bx C tsin (12)3

Since the two stable equilibriums are known to be = ±x a b/m , one can assume that the overall response of 
the system be x = xm + z where z represents the vibration of small amplitude around equilibrium. Upon substitut-
ing the assumed solution into (12), we have,

− + + + = Ωz a x z b x z C t( ) ( ) sin (13)m m
3

− − + + + + = Ωz ax az bx bx z bx z z C t3 3 sin (14)m m m m
3 2 2 3

+ + + = Ωz az ab z z C t2 3 sin (15)2 3

when z is small, the system becomes effectively linear after ignoring the higher order nonlinear terms as,

+ = Ωz az C t2 sin (16)

From the theory of linear systems62, the transfer function of the underlying linear system under small ampli-
tude of vibration becomes,

Ω =
Ω +

H
ai

( ) 1
2 (17)

which is the same as Eq. (2) referred in the main text. The linear system theory only predicts vibration response 
at the input frequency and for the particular system parameters studied in this paper (a = 1, b = 1), the linear 
transfer function H(Ω) = 1/(iΩ + 2) has a maximum amplitude of 0.5 when Ω = 0, any magnification of the input 
signal must come therefore from the nonlinear characteristics of the system.

Derivation of optimal entraining signal strength C.  For strong spectral resonance to occur, we need to 
first overcome the potential barrier to move the system just out of its potential wells. While reaching that strong 
spectral resonance region, the system will be jumping between the two stable equilibriums and hence its vibration 
response, to a first order approximation, can be written as φ= Ω + x t a b t( ) / sin( ). Upon substitution of this 
assumed solution into (12), we have,

φ φ φΩ Ω + − Ω + + Ω + = Ωa b t a a b t b a b t C t/ cos( ) / sin( ) ( / ) sin ( ) sin (18)3 3

Using the trigonometric identity,

φ φ φΩ + = Ω + − Ω +t t tsin ( ) 3
4

sin( ) 1
4

sin(3 3 ) (19)
3

the following can then be obtained,

φ φ φ

φ

Ω Ω + − Ω + + Ω +

− Ω + = Ω

a b t a b t a a b t

a a b t C t

/ cos( ) / sin( ) 3 /
4

sin( )

/
4

sin(3 3 ) sin
(20)

Based on harmonic balance method65 which requires the fundamental frequency Ω components on both sides 
of (20) be equal, we can then obtain the required strength C of the entrained signal as,

= Ω +


 −



C a

b
a
b

a3
4

1
(21)

2
2

which is the same as Eq. (3) referred in the main text.
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