
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4505  | https://doi.org/10.1038/s41598-022-08575-5

www.nature.com/scientificreports

A case study of petrophysical 
rock typing and permeability 
prediction using machine learning 
in a heterogenous carbonate 
reservoir in Iran
Erfan Mohammadian1*, Mahdi Kheirollahi2, Bo Liu1*, Mehdi Ostadhassan1 & Maziyar Sabet3

Petrophysical rock typing (PRT) and permeability prediction are of great significance for various 
disciplines of oil and gas industry. This study offers a novel, explainable data-driven approach to 
enhance the accuracy of petrophysical rock typing via a combination of supervised and unsupervised 
machine learning methods. 128 core data, including porosity, permeability, connate water saturation 
(Swc), and radius of pore throats at 35% mercury injection (R35) were obtained from a heterogeneous 
carbonate reservoir in Iran and used to train a supervised machine learning algorithm called Extreme 
Gradient Boosting (XGB). The algorithm output was a modified formation zone index (FZIM*), 
which was used to accurately estimate permeability (R2 = 0.97) and R35 (R2 = 0.95). Moreover, FZIM* 
was combined with an unsupervised machine learning algorithm (K-means clustering) to find the 
optimum number of PRTs. 4 petrophysical rock types (PRTs) were identified via this method, and the 
range of their properties was discussed. Lastly, shapely values and parameter importance analysis 
were conducted to explain the correlation between each input parameter and the output and the 
contribution of each parameter on the value of FZIM*. Permeability and R35 were found to be most 
influential parameters, where Swc had the lowest impact on FZIM*.

Abbreviations
FZI	� Flow zone indicator
MFZI	� Modified flow zone indicator
FZIM	� Modified flow zone indicator
FZIM*	� Modified flow zone indicator developed in this study
HFU	� Hydraulic flow unit
PRT	� Petrophysical rock typing
PDRT	� Petrophysical dynamic rock typing
PSRT	� Petrophysical static rock typing
LC	� Lorenz coefficient
R2	� Regression coefficient
RMSE	� Root mean square error
SCAL	� Special core analysis
RCAL	� Routine core analysis
AI	� Artificial intelligence
ML	� Machine learning
MICP	� Mercury injection capillary pressure
XGB	� Extreme gradient boosting
RE	� Relative error
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MAE	� Mean absolute error
R35	� Pore throat radius at mercury saturation of 35%
DRT	� Discrete (dynamic) rock typing
RQI	� Reservoir quality index
TEM	� True effective mobility

List of symbols
∅	� Effective porosity
K	� Absolute permeability
Pc	� Capillary pressure
Sw	� Water saturation
∅z	� Porosity
rmh	� Mean hydraulic unit radius
Fs	� Shape factor
τ	� Hydraulic tortuosity
La	� Actual length
L	� Straight length
Swc	� Connate water saturation
µ	� Fluid dynamic viscosity
Kr	� Relative permeability
rth	� Pore throat radius

Rock typing can be defined as dividing the reservoir into zones with identical petrophysical and flow 
characteristics1–3. Rock typing can be used in various industry disciplines, including finding thief zones in 
drilling, managing zones with high productivity index in the production phase, detecting zone of interest and 
building robust numerical reservoir models4–6. One of the most important usages of rock typing is predicting 
unknown reservoir properties, specifically permeability in uncored intervals7. Coring from several wells is an 
often unavoidable, essential task in order to obtain basic data on the field. However, coring in all wells of huge 
fields or from all zones of interest in a single well poses a substantial financial burden. Therefore, rock typing 
can be used as a method to alleviate these excessive expenses8.

