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Abstract: Existing information-centric networking (ICN) designs for Internet of Things (IoT) mostly
make caching decisions based on probability or content popularity. From the energy-efficient perspec-
tive, those strategies may not always be energy efficient in resource-constrained IoT because without
considering the energy reward of caching decisions, inappropriate routers and content objects may be
selected for caching, which may lead to negative energy rewards. In this paper, we analyze the energy
consumption of content caching and content retrieval in resource-constrained IoT and calculate
caching energy reward as a key metric to measure the energy efficiency of a caching decision. We then
propose an efficient cache placement and cache replacement mechanism based on the caching energy
reward to improve the energy efficiency of caching decisions. Through analysis and experimental
results, we show that the proposed mechanism achieves a significant improvement in terms of energy
efficiency, stretch ratio, and cache hit ratio compared to state-of-the-art caching schemes.

Keywords: energy efficiency; Internet of Things; wireless sensor networks; caching energy reward;
content store; information objects

PACS: J0101

1. Introduction

Information-centric Networking (ICN) is recognized in the literature as one of the
most potential networking architectures for the Internet of Things (IoT). ICN takes into
account content object and content name at the network level while IoT network traffic
is driven mostly by content retrieval, instead of point-to-point communication. With
low power devices, resource-constrained IoT networks like wireless sensor networks
(WSNs) normally operate using different standards such as 802.15.4, compared to the
Internet and normal wireless devices. IoT devices are capable of sensing, collaborating, and
interchanging content between them and the Internet. Sharing an IoT infrastructure for
multiple applications is a trend nowadays and sharing IoT data to respond to concurrent
application requests is energy efficient. As the complicated architecture of the IP model is
difficult to handle such interconnection and data exchanging, studies have shown that the
re-modeling from end-to-end communication model toward information-oriented model
places ICN to meet the requirements of IoT. As a result, operations of the information-
centric approach may enhance content access, content distribution, reduce the content
retrieval delay, and improve the network performance for IoT.

We note that the pattern of IoT applications follows a content-oriented fashion in
which actuators and sensors may not communicate with particular things. IoT applications
may demand content based on various properties such as query-based content, event
data traffic, monitoring, or critical content. ICN provides opportunities to implement
IoT applications in a native view. In [1–3], the authors implemented ICN for smart city
applications. In [4], the authors implemented ICN for smart home applications using
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hierarchical names and a multi-party forwarding mechanism for content retrieval from
multiple producers. In [5], the authors discussed how ICN can be leveraged for industrial
automation. In [6], Boul et al. designed a secured and reliable intelligent transport system
using ICN.

In-network caching is the core feature of ICN which places cached content objects
around the network and makes content available for requests. The utilization of in-network
caching in ICN can improve content availability, so in-network caching is highly beneficial
for resource-constrained devices. In ICN in-network caching, a critical issue is to determine
which content objects should be cached and which routers should cache a content object.
ICN caching schemes for IoT can be categorized into the following groups, graph-based
caching, label-based caching, probabilistic caching, and popularity-based caching [7–9].
Among those groups, the literature shows that popularity-based caching is one of the most
efficient caching approaches for IoT [10]. In popularity-based caching, nodes decide which
content objects should be cached based on content access frequency and interest message
distribution. This approach is to increase the usage of popular content objects to increase
the cache hit ratio. In [11], Precache is an ICN caching scheme based on content relevance.
In MPC [12], the authors implemented a way to calculate the content popularity based
on counting the number of incoming interest requests for content objects. MPC uses a
threshold to determine the popularity level of content objects. When the number of interest
requests for a content object is greater than or equal to a threshold, the content object is
labeled as popular content. MPC recommends nodes holding popular content objects to
cache the content objects. In [13], the authors proposed CPCCS caching scheme which uses
a dynamic threshold for least popular content (LPC) and optimal popular content (OPC)
and recommend routers along the routing path should cache OPC content objects while
fewer routers should cache LPC content objects.

