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Abstract

Intratumoral heterogeneity (ITH) refers to the presence of distinct tumor cell populations. It

provides vital information for the clinical prognosis, drug responsiveness, and personalized

treatment of cancer patients. As genomic ITH in various cancers affects the expression pat-

terns of genes, the expression profile could be utilized for determining ITH level. Herein, we

present a novel approach to directly detect high ITH defined as a larger number of subclones

from the gene expression pattern through machine learning approaches. We examined

associations between gene expression profile and ITH of 12 cancer types from The Cancer

Genome Atlas (TCGA) database. Using stomach adenocarcinoma (STAD) showing high

association, we evaluated the performance of our method in predicting ITH by employing

three machine learning algorithms using gene expression profile data. We classified tumors

into high and low heterogeneity groups using the learning model through the selection of

LASSO feature. The result showed that support vector machines (SVMs) outperformed

other algorithms (AUC = 0.84 in SVMs and 0.82 in Naïve Bayes) and we were able to

improve predictive power by using both combined data from mutation and expression. Fur-

thermore, we evaluated the prediction ability of each model using simulation data generated

by mixing cell lines of the Cancer Cell Line Encyclopedia (CCLE), and obtained consistent

results with using real dataset. Our approach could be utilized for discriminating tumors with

heterogeneous cell populations to characterize ITH.

Introduction

Intratumoral heterogeneity is defined as different tumor cells as being capable of exhibiting

distinct morphological and phenotypic profiles, including cellular morphology, gene expres-

sion, metabolism, proliferation, and metastatic potential [1]. The research on tumor heteroge-

neity is essential to figure out the composition of the tumor for personalized treatment of

cancer patients. The ITH studies are attracting attention as an important concept in the
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understanding of drug resistance and cancer recurrence, which is a critical issue in cancer

treatment, and in deciphering the mechanism of acquiring resistance to target chemotherapy

[2]. Therefore, understanding the heterogeneity of tumors is very important, not only in

designing the therapeutic approach to find the potential target for chemotherapy, but also in

the field of clinical diagnosis for prediction of prognosis and therapeutic response of cancer

patients [3].

Stomach adenocarcinoma (STAD) is the most common cancer in the world and has a very

high mortality rate [4]. It is particularly interesting to understand the molecular characteristics

of STAD from a genomic point of view through the application of next generation sequencing

(NGS) technology and to study the causes and consequences of stomach adenocarcinoma

through the assessment of ITH. In STAD, as well as in several other cancer types, ITH study is

invaluable for identifying suitable biomarkers and correct therapeutic strategy because each

subpopulation of cells (i.e., a subclone of cancer cells) contains distinct genetic information

[5]. Currently, researchers have calculated the purity/ploidy of tumors [6] to know how many

tumor cells are inherently contained on the basis of the copy number alteration data and

somatic mutation data obtained from the carcinoma. In addition, the degree of tumor hetero-

geneity has been determined by estimating the number of sub-clones existing within a tumor

[7].

Nonetheless, the measurement of ITH by identifying sub-clones using genome profiles

requires complex and intensive analytical procedures, such as the calculation of tumor purity,

ploidy, variant allele frequency (VAF), cancer cell fraction (CCF), and clustering. Recent study

has suggested that high level of ITH affects the recurrence risk based on the gene expression

profile [8]. Another approach has demonstrated that the degree of ITH could be measured by

the biological network entropy using gene expression data [9]. Thus, their previous studies

suggest that not only genomic data but also gene expression patterns can be used as invaluable

information to identify ITH.

A method is needed for easily determining the tumor heterogeneity by utilizing various

types of omics data. We propose a method to classify tumors with high heterogeneity exhibited

as a larger number of subclones according to the mutation and expression profiles of genes

that may be associated with stomach adenocarcinoma. We tried to distinguish samples with

high tumor heterogeneity by combining the mutation data set and the gene expression data set

to obtain meaningful insights for determining tumor cell diversity. During this process, our

method could easily find potential biomarkers through a feature selection and conveniently

determine candidate tumor samples with high heterogeneity.