Several approaches have been proposed in order to perform appropriate rock typing. Some methods are based 
on geological aspects of reservoirs such as the Lucia method9. Moreover, different petrophysical methods have 
been defined according to some reservoir properties such as porosity (φ), permeability (K), and capillary pressure 
(Pc). In addition, various empirical and also theoretical indices have been introduced for petrophysical rock typ-
ing (PRT), and the most practical ones are summarized in Table1. Rocks in each specific rock type have similar 
static (Pc, Swc, etc.) or dynamic (related to fluid flow behavior) i.e., Petrophysical Static Rock Typing (PSRT) and 
Petrophysical dynamic Rock Typing PDRT, respectively10. In the literature, the terms petrophysical rock types 
(PRTs) and Hydraulic flow units (HFU) have been interchangeably used. Kadkhodaie 2018 comprehensively 
reviewed various rock typing methods used in the literature and industry11. The formation zone index (FZI), 
which was a modification of Kozeny–Carman equation, expresses the correlation among micro-scale parameters 
like pore shape and size, pore throat radius, and aspect ratio to porosity and permeability as shown in Eq. (1), 
where rmh is the average radius of the hydraulic unit, Fs is the shape factor, and τ is the hydraulic tortuosity (the 
ratio of actual to the straight length ( LaL )). The correlation between these micro-scale attributes and macro-scale 
easy-to-measure parameters (i.e., porosity and permeability from RCAL) can be made by theoretical studies12. 
To calculate FZI using this method, Reservoir Quality Index (RQI) and normalized porosity (φz) need to be 
calculated using Eqs. (2) and (3). And finally, Eq. (4) can be used to calculate FZI.

Several researchers have tried to modify FZI by the inclusion or by reducing the number of parameters 
required to calculate the index13–16. One of the most critical applications of rock typing is to predict unknown 
reservoir properties for parts of formation where costly core samples are not available. Hence, various theoretical 
and empirical models are proposed by which different properties, most important of which is K and porosity (φ), 
can be estimated. Table 1 shows some theoretical and empirical indices commonly used for rock typing in the 
literature. In addition to FZI, Winland empirical equation, which relies upon pore throat radius when mercury 
saturation is 35%, is also a widely used index for rock typing. More recently, Mirzami-Piaman et al. proposed 
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FZI* and TEM that rely on routine core analysis (RCAL) and special core analysis (SCAL)-driven properties 
such as viscosity and relative permeability of phases15,17.

Artificial intelligence (AI) is becoming an essential part of the engineering toolkit in recent years. It has 
been used to solve a range of problems including mobile computing22, solar radiation estimation23, assessment 
of discharge rate of streamflows24, forecasting weather25,26, and aquacultural engineering27. The use of AI, spe-
cifically data-driven/machine-learning (ML) algorithms, has gained much attention in the energy, oil, and gas 
industry28. These methods are generally used to estimate the number of parameters that are otherwise technically 
or theoretically challenging to obtain29,30. The data-driven approaches have been used in various disciplines of 
the industry, such as approximation of multiple parameters related to carbon capture and sequestration31,32, 
predicting oil recovery33. And estimation of rock and fluid properties32,34–36.

Recently, data-driven strategies have been used for rock typing/clustering of the reservoirs as well. Table 2 
summarizes the application of different data-driven algorithms for rock typing purposes. Most previous studies 
used a variation of support vector machine (SVM) and artificial neural network (ANN) to classify the reservoir 
into homogenous clusters. Moreover, the majority of previous studies rely upon a combination of core data 
and well-logging/seismic data as inputs in their models37. Additionally, most of the previous researchers disre-
garded Swc in their indices due to the added complexity to the theoretical model or making the empirical results 
challenging to interpret (due to the high distribution of values for each rock type compared to porosity and 
permeability)38. Swc is known to play a crucial role in fluid flow in porous media due to its effect on the relative 
permeability of fluid Hence, omitting it from the equation may result in suboptimal rock types. Hence, in this 
research, a novel data-driven model (a combination of optimized supervised and unsupervised machine learning 
methods) that relies on core-data is utilized to propose a modified FZI number (FZIM*) that in addition to the 
basic petrophysical properties (K and φ) includes Swc and R35, both of which is proven to be of significance17. In 
this study, by using FZIM*, the heterogeneous carbonate reservoir of interest is classified into different PRTs. 
The developed model is explainable from statistics and petroleum engineering points of view. In addition, by 
using this approach, reservoir parameters such as K and R35 can be estimated for uncored parts of the formation.