However, the caching schemes above may not always be energy efficient for resource-
constrained IoT devices like sensors and actuators where energy efficiency is one of the
most concerning factors. The reason is that existing ICN designs for IoT mostly make
caching decisions based on probability or content popularity. We admit that those caching
strategies are beneficial in many ways. However, considering resource-constrained IoT,
those caching strategies may not always be energy efficient when inappropriate routers
are selected to cache content objects or inappropriate content objects are selected to be
cached. From the energy-efficient perspective, if a node i with a low residual energy level
ei is selected to cache popular content objects, the node has to serve more content requests
than other nodes. Therefore, its energy can be exhausted quickly. This case may not occur
in normal cases of the Internet or edge computing because nodes are normally charged.
However, with resource-constrained IoT, when the node is out of battery, its cached content
objects are not accessible. This aspect can make a caching decision based on probability
or popularity without considering energy factors become inefficient in terms of energy
when selecting inappropriate content routers. In addition, caching a content object without
considering its energy reward can also lead to energy inefficient caching decisions. In many
cases, energy consumption to cache and retrieve a cached content object ck from a content
router r can be even higher than energy consumption to forward interest messages to the
original content producer o. As explained above, this issue may be not very important in
normal cases of the Internet or edge computing because energy consumption may not be
the most important factor, but the network performance. However, in resource-constrained
IoT like wireless sensors and actuator networks, energy efficiency is considered as one of
the most critical factors.

The motivation of this paper is to design an efficient ICN caching mechanism for
resource-constrained IoT taking energy efficiency as the key factor. We analyze the energy
consumption of caching operations as well as content retrieval in resource-constrained IoT
and calculate caching energy reward as the main metric to measure the energy efficiency of
a caching decision. We then propose an energy reward-based caching (ERC) mechanism to
enhance cache placement and cache replacement in resource-constrained IoT. Our contribu-
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tion in this paper is three folded. First, we analyze energy consumption for caching and
content retrieval in resource-constrained IoT. Second, we propose an energy-efficient cache
placement and cache replacement based on caching energy reward. Third, we extensively
evaluate the proposed mechanism through analysis and simulation. Through analysis
and experimental results, we show that the proposed mechanism achieves a significant
improvement in terms of energy efficiency compared to state-of-the-art caching schemes.

The rest of this paper is organized as follows. Section 2 discusses related works.
Section 3 gives the overview and the detailed design of the proposed mechanism. Section 4
describes our analysis, experiments, and obtained results. Finally, Section 5 concludes
the paper.

2. Related Work

In-network caching is one of the main features of ICN to reduce the network load,
increase content availability, and lower data delivery latency by allocating cached content
objects inside the network and making them available for content requests [10]. If content
objects are only available at the content producer or cached nearby the producer, the
network around the producer may witness a heavy traffic load and the content delivery
latency may be high. If a content object is cached to nearby consumers, requests for the
content object can be retrieved faster. One of the critical issues of in-network caching is
which routers should cache a content object. Caching schemes in the literature of ICN
can be grouped into the following categories, popularity-based caching, probabilistic
caching, label-based caching, and graph-based caching which are thoroughly reviewed in
the literature [7–9].

In probabilistic caching, routers use a probability p to make a caching decision. p can
be a fixed or random number. Probabilistic caching introduces a certain probability of
caching for a content object that a router receives. For a given p-value, when an ICN router
receives a new content object, the router randomly generates a number between 0 and 1. If
the generated value is lower than p, the router makes a caching decision to cache the content
object. Otherwise, the router discards the content object. In [14], the authors solved the
issue of unpredictability and simplicity by introducing globally random caching. LCE [15]
is a popular and simple version of probabilistic caching but results in high redundancy. The
idea behind LCE is very simple in which ICN routers try to cache every new content objects
they receive and not available in their CS. In [16–18], the authors proposed dynamic caching
policies in which the caching probability is changed dynamically to optimize the cache
efficiency. HCP [17,18] was implemented using a factor, namely, CacheWeighty, to lower
the number of similar content replications and another factor, namely CacheWeightMRT to
optimize the stretch length between content consumers and content providers.

Label-based caching uses policies related to content objects which are labeled based
on certain properties. As a result, nodes may be aware of several content types in the
network and have special policies to cache content objects belonging to those content
types. In [19,20], the authors take content traffic patterns and the network topology into
consideration to design caching schemes that can recognize the network context to improve
the network performance.