Results

Relationship between ITH and RNA expression

Fundamentally, gene expression profiles have a functional importance for clonal evolution so

that we have analyzed RNA expression profiles in 12 cancer types from the Broad GDAC Fire-

hose (https://gdac.broadinstitute.org/). In our study, ITH was defined as the number of dis-

tinct tumor cell populations (subclones), measured by using EXPANDS and PyClone [10]. We

performed the correlation analysis between clone number and gene expression profile in order

to examine which cancer types are highly correlated to ITH. Overall expression profiles of

many genes were significantly correlated (p< 0.01, Spearman’s rank correlation) in Lung

squamous cell carcinmoma (LUSC) and Stomach adenocarcinoma (STAD) than other cancer

types (Fig 1A). 303 (1.47% of total genes) and 299 genes (1.45%) were significant, respectively.

Among them, several oncogenes and tumor suppressors were included (5 and 10 in LUSC, 10

and 13 in STAD). Next, we identified enriched functions associated with those genes. STAD
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Fig 1. Association of RNA expression with ITH in 12 tumor types from TCGA. (A) Bar plot demonstrating comparison between the differential RNA gene

expression in 12 tumor types from TCGA. BLCA: Bladder urothelial carcinoma; CESC: Cervical and endocervical cancers; GBM: Glioblastoma multiforme; GBMLGG:

Glioma; HNSC: Head and neck squamous cell carcinoma; KIPAN: Pan-kidney cohort; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; PRAD:

Prostate adenocarcinoma; SKCM: Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; THCA: Thyroid carcinoma. POS: Positive; NEG: Negative; Onco:

Oncogene; Supp: Suppress gene; Other: Other gene. (B) and (C) Heat map of functional categories of genes positively and negatively correlated with ITH, respectively.

https://doi.org/10.1371/journal.pone.0219682.g001
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showed the most prominent association with both positively and negatively correlated genes

with ITH (Fig 1B and 1C). And there are more samples in STAD with clone than other cancer

types. CESC and THCA did not have enriched function. Based on high correlation and avail-

able enough data for subclone numbers with ITH in STAD, we performed following analysis

for genomic and transcriptomic features of stomach adenocarcinoma. Here, this cohort is

Stomach adenocarcinoma (STAD) rather than Stomach and Esophageal carcinoma (STES) in

the Broad GDAC.

Characteristics of genomic and transcriptomic markers in ITH of stomach

adenocarcinoma

A variety of approaches could be considered to determine the factors affecting the tumor het-

erogeneity of stomach adenocarcinoma. We examined the genomic and transcriptomic char-

acteristics of 128 tumor samples with high heterogeneity and low heterogeneity. We assume

that tumor suppressor genes and oncogenes are found frequently in tumors with high hetero-

geneity rather than in those with low heterogeneity. As expected, the distribution of both

tumor-driver genes indicates that they were enriched in tumors with high heterogeneity (Fig

2). Among the 63 tumor suppressor genes, 12 genes had mutations and a total of 147 muta-

tions were present in tumors with high heterogeneity. On the other hand, those genes har-

bored only 60 mutations in tumors with low heterogeneity. Most of the genes, except for TP53,

had a higher mutation frequency in the high heterogeneity group. The frequency in oncogenes

was also different between both the groups, showing more abundance (87 mutations) in the

high heterogeneity group than in the low heterogeneity group (30 mutations). Among onco-

genes, MYCBP2 was the most prominent in the high heterogeneity group whereas PIK3CA
was the most frequent in the low heterogeneity group (S1 Fig). In all the tumor stages, onco-

gene and tumor suppressor genes were prevalent in tumors with high heterogeneity (S2 Fig).

We could confirm that there was genomic difference between both the groups in the tumor

associated genes.

We also assume that the differences in the expression levels of many genes might cause

functional differences associated with high intratumoral heterogeneity. Thus, we identified dif-

ferentially expressed genes (DEGs) between the low and high heterogeneity groups using the R

package, DEseq [11]. The COL11A2 genes were highly expressed in the high heterogeneity

group than in the low heterogeneity group and the CLDN22 genes were expressed at low levels

(> 2-fold change and adj p < 0.05). We were able to confirm the difference in the gene expres-

sion in both the high and low heterogeneity groups. Next, we identified enriched functions

through GSEA (Gene Set Enrichment Analysis) (Fig 3A). We could find several pathways

showing functional differences, including “G-protein alpha signaling”, “Extracellular matrix

organization”, “Degradation of extracellular matrix”, “Integrin cell surface interactions”, “Sig-

naling by GPCR” and “Adherence junctions interactions”. Among them, the G-protein alpha

signaling pathway is mainly involved in signal transmission of cells [12] and low expression

levels of genes in that pathway were associated with high ITH in our analysis (Fig 3B). Recent

studies have shown that G protein alpha signaling affects the stomach adenocarcinoma growth

through p53/p21 and MEK/ERK pathways [13].