Table 1.   The most common indices for rock typing.

Authors Type Index

Winland18 Empirical Log(R35) = −0.996+ 0.588Log(k)− 0.864Log(∅)

Kolodzie18 Empirical Log(R35) = −0.9008+ 0.554Log(k)− 0.903Log(∅)

Pittman19 Empirical
Log(R20) = −0.388+ 0.519Log(k)− 0.303Log(∅)
And
Log(R25) = −0.496+ 0.531Log(k)− 0.350Log(∅)

Amaefule et al.20 Theoretical FZI =
0.0314

√
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∅

∅
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Nooruddin and Hossain13 Theoretical FZIM =
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Izadi and Ghalambor14 Theoretical MFZI =
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Mirzaei-Paiaman et al.21 Theoretical FZI∗ = 0.0314

√
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Mirzaei-Paiaman et al.21 Theoretical PSRTI = 0.0314

√
k
∅
FSτ

Mirzaei-Paiaman et al.15 Theoretical TEM =
kkr
∅µ

Table 2.   Application of machine learning algorithms in reservoir studying.

Authors Applied algorithm Input parameters Prediction target Performance

Ahmadi et al.39 GA-FL, GA-LSSVM DT, DEN, CNL, PHIT ∅

k
R2

= 0.971

R2
= 0.994

Jamshidian et al.40 ANN-ICA DT, NPHI, RHOB, log(RT), log(K) ∅

k
R2

= 0.913

R2
= 0.897

Ahmadi and Chen41 LSSVM, FDT, ANN, HGAPSO-LSSVM DT, NPHI, RHOB, PHIT, and the matched permeability and porosity in a 
core laboratory (RCAL)

∅

k
R2

= 0.975

R2
= 0.996

Zhong et al.42 CNN Gamma ray (GR), bulk density (DEN), the slopes of the GR and DEN 
curves, and shale content k R2

= 0.923

Zhang et al.43 PSO-SVM GR, DEN, DT, and their slopes k R2
= 0.838

Menke et al.44 DBS-Decision Tree Micro-CT images of estaillades limestone k RMSE = 0.43

Topor45 RF Grain density, core porosity and permeability k R2
= 0.834
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Methodology
The core data used in this study is obtained from reservoir X, a heterogeneous carbonate reservoir belonging to 
the Asmari Formation in the Ahvaz field located in the Zagros basin on the northern side of the Persian Gulf, 
southwestern Iran. Ahvaz field is one of the world’s largest oil fields, and the largest oil field in Iran, and more 
than 600 wells have been drilled to date. The general trend of the Ahvaz oil field is northwest-southeast resulted 
from the upward movement of Zagros main thrust-located in the Iranian plateau caused by the collision between 
Arabian and Indian plates. The main reservoir formations have been deposited during the Oligocene–Miocene 
and generated a production area of around 67 km long and 6 km wide. All 128 core plugs used in this study 
were taken at the regular half to one-foot intervals along the zones of interest. Capillary pressure measurements 
using oil–water centrifuge techniques and mercury injection capillary pressure were conducted on plugs. Table 3 
summarizes the statistical background of the database (Fig. 1).

Table 3.   Statistical description of the database.

Φ k(md) Swc R35

Count 128 128 128 128

Mean 0.15 8.87 0.22 1.34

std 0.05 19.08 0.11 1.28

Min 0.05 0.11 0.03 0.25

0.25 0.11 1.07 0.15 0.59

0.5 0.16 2.08 0.21 0.86

0.75 0.18 8.16 0.25 1.55

Max 0.26 122.67 0.77 7.64

Figure 1.   Location of reservoir X, a carbonate reservoir in Asmari formation located in Zagros basin, SW of 
Iran46.
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In most of the previous studies, FZI is only dependent upon φ, K. However, since FZI is used for petrophysical 
rock type classification, effects of parameters such as pore throat size and connate water saturation come into 
play. Hence the modified FZI used in this study (FZIM*) can be defined as:

The database used in this study was created using φ (fraction), K(md), connate water saturation (Swc) in frac-
tion, and R35 in microns as input parameters and FZIM* as output. Figure 2 illustrates the overall workflow of the 
process. The core data was used to train the model without any pre-processing or manipulation, i.e., removing 
outliers, standardization or normalization of the original data. The FZI to train our model using Eqs. (1)–(4) 
(Amufele equation20) was calculated using φ and K obtained from the core plugs and was fed to the model as the 
output. Next, the data was split into training (75% of the data) and test datasets (25%). The model used in this 
study is a type of gradient boosting algorithm coupled with the Bayesian optimization technique and is called 
Extreme Gradient Boosting (XGB). Model parameters used in this study are summarized in Table 4. The model 
is implemented using a scikit™ learn package47 run in python and is well-known for its speed and performance. 
The mathematical background of the model is comprehensively explained in work of Chen 201648. A typical 
schematic of gradient boosting algorithms such as XGB is shown on Fig. 3.

To ensure the model’s performance is neither accidental nor due to overfitting of the training dataset, cross-
validation process was conducted. Cross-validation is a method to test model validation to assess how statistical 
analysis results can be generalized to an independent data set. One round of cross-validation typically involves 
partitioning a sample of data into subsets, performing the analysis on one subset (training set), and validating 
the results on the other subset (testing set). Next, the same procedure is repeated to another subset; the analysis 
on each subset is run, and the error/accuracy of all rounds (iterations) is averaged and reported as the cross-
validation score. In this study 75% of data is used as a training set, and the remaining 25% was utilized as a testing 
dataset (fourfold cross-validation).

An optimization process was conducted once the cross-validation results verified the model’s performance. 
The performance of data-driven/ML methods could be substantially enhanced using a proper optimization 
process. Various optimization techniques are available, including genetic algorithms, random grid search, and 
Bayesian optimization49. This study applied Bayesian optimization due to its structured nature, efficiency, and 
speed. It involves a structured method that accelerates finding global optimization problems. It builds a probabil-
istic model of the objective function that is then searched efficiently with an acquisition function before candidate 
samples are chosen to evaluate the real objective function. A full description and mathematical background of 

(5)FZIM∗ = f (ϕ, K, SwcR35).
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Figure 2.   The workflow of the process used in the current study.

Table 4.   Model parameters used in this study.

Booster = ’dart’ Early_stopping_rounds = 5

Gamma = 0.0 Learning_rate = 0.2

n-estimatores = 1000 Objective = ’reg:squarederror’

Random_state = 123 CROSS validation accuracy = 0.93
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this method can be found in the work of Snoek et al.50. In the next step, the FZIM* was estimated using the testing 
data set, and the performance of the model was investigated using different model metrics, including r-squared 
(R2), relative error (R.E.), and mean absolute error (MAE) as follows:

where xact.i  represents FZI and xpred.i  expresses FZI calculated from the model (FZIM*). One common issue with 
most data-driven methods previously applied in the industry is their black-box nature and unexplainability. 
Therefore, the model performance is explained through two analysis: parameter importance and shapely val-
ues. These techniques improve the model’s explainability through qualitative investigation of the effect of each 
parameter on FZIM*. Lastly, from the model predicted FZIM*, petrophysical rock types (PRTs), i.e., zones of 
similar fluid transport properties, were identified. Moreover, permeability and r35 values were estimated using 
the model output. The estimated permeability and R35 values are essential for parts of the formation where 
(physical) core samples are not available. Lastly, models performance was explained using two different feature 
importance analysis (F-score and Shapely), and each feature’s effect on the model output was elaborated.

Result and discussions
Figure 4 illustrates Poro-permeability, Lorenz plot, and frequency plots of porosity and permeability for the 
core data used in this study. It can be seen from porosity–permeability that no significant correlation between 
the two parameters can be observed. The Lorenz Coefficients (LC) of 0.66 further confirms the heterogeneous 
nature of the reservoir X. Porosity of the reservoir ranges from 0.11 to 0.26; The median for porosity is 0.17, 
and the majority of the data falls in the range of 0.15–0.19. From the combination of statistical description of 
permeability in Table 3 and frequency plot of Fig. 4b, more than 90% of the data have permeability lower than 
10 md; moreover, the majority of the samples have permeability lower than 6.20 md. Hence, it can be concluded 
that reservoir X is a heterogenous, low permeability reservoir. In low permeability heterogeneous reservoirs 
specifically, petrophysical rock typing and permeability prediction is more challenging52,53. Therefore, an accurate 
estimation of PRTs and permeability is more crucial.

FZIM* prediction using XGB algorithms.  XGB model accurately predicted FZIM* values (R2 > 0.97). 
Figure 5 shows the cross plot of FZI values measured using core plugs (FZI measured) versus those predicted 
from the model FZIM* (FZI estimated) for the training and test dataset. The dotted black line represents the 
unity line (R2 = 1). Hence, it can be observed that the model accurately predicts FZI in almost all data points. 
Moreover, a summary of the model performance (model metrics) is shown in Table 5. It should be noted that 
the model metrics (MAE, MRE, R2) generated from the test dataset are the ones that are of importance as they 
are based on the data points that the model had not seen previously. The inclusion of the training dataset in the 
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Figure 5.   Predicted (FZIM*) versus measured FZI values for Test (a) and Training (b) datasets.

Table 5.   Summary of model performance in Training and Test Dataset.

Dataset R2 MAE REMax (%) REMIN (%) REMean (%) Mean cross validation

Test 0.96 0.08 38.45 0.04 6.89 N/A

Training 0.99 0.01 7.00 0.01 1.84 0.95
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results is merely to provide more insight into model performance. The high cross-validation in the training data-
set proves that regardless of the chunk of the original dataset chosen to train the model, the model’s performance 
is still accurate. In other words, high R2 scores of cross-validation indicate that the model performance is neither 
due to the overfitting nor random.

Relative error (in percentage) of predicted FZI (FZIM*) in the training and test dataset is shown in Fig. 6. 
It can be seen in the figure that with the exception of one data point, all datapoints have a relative error of less 
than 25%, and the majority of the data both in training and test dataset has relative error lower than 10%. The 
low relative error indicates that the model performed well in predicting FZI.

Permeability and R35 prediction in uncored sections of the formation.  Log data is usually read-
ily available for all the wells. However, the permeability of rock can only be directly measured using cores, or if 
available, using well-testing methods. Using FZIM*, the permeability in uncored parts of the formation, or from 
correlated wells for which porosity data is available can be determined. This can be achieved by rearranging 
Eq. (5) for permeability:

Using the estimated FZIM* from the model and porosity values from the core (or log if available), the per-
meability can be accurately estimated. Figure 7 shows the predicted versus measured permeability values. To 
better show the dispersion of the values, logarithmic values are used on both axes as the superposition of most 
of the permeability values is between 0.12 and 10 md. R2 between the estimated and actual permeability values 
for the test and training dataset are 0.97 and 0.99, respectively. It therefore can be seen that using this method, 
permeability can be accurately predicted.

R35 estimation.  Once the permeability is calculated for uncored sections of the well or well-correlated for-
mations of the same reservoir, R35 can be calculated from Winland R35 equation18:

(9)K = 1014∅FZIM∗2.
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The estimated values versus actual values of R35 are shown in Fig. 8. R2 between the actual and estimated 
R35 values is 0.98 and 0.99 for the test and training dataset, respectively. It can be seen that R35 values can be 
accurately estimated using a combination of FZIM* and Winland equation. This method of calculation of R35 
could be of significance for dynamic rock typing using Winland equation in sections of well or parts of the for-
mation for which SCAL data such as mercury injection capillary pressure (MICP) and permeability values are 
not available. There is a direct correlation between pore size and R35. Generally, the smaller the pore throat, the 
lower values of R35 and consequently higher capillary pressure (Pc). In low permeability formation, the Winland 
equation often fails to correctly classify the rock types54,55. However, it is still applicable to estimate pore throat 
radius in each geological zone and petrophysical rock type due to the linear relation between pore throat radius 
and R35 as follows:

where C1 is a function of the grain sorting degree in the rock sample56.

Petrophysical rock typing.  Rocks with similar FZI values can be grouped into a single petrophysical rock 
type or dynamic rock types57. DRT equations and frequency plots are frequently used to cluster the units based 
on FZI-RQI plot58. However, none of these methods alone is sufficient to find the optimum number of flow zones 
or to efficiently define the boundaries of each zone59. To overcome these limitations, an unsupervised machine 
learning algorithm (K-means clustering method) is used with a frequency plot to find the optimum number of 
clusters. Clustering analysis initializes by setting the number of clusters to the number of samples, then gradu-
ally integrating the samples with similar FZIM* values into joint clusters. To do this, a parameter called inertia 
is calculated as each cluster is created. The optimum number of clusters could be specified when forming a new 
cluster, while not substantially reducing the inertia. As shown in Fig. 9, adding more clusters beyond 4 did not 
lower the inertia substantially. Hence, four PRTs were identified as the optimum number of clusters. Based on 
Frequency alone, six units were required. However, the combination of K-means and frequency plot resulted in 
a better PRT clustering compared to using frequency plot alone.

To compare the performance of the method used in this study, PRT based on two other indices was conducted. 
Figure 10a,b illustrate petrophysical rock typing based on the well-known FZI20 and newly developed FZI*15,16. 
FZI method classifies the reservoir into 2 PRTs while FZI* results in 3 PRTs. PRT based on the FZI approach 
was more accurate compared to FZI*. However, it can be observed that the R2 of PRTs in both scenarios is 
considerably lower than PRTs using a combination of K-means and FZIM* developed in this study. Hence, the 
technique developed in the current study was able to classify the PRTs in the heterogeneous reservoir of interest 
more accurately.

Cross-plots φ vs. log (K) based for each PRTs estimated using the abovementioned method are shown in 
Fig. 9. It can be observed that φ versus Log (K) shows a high coefficient of determination across all the zones 
(0.80 < R2 < 0.99). The highest R2 can be observed in the second PRT (R2 = 0.99), and the lowest is seen in the 
second zone (0.80). Table 6 summarizes the range of parameters for each induvial PRT. Moreover, the distribution 
of values for each input parameter (K,φ, Swc and R35) is presented in a series of box plots for each PRT (Fig. 11).

PRT 4 (yellow color) is characterized by the highest average porosity (up to 13.6%) and permeability (up to 
38.1 md), and R35 values. This unit has the best storage and flow capacities. PRT 3 (grey color), with an average 
permeability of 18.3 md and an average porosity of 14.7, is still potentially a good quality zone. PRT 2 (green 
color), with average permeability of 6.36 and similar values of φ as PRT 3, is a lower quality reservoir. Finally, PRT 
1, with an average permeability of 2.45 md and porosity similar to PRT2 and PRT3, is the zone with the lowest 
flow potential in reservoir X and hence is unlikely to contribute in the production. It can also be observed that 
the trends seen in R35 (Fig. 11d) and permeability (Fig. 11a) are similar. This is primarily due to the relationship 

(10)Log R35 = −0.996+ 0.588 log(K)− 0.864 log (ϕ).

(11)rth = C1R35,
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Figure 9.   PRT classification based on combination of Frequency and K-means algorithm.
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Figure 10.   PRT classification based on (a) on FZI and (b) FZI*.

Table 6.   The permeability equations, r-squared (R2), and range of FZIM* values, for each PRT. 

Zones FZIM* Range Correlation R2

1 < 0.88 k = 0.755φ3.714 0.79

2 0.88–1.39 k = 10.764φ3.685 0.93

3 1.39–1.90 k = 16.103φ2.880 0.99

4 1.90 > k = 1.326φ3.338 0.86
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between pore throat and permeability. The bigger the pore throat (at 35% of mercury injection in this case), 
the higher is the permeability of that specific cluster (zone). It should be mentioned that usually, in practice, a 
hybrid combination of clustering based on lithofacies and electrofacies and FZI is often as the best approach 
for clustering rather than relying upon one60. However, in the current study we tried to investigate clustering 
methods and parameter estimations (K, R35) by only relying on core-driven data61.

Parameter importance.  The majority of machine learning methods applications in the literature are of 
a black-box nature. This means the correlation between each parameter and the output is unclear. Explain-
able machine-learning is gaining more attention nowadays30. To enhance the explainability of the model, two 
methods of parameter importance analysis, namely F-score and shapely analysis, were conducted. The feature 
importance using F-score can identify the most influential feature on the output. It estimated the extent to which 
the model’s accuracy is reduced when omitted a specific feature(input). Hence, the input with the highest impact 
can be identified using this method. On the other hand, Shapley analysis can quantify how different values of 
inputs positively or negatively affect the output.

Figure 12 shows feature import analysis for the model used in this study. In Fig. 12, the most important 
feature is permeability, followed by R35 and the least important one is Swc. Figure 13 shows the shapely values 
for the testing dataset and full dataset (combination of training and test datasets). First, based on the shapely 
analysis, it can be seen that R35 is the most influential feature where higher values of R35 result in higher model 
outputs (FZI). This is also explainable from the point of view of petroleum engineering as R35 corresponds to 
pore throat radius at 35% mercury injection. Both R35 and k are functions of the pore size. The formation that 
has larger pores will have larger R35 values, as well as permeability values. Hence, both of the properties men-
tioned earlier positively impact the model output. The same trends can be observed for permeability (K) and 
Swc (connate water saturation).

In the case of φ, as observed from Fig. 12, higher porosity values reduce the output. This can be explained 
through theories behind various FZI indices, as shown in Table 1. FZI represents the productivity/deliverability of 
a rock type (formation). Hence, for a given porosity, higher permeabilities result in better quality (more produc-
tive) zones. As shown in Table 1, the most commonly used FZI values are a function of K/φ. Hence, increasing 
the porosity results in decreasing the FZI.

Another point worth mentioning is that the same trends of Shapley values can be seen both for Fig. 13a,b. 
This indicates that the testing dataset (almost being blindly split from the original dataset) is fully representative 

Figure 11.   Box plots showing distribution φ, K, Swc and R35 for PRTs 1–4.
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of the whole dataset. The main advantage of Shapely over the feature importance analysis methods is that the 
former is model-agnostic. Shapely interpretation utilized game theory’s SHAP values to estimate the extent to 
which each feature contributed to the prediction. The model-agnostic approach consists of using ML/AI models 
to study underlying structures without assuming that they can be accurately described by the model because of 
their nature. This reduces potential bias in interpretations62.

Conclusions
In this study, a modified formation zone index (FZIM*) was proposed that in addition to porosity and perme-
ability, is a function of Swc and R35.

Figure 12.   Feature importance of XGB model.

Figure 13.   Shapely analysis for Test (a) and test + training (b) datasets.
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•	 A supervised data-driven method (XGB) was used to train the model using the aforementioned parameters 
and to estimate the FZIM* as an output. The model predictions show a high correlation with the measured 
FZI values from the core data (R2 = 0.97, MAE = 0.08).

•	 The predicted FZIM* values were then used to calculate permeability and R35, and the estimated values were 
compared to the measured in both cases high R2 between the predicted and estimated parameters was found. 
Estimated FZIM* values were utilized to create a frequency plot that was then used together with the K-means 
algorithm to find the optimum number of PRTs. Boxplots of parameters then were used to discuss ranges of 
parameters in each cluster.

•	 Lastly, parameter importance and shapely analysis was used to quantify the effect of each input parameter on 
the output. The novel methodology used in this study (combination of supervised and unsupervised machine 
learning) can be used to improve petrophysical rock typing and enhance the estimation of parameters such 
as permeability and pore throat radius that otherwise require expensive cores or well testing.

The current study was conducted using a limited number of core data collected from a heterogeneous car-
bonate reservoir. The study could be further improved by applying this method to larger datasets. Moreover, 
including petrophysical parameters such as the cementation factor in the model, could potentially result in an 
optimized permeability prediction and improved petrophysical rock typing.

Data availability
The database and the python code used in the current study are available in Supplementary Information.
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