Graph-based caching considers forwarding routes and network structure in ICN.
In [19], the authors proposed an edge caching policy to place content objects in the delivery
path end to distribute the content courses close to users to improve the network perfor-
mance. In [20], the authors discuss various policies to progressively change the caching
positions and centrality of nodes.

In popularity-based caching, routers make the caching decision based on the content
frequency and interest request distribution. This approach aims at maximizing the usage of
popular content to increase the cache hit rate. In Most Popular Cache (MPC) [12], routers
count the number of incoming interest messages for every content object to calculate the
content popularity. A threshold is defined to categorize content objects as popular. When
a content receives a proper number of interest messages greater than the threshold, it



Sensors 2022, 22, 743 4 of 12

is labeled as popular. Routers that hold the popular content are recommended to cache
the content. In CPCCS [13], the dynamic threshold value is introduced. The content is
grouped into optimal popular content (OPC) and least popular content (LPC). The group-
ing decision is based on counting the total number of interest messages of a particular
content name using PIT. The list of LPC content names is sorted and 25% of total con-
tents from the list are labeled as OPC that are most frequently requested. OPC content
objects are recommended to be cached by all routers along the routing path to increase
the network performance while LPC content objects are recommended to be cached by
fewer routers. In popularity-based caching, collaborations among routers can result in a
higher efficiency where routers cooperate to make caching decisions. A number of studies
investigated collaborative caching in ICN [21–24]. The key benefit of collaborative caching
strategies is that the redundancy in caching can be lowered and cache diversity can be
improved. However, existing collaborative caching strategies have critical drawbacks due
to higher communication overhead and packet delivery latency for signaling messages to
be exchanged among routers and coordination mechanisms among routers.

Above caching schemes may not always be energy efficient for resource-constrained
IoT devices [25,26] like sensors and actuators where energy efficiency is one of the most
concerning factors. From an energy-efficient perspective, the reason is that without consid-
ering the energy reward of caching decisions, inappropriate routers and content objects
may be selected for caching, which may lead to negative energy rewards. In addition, if
a node i with a low residual energy level ei is selected to cache popular content objects,
the node has to serve more content requests than other nodes. Therefore, its energy can
be exhausted quickly. This case may not occur in normal cases of the Internet or edge
computing because nodes are normally charged. However, with resource-constrained
sensors, when the node is out of battery, its cached content objects are not accessible. This
paper carefully analyzes the energy reward of caching decisions to increase the energy
efficiency of caching in resource-constrained IoT.

3. Proposed Energy Reward-Based Caching Mechanism
3.1. Caching Energy Consumption Analysis for Resource-Constrained IoT

Table 1 summarizes the acronyms used in this paper. In information-centric IoT, the
total energy consumption consists of two main factors, caching energy consumption and
transport energy consumption. Transport energy consumption includes energy consump-
tion to forward and process interest messages and content objects from a node to another
node. Caching energy of nodes is consumed primarily by content storage at intermediate
routers. Caching of content objects in information-centric IoT also raises energy-efficient
issues because nodes are resource-constrained devices with a limited residual energy capac-
ity. However, this factor has not been studied thoroughly in ICN IoT. To optimize energy
consumption by ICN in IoT, we analyze caching energy consumption as follows.

Table 1. List of Acronyms.

Acronym Meaning

ICN information-centric networking
CS content store

CDN content delivery networks
PIT pending interest table
IoT Internet of Things
ERC energy reward-based caching
CPM closest-fit patterm
NDN named data networking
CCN content centric networking
CO content object
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We denote G = (V, L) as a network graph with V = v1, v2, v3, . . . , vN represents a set
of N resource-constrained IoT nodes, and L represents a set of links among the nodes. We
denote K as a set of content objects with size sk, k = 1, 2, 3, . . . , K. We assume node i in
G having a cache size of ci and residual energy ei. Interest messages for content objects
are sent with a rate λ = ∑K

k=1 λk, where λk is the request rate, in other words, the content
access frequency of k. We use Xi,k as a boolean value of 0 or 1 to indicate whether the
content object k is cached at node i. We denote Hi,k as the number of hops that the interest
message traveled to retrieve k, Pca as energy consumption rate to cache 1 bit of content in a
unit of time, PL as energy consumption rate to transmit 1 bit of content, and Pt as energy
consumption rate for a node to check and forward 1 bit of content. We calculate caching
energy consumption Eca at intermediate nodes in a time interval t as follows.