Performance comparison of classifiers

We classified tumor samples into low and high heterogeneity groups by applying three predic-

tion methods. Three types of datasets (mutation, RNA expression, and both the datasets com-

bined) were tested (Fig 4). First, we compared the performance of the prediction methods

according to the data types. The performance of each run was evaluated by 10-fold cross
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validation. The prediction accuracy is summarized in Table 1. Each value is the average of 10

runs. Overall, the performance was better when the two datasets were combined than when

only one dataset was used. In terms of methods, the SVM outperformed the other methods for

the two data types, exhibiting 71.02% in the mutation and 75.54% in the combined dataset.

The SVM method achieved the highest area under the curve (AUC) (0.84) using the combined

dataset (shown in Table 1 and Fig 5A). In the case of NB, the sensitivity in the combined data-

set was the highest (0.90), but the specificity was the lowest (0.49). In conclusion, the best per-

formance was when we applied SVM with the combined dataset.

Next, we tested whether the prediction was stable when a limited subset of genes, out of the

total set, was applied, implying loss of information. A subset of genes was randomly selected

from the total number of genes. As expected, the performance with regard to the classification

of heterogeneity was decreased with high variance with the decrease in the size of gene set

when we tested with SVM (Fig 5B). This suggests that it is important to generate a prediction

model with the most available features before the feature selection.

Fig 2. Pie charts representing the frequency of tumor suppressor genes and oncogenes between the low and high heterogeneity groups.

Each gene name and its mutation count in a group are displayed.

https://doi.org/10.1371/journal.pone.0219682.g002

Assessment of intratumoral heterogeneity with mutations and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0219682 July 16, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0219682.g002
https://doi.org/10.1371/journal.pone.0219682


Candidate genomic features for stomach adenocarcinoma with high

heterogeneity

We were able to obtain a list of genes that contributed to the classification using the Lasso [14]

feature selection method (shown in S1 Table). When we selected the top ranked genes, the

MKRN3 gene had the highest coefficient value in the mutation dataset and the PDGFRA gene

had the highest value in the RNA expression dataset. Especially, the PDGFRA gene has been

associated with tumor progression in stomach adenocarcinomas and has been associated with

a poor prognosis [15]. The PLEC gene showed high difference in the mutation frequency

between the low and high heterogeneity groups. The PLEC gene has been associated with bind-

ing of protein coding and actin binding. Also, PLEC is an important gene for cell pleomor-

phism and cytoskeleton disorganization [16].

Fig 3. Functional differences between the low and high heterogeneity groups. (A) Enriched functions in genes

showing expression difference between both the groups. (B) Enrichment of genes belonging to G alpha signaling

events.

https://doi.org/10.1371/journal.pone.0219682.g003
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Fig 4. Schematic flow of tumor heterogeneity prediction. We performed machine learning in three steps: 1) preparation of mutation and

RNA expression data set, 2) prediction model construction, and 3) evaluation of constructed model.

https://doi.org/10.1371/journal.pone.0219682.g004

Table 1. Comparison of the predictive performance according to the real datasets.

Data Type Methods

Naïve Bayes Support Vector Random Forests

Mutation (Accuracy) 65.23% 71.02% 68.83%

RNA Expression (Accuracy) 71.33% 70.08% 69.84%

Combined Data (Accuracy) 69.38% 75.54% 72.87%

Combined Data (Sensitivity/Specificity) 0.90/0.49 0.73/0.78 0.75/0.69

Combined Data (AUC) 0.82 0.84 0.81

https://doi.org/10.1371/journal.pone.0219682.t001
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Performance test of predictive models with simulation data

We confirmed that the prediction model could distinguish the tumor heterogeneity when mul-

tiple tumor samples were randomly mixed. The simulation datasets were generated by using

mutation profiles from the Cancer Cell Line Encyclopedia (CCLE) dataset and RNA-seq

expression profiles from the CCLE and GTEx dataset, as described in the Methods section. A

total of 150 mixed samples having diverse heterogeneity were used to evaluate the prediction

models. As shown in Table 2, the performance was better in the RNA expression dataset than

in the mutation dataset. Furthermore, the prediction models achieved the best performance in

the combined dataset (showing an accuracy of 80.93% and AUC of 0.88 for SVM). This

showed consistent results with the results obtained by using real datasets.

Among the parameters related to the composition of tumor samples, the distribution of

tumor purity might affect the prediction performance. We examined as to how the prediction

performance changed with the average tumor purity (Fig 6). Overall, the prediction ability was

affected by tumor purity when using the mutation profile, and tended to decline at the setting

of low purity. Among the three algorithms, the performance of NB was affected for all the data-

set types. However, the performance of SVM and RF showed a small change according to the

setting of various tumor purities when using RNA expression and combined dataset. This indi-

cates that those algorithms are more tolerant to diverse tumor purities when using the RNA

expression dataset.

Fig 5. Performance comparison of classifiers. (A) Receiver operating characteristic curve of predictive performance on three classifiers. (B)

Measurement of the performance with limited gene set in the RNA expression dataset with SVM.

https://doi.org/10.1371/journal.pone.0219682.g005

Table 2. Comparison of the predictive performance according to the data type on simulation datasets.

Data Type Methods

Naïve Bayes Support Vector Random Forests

Mutation (Accuracy) 58.27% 61.40% 59.87%

RNA Expression (Accuracy) 69.80% 73.87% 68.87%

Combined Data (Accuracy) 73.47% 80.93% 76.80%

Combined Data (Sensitivity/Specificity) 0.65/0.81 0.81/0.81 0.77/0.76

Combined Data (AUC) 0.83 0.88 0.85

https://doi.org/10.1371/journal.pone.0219682.t002
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Discussion

In this study, we suggest a novel framework to classify tumor samples according to their het-

erogeneity, representing the degree of different cell populations. We demonstrated the first

prediction approach that could distinguish samples with heterogeneity using the mutation and

RNA expression data, as well as a combination of both the data. Our prediction models

showed reliable performance when using a real dataset and the results were also consistent

with the simulation data. Our approach could be utilized to conveniently find tumor samples

showing high heterogeneity as well as for easily finding the genomic and transcriptomic mark-

ers through feature selection.

Our approach has several advantages. First, for systematic analysis, tumor samples with

high heterogeneity could be found conveniently. Second, our method could improve the per-

formance of distinguishing heterogeneity through the addition of different types of data sets

including mutation and transcriptomics datasets. Finally, the features associated with tumor

heterogeneity can be automatically extracted.

We explicitly examined the characteristics of each group in detail by dividing the samples

into groups with low and high heterogeneity. In the group with high tumor heterogeneity,

mutations in the tumor suppressor genes and oncogenes were relatively more than in the

group with low heterogeneity. Most mutations were detected in both high heterogeneity group

Fig 6. Measurement of the performance with limited gene set in the RNA expression dataset. The simulation

shows the performance of each prediction method according to different tumor purity (50, 70 and 90).

https://doi.org/10.1371/journal.pone.0219682.g006
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and low heterogeneity group, with different percentage of mutations in PIK3CA, KRAS and

APC. Those oncogenes were more found in high heterogeneity group than low group

(PIK3CA: 26.6% in high-heterogeneity group and 17.2% in low-heterogeneity group; KRAS:

14.1% and 4.7%; APC: 20.3% and 7.8%). Previous study shows that mutational heterogeneity

in APC and KRAS could cause polyclonality in early colorectal tumorigenesis [17]. Another

study suggested that PIK3CA, SMAD4 and TP53 are most often associated with clonal diver-

gence [18]. These driver genes may cause an increase of tumor heterogeneity via clonal

expansion.

Also, the amount of RNA expression was significantly different between the high and low

heterogeneity groups. Because there were apparently different genomic and transcriptomic

alterations between both the groups, these important changes might contribute toward the

high heterogeneity in tumor progression. Although the top-ranked mutated genes selected by

feature selection are not well known in tumorigenesis, their occurrences were distinctly differ-

ent between both the groups. The cause and effect of this association would prove invaluable

for further studies.

There are different levels of ITH, e.g., phenotypic ITH such as heterogeneity in cell shape

and morphology as well as non-genetic heterogeneity ITH such as heterogeneity in signaling

[19] and epigenetic [20]. In this study, we focused on genetic aspect of ITH. However, consid-

ering different levels of ITH can help to understand the overall mechanism of tumor progress

accurately and globally. In the future, it may be possible to conduct classification studies of

ITH using these data.

In addition, there are the several issues on identifying ITH with single cell sequencing data.

Recently they have been utilized for studying tumor heterogeneity [21–23]. The evaluation

with single-cell RNA sequencing (scRNA-seq) data could be more reliable for studying ITH

compared to that using bulk data. scRNA-seq analysis has an advantage that it can directly

measure different tumor cell populations while analysis using the bulk sequencing analysis

infers indirectly them. The profile of single cells can be deconvoluted with tools such as MuSiC

[24] and CIBERSORT [25] to find out the cell type and the heterogeneity can be measured by

grasping different molecular cell contents. This analysis will allow us to accurately evaluate

tumor heterogeneity, as it provides more comprehensively the information of actual tumor

microenvironment compared to analysis of bulk data or the mixture of cell lines.

As a future work, deep learning techniques will be applied [26]. The current machine learn-

ing approaches have a limitation with feature selection. To overcome this limitation and to

improve the performance, we will try deep learning to classify ITH.

In summary, through the performance evaluation of the prediction models for ITH, we

confirmed the plausibility of the proposed approach that could predict high tumor heterogene-

ity. We expect that this study will provide a novel insight for interpreting intratumoral hetero-

geneity so that it can be utilized for clinical implementation in diverse cancers.

Methods

Correlation analysis between ITH and gene expression

The Cancer Genome Atlas (TCGA) dataset (version 2016.01.28) for 12 cancer types was down-

loaded from Broad GDAC Firehose (http://firebrowse.org/). The full name and the abbrevia-

tion of these cancer types are as follows: bladder urothelial carcinoma (BLCA), cervical and

endocervical cancers (CESC), glioblastoma multiforme (GBM), low grade glioma (GBMLGG),

head and neck squamous cell carcinoma(HNSC), pan-kidney cohort (KIPAN), lung adenocar-

cinoma(LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD),

skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), and thyroid
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carcinoma (THCA). To obtain information on ITH, we used the number of clones calculated

by PyClone and EXPANDS from previous studies [10]. PyClone performs Bayesian clustering

by grouping somatic mutations into putative subclones. It infers the cellular prevalence of

somatic mutations by taking both variant allele frequencies and copy number alterations [7].

EXPANDS estimates the number of subclones based on hierarchical clustering analysis with

cell-frequency probability distributions of somatic mutations [27]. The correlations between

ITH (i.e. the number of clones) and gene expression were measured by Spearman’s correlation

coefficient (PCC) and the significant genes (p< 0.01) were counted. In order to identify bio-

logical functions associated with ITH, gene set enrichment analysis (GSEA) (software.broadin-

stitute.org/gsea/) was performed on REACTOME pathway gene sets using pre-ranked gene

list of PCC.

ITH prediction using genomic and transcriptomic datasets

The overview of the present study is presented in Fig 4. We first collected genomic and tran-

scriptomic datasets from stomach adenocarcinoma patients and combined them into a single

dataset. The target values for prediction were determined by the number of clones. We

employed a machine learning method to predict the heterogeneity in real data. Furthermore,

to evaluate the accuracy of prediction, we applied our predictive model to hypothetically het-

erogeneous tumor datasets generated from mixed cell lines. Our prediction model achieved

the best performance in the combined dataset and demonstrated the plausibility of predicting

high heterogeneity in stomach adenocarcinoma.

Evaluation data for ITH prediction

From TCGA stomach adenocarcinoma (STAD) cohort, we obtained the mutation profiles of

289 patients and RNA expression profiles of 450 patients. We selected 128 patients that had

the same sample ID as that of data for mutation, gene expression, and clone number. To clas-

sify the tumors according to ITH in stomach adenocarcinoma, the label of tumors with high

heterogeneity (number of clones� 6) was set to 1 and the label of those with low heterogeneity

(number of clones< 6) was set to 0, based on the presence of well-balanced labels for positive

and negative sets (S3 Fig). We defined target labels, y = {y1, y2, . . ., yN}, i = 1, . . ., N and yi 2 {0,

1}, where N is the total number of patients. As input data for a model, three types of datasets

were considered. The set of mutation was denoted by M ¼ fm1;m2; . . . ;mNm
g, the set of

expression was denoted by E ¼ fe1; e2; . . . ; eNe
g, and the combined set of both was denoted

by EM = M [ E, where Nm, and Ne correspond to the total number of features for mutation

and expression, respectively. The features with mutation frequency� 5 were excluded and

those with low expression (normalized read count< 20) over total samples were also excluded.

When X(M) was the input dataset of mutation profile, it could be represented as a N × Nm

matrix and other datasets could also be represented in the same way. Both the combined data-

sets have the features of Nme = 16,383, merged from the mutation dataset (Nm = 957) and the

RNA expression dataset (Ne = 15,426).

Machine learning methods

The feature selection was performed using the least absolute shrinkage and selection operator

(LASSO) [14]. The LASSO regression has a function of variable selection that increases the

prediction accuracy by reducing the regression coefficient [28], which is an advantage of ridge

regression, and makes the regression coefficient values of irrelevant features easily zero at the

same time. Therefore, Lasso regression is known as an analytical method that can provide high
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prediction accuracy as well as the interpretive power of variable selection. We used the R pack-

age ‘glmnet’ [29] to select the important features. We did feature selection using LASSO from

the training data, generated a classification model, and evaluated the performance using a test

set. When applying it to the combined data, the features were selected separately from the

mutation and expression datasets, and the selected features were merged so as to use more

than one type of dataset.

To evaluate the performance of tumor heterogeneity prediction from the selected features,

we compared three classification algorithms of Support Vector Machine (SVM), Random For-

est (RF), and Naïve Bayes [30–32]. The performance of classifiers was evaluated based on

10-fold cross validation and was compared in terms of Area Under Curve (AUC). It was per-

formed in R (version 3.4.3) and the parameter setting is as follows:

1. We applied radial basis function (RBF) kernel to a SVM classifier using R package ‘e1071’

(https://cran.r-project.org/web/packages/e1071/). Two parameters, C and sigma, for the

RBF kernel SVM were determined by cross-validation with grid search of C = {0.1, 10, 100}

and sigma = {0.01, 0.25, 0.5, 1}.

2. We used R package ‘klaR’ (https://cran.r-project.org/web/packages/klaR) to apply the

Naïve Bayes classifier.

3. We used the R package ‘randomForest’ [32] to collect decision trees from a random subset

of the data with standard settings. We determined the best hyper-parameter setting for the

number of trees and the minimum size of terminal node through cross-validation for the

number of trees = {200, 500, 1000, 2000} and the size of nodes = {2, 3, 4, 5}.

Generation of simulation data

To validate our predictive model using the simulation method, we downloaded mutation data

of 38 STAD cell lines from CCLE (https://portals.broadinstitute.org/ccle) and mixed them to

generate simulation datasets exhibiting tumor heterogeneity. With high or low heterogeneous

tumors, a mutation profile of i-th sample, Xi(M) was generated according to following proce-

dure: 1) The number of clone, Nc, was selected according to random number generation from

Poisson distribution with the parameter λ = 6; 2) the tumor purity value, Pt, was determined

from normal distribution with mean value, � Pt ¼ 70 and variance, σ2 = 100; 3) the size of j-th

clone, Sj, was determined by random number generation, where Sj 2 [20, 100]; 4) the cell lines

of Nc were randomly selected, the variant allele frequencies (VAFs) of each variant were mixed

based on the proportion of clone size, and each mixed VAF was adjusted by purity; 5) finally,

VAFs were converted to binary values by using VAFcutoff = 0.03.

To generate mixed RNA expression datasets, we downloaded RNA expression data of

tumor cell lines from CCLE (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2770/Results)

as well as the RNA expression data of normal cell lines were downloaded from the GTEx Portal

(https://www.gtexportal.org/home/datasets). We used 38 tumor cell lines and 2 normal cell

lines. Each mixed expression profile was generated in the same way as described above except

for procedure 4 and 5, which were modified as follows: 4) cell lines of Nc were randomly

selected, expression value of each gene was mixed based on the proportion of clone size, and

the mixed expression was adjusted by purity; 5) the expression values of normal samples were

added to the mixed sample by considering the proportion of normal sample as 1 − (Pt/100).

A combined dataset of mutation and RNA gene expression was generated by performing

two types of procedures simultaneously with the same cells. The two procedures are shown in

S4 and S5 Figs, respectively.
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S1 Fig. Occurrence of mutation in tumor suppressor genes and oncogenes per tumor sam-

ple.

(TIF)

S2 Fig. Comparison between the occurrence of mutations in tumors with high and low het-

erogeneity.

(TIF)

S3 Fig. Number of positive and negative samples according to the cutoff value for the num-
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(TIF)

S4 Fig. Procedure for generating simulation data of mutations.

(TIF)

S5 Fig. Procedure for generating simulation data of RNA gene expression.
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