Eca =
N

∑
i=1

K

∑
k=1

Ei,k
ca =

N

∑
i=1

K

∑
k=1

PcatXi,ksk (1)

We assume that the energy consumption rate to process a message of interest is equal
to that of a content object. We then calculate transport energy consumption comprising
energy consumption for packet processing and link energy consumption, as follows.

Etr =
N

∑
i=1

K

∑
k=1

Ei,k
tr =

N

∑
i=1

K

∑
k=1

[PLHi,k + (2Hi,k − 1)Pt]skλi,k (2)

We denote r as a content router caching a content object ck. The consumer of ck is
M hops from r and Q hops from the content producer o of ck. Now we consider the time
interval t as the average interval between two interest messages for ck at r into (1). The
caching energy reward of r to cache ck, Ekreward

r is calculated as follows.

Ekreward

r = Eo,k
tr − [Er,k

ca + Er,k
tr ] (3)

The caching energy reward of r to cache ck, Ekreward
r is positive only if Ekreward

r = Eo,k
tr −

[Er,k
ca + Er,k

tr ] > 0. It means that energy consumption to retrieve content object k from the
content router r and energy consumption to cache k at r should be smaller than energy
consumption to retrieve content object k directly from its content producer o. Our analysis
shows that the caching energy reward for content ck not only depends on the popularity
of ck, measured by the number of interest messages sent for ck, but also the content access
frequency, measured by the number of interest messages sent for ck in a unit of time.

Existing ICN designs for resource-constrained IoT mostly make caching decisions
based on probability or content popularity. We admit that those caching strategies are
beneficial in many ways. However, considering resource-constrained IoT nodes, those
caching strategies may not always be energy efficient when inappropriate routers are
selected to cache content objects or inappropriate content objects are selected to be cached.
From an energy-efficient perspective, if a node i with a lower energy level ei is selected
to cache popular content objects, the node has to serve more content requests than other
nodes. Therefore, its energy can be exhausted quickly. This case may not occur in normal
cases of the Internet or edge computing because nodes are normally charged. However,
with resource-constrained nodes, when the node is out of battery, its cached content objects
are not accessible. This aspect makes a caching decision based on probability or popularity
without considering energy factors become inefficient in terms of energy when selecting
inappropriate content routers to cache. In addition, caching a content object without
considering its energy reward can also lead to energy inefficient caching decisions. In many
cases, energy consumption to cache and retrieve a cached content object k from a content
router r, Er,k

ca + Er,k
tr , can be even higher than energy consumption to forward requests to

the original content producer o, Eo,k
tr . Therefore, appropriate schemes have to be designed

to address these issues.
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3.2. Energy Reward-Based Caching Mechanism

Operations of the proposed energy reward-based caching (ECR) mechanism are illus-
trated in Figure 1. When a node r receives a content object ck, the node calculates the energy
reward for caching ck, Ekreward

r . If the energy reward is positive, the node checks its residual
energy. If its residual energy is greater than or equal to an energy threshold E|r|, the node
decides to cache ck. If its storage is full, the node replaces an existing content object ch in
its CS with ck if the energy reward to cache ck, Ekreward

r , is higher than the energy reward
to cache ch, Ehreward

r . It means that caching ck is more energy beneficial than caching ch. If
the energy reward is smaller than or equal to 0, the node decides not to cache ck because
caching ck doesn’t help improve the energy efficiency of the network. If the residual energy
of the node is low, it decides not to cache ck, another node in the forwarding path with
enough residual energy may cache ck instead of the node.

Discard 

content

Content

No

PIT entry exist?

Energy reward > 0

Residual energy > 

threshold

Content store is not full

Cache content
Energy reward-based 

cache replacement

Forwarding the content

No

Yes

Figure 1. The processing of content objects in the proposed ERC mechanism.
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According to (3), the transport energy consumption to the original content producer
Eo,k

tr is fixed for a content object ck. As a result, firstly, the caching energy reward de-
pends on the transport energy consumption from the consumer to the content router Er,k

tr .
Following (2), the proposed cache placement and cache replacement mechanism tend to
explore nodes nearby consumers as content routers of ck to minimize Hi,k, thus increasing
the caching energy reward. Secondly, the caching energy reward depends on the caching
energy consumption, Er,k

ca , at the content router r. Because Er,k
ca depends on the average

interval between two interest messages for ck at r, the proposed mechanism tends to cache
content objects having a high content access frequency for a lower value of t to increase the
caching energy reward.

Considering the energy efficiency perspective, the proposed mechanism makes a
caching decision for only contains objects that create energy-saving benefits for the network.
It implicitly indicates that a content object should have a content access frequency high
enough so that energy saving by reducing transport energy consumption to forward interest
messages for the content object to the original content producer is higher than the energy
consumption of the content router to cache the content object. Note that, this work focuses
purely on energy efficiency aspects of caching in information-centric IoT. In practice, the
network performance (i.e., content retrieval latency) is also an important metric. Therefore,
there are cases that even though energy reward Ekreward

r is lower than or equal to 0, making
a caching decision still returns benefits in terms of the network performance. For example,
in the case of a content delivery network (CDN) which is implemented to mainly optimize
the network performance. However, considering resource-constrained IoT, the idea behind
the proposed mechanism is to optimize mainly for energy efficiency.

4. Performance Evaluation

We implement ERC and conduct simulations using the COOJA simulator in Con-
tiki [27] with 1050 nodes in a coverage area of 1000 m × 1000 m. Nodes are deployed
randomly with sensing correlation obtained from the sensor data collected from the real-
world IntelLab deployment [28]. The system generates content requests from random
nodes following Zipf-like distribution. The CS storage capacity of each cache node is varied
from 5 to 25 content objects. As implemented in our prior study [29], we reuse HTTP-CoAP
converter in this paper to convert application requests of consumers in HTTP to CoAP
for IoT nodes. Application requests are encoded using templates in extensible markup
language (XML) and decoded using SensorML interpreter for IoT nodes [30]. For data
collection, we utilize CTP and LPL [29] as the data collection schemes and 802.15.4 MAC
(Media Access Control) mechanism. We use closest-fit-pattern matching (CPM) as the
radio noise model [29]. We use CCA (clear channel assessment) [29] check parameter up
to 400 times. We set the residual energy threshold E|r| for each node is 10%.The detailed
parameter configurations of simulations are shown in Table 2. Other parameters remain as
same as the default configurations of the Contiki CC2420 radio model [29]. By default, we
use the cache size of 20 content objects and a wakeup interval of 1 s if those parameters
are not specified. The naming scheme [31] is used for IoT nodes. The experimental results
are reported at 96% confidence interval. Through analysis and experiments, We show
the performance evaluation of ERC in comparison with state-of-the-art caching schemes
MPC [12] and CPCCS [13].

Table 2. Parameters.

Parameter Value Parameter Value

Number of nodes 1050 CCA check 400 times
Module current draw 1.8 mA cache size p 5–25 objects

RF transceiver current draw 23 mA MAC LPL
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Table 2. Cont.

Parameter Value Parameter Value

Wakeup interval 0.5–2.5 s Memory standby draw 50 µA
Transmission current consumption 20.3 mA Receiving current consumption 18.75 mA

Processing current consumption 2.21 mA Sleeping mode current consumption 0.67 mA
RF power −24 dBm to 0 dBm noise model CPM

We use the following metrics for the performance evaluation and comparison.
Average radio duty cycle: We use average radio duty cycle as an indicator for energy

efficiency [32]. We consider timing aspects for calculating the duty cycle (e.g., time for
transmission). A radio duty cycle of a node is the ratio of the radio active period and the
cycle time, the cycle time is the duration of active time and the sleep time of IoT nodes. The
overall duty cycle (DC) of a node i is calculated using (1) by simply adding duty cycles for
each radio operation: listening (DClx), transmitting (DCtx), receiving (DCrx), overhearing
(DCover), and additional operations (DCadd) [32].

DCi = DClx
i + DCtx

i + DCrx
i + DCover

i + DCadd
i (4)

To measure the radio duty cycle, we record changes in the radio’s states and use a
counter to accumulate the time period used in each state. At the end of the simulation, we
calculate the average radio duty cycle and report average results.

The average duty cycle of nodes in a network is calculated as follows.

DCaverage =
∑n

i=1 DCi

n
(5)

where n is the total number of IoT nodes.
Average stretch ratio (ST): the hop distance forwarded of a message of interest from

the content consumer toward a content provider is known as stretch. We calculate the
stretch ratio as follows.

STaverage =
∑I

i=1
H f orwarded

i
Hc−p

i

I
(6)

where I is the total number of interest messages sent to the network, H f orwarded
i is the

number of hops that the interest message i is forwarded until satisfied, Hc−p
i is the total

number of hops from the consumer to the content producer of interest message i.
Figure 2 shows the average radio duty cycle of nodes under various values of wakeup

interval. The proposed mechanism achieves a lower average duty cycle compared to
MCP and CPCCS. This indicates that the proposed mechanism helps improve the energy
efficiency of nodes significantly compared to MCP and CPCCS. The results are due to
our efficient design to select content routers and content objects for caching by carefully
considering whether caching a content object at a content router is beneficial in terms of
energy or not. In particular, average duty cycle values of nodes at wakeup intervals of 1.5 s
of MCP, CPCCS, and ERC are 3.2%, 2.95%, and 2.11%, respectively. Overall, ERC achieves
an energy-efficient improvement ratio of over 25%. When we increase the wakeup interval
from 0.1 s to 2.5 s, the average duty cycle of nodes decreases. This is due to the fact that
when the wakeup interval increases, nodes wake up less regularly.
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Figure 2. Average radio duty cycle under various wakeup intervals.

We now fix the wakeup interval of 1 s and increase the cache size from 5 to 25 to
study behaviors of the proposed mechanism under changing network conditions. Figure 3
presents the average radio duty cycle of nodes under various cache sizes. Nodes running
ERC witness the lowest radio activity for saving energy, compared to MCP and CPCCS.
Average duty cycle values of MPC, CPCCS, and ERC at the cache size value of 10 are 3.8%,
3.55%, 2.67%, respectively. We find that the greater the cache size is used, the better the
energy efficiency the three caching schemes achieve. The reason is that with greater cache
size, nodes can cache a higher number of content objects to reduce forwarding activities.

5 10 15 20 25

Cache size (objects)
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Figure 3. Average radio duty cycle under various cache sizes.

The average stretch ratio measures the ratio between the following two metrics: (1) the
hop distance that a message of interest is forwarded from the content consumer to the
content provider that can be any router on the forwarding path and (2) the hop distance
from the content consumer to the content producer. Figure 4 depicts the stretch ratios of
MPC, CPCCS, and ERC under various cache sizes. The results presented in Figure 4 can
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partially help explain the reasons behind the results shown in Figures 2 and 3. This Figure
shows that ERC achieves a significantly lower number of hops required to forward interest
packets and content objects from and to content consumers. This is due to the design
that the proposed cache placement and cache replacement mechanism tend to explore
nodes nearby consumers as content routers to minimize the number of hops to increase the
caching energy reward. Moreover, the proposed mechanism also tends to cache content
objects having a high content access frequency for a lower value of time interval t between
interest messages to increase the caching energy reward. According to the analysis in
Section 3.1, transport energy consumption is proportional to the number of hops, Hi,k that
the interest message traveled to retrieve content object k. By lowering the average number
of hops, ERC helps lower the overall energy consumption. When we increase the cache size,
the average stretch ratio decreases because more and more content objects can be cached
and retrieved at a short distance from intermediate content routers.
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%

)
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CPCCS

ERC

Figure 4. Average stretch ratio under various cache sizes.

Figure 5 shows average cache hit ratios of MPC, CPCCS, and ERC under various cache
sizes. Cache hit ratio results of the three mechanisms increase gradually when we increase
the cache size. The Figure shows that ERC witnesses the highest cache hit ratio. A result
of interest is that the lower the cache size is set, the higher the improvement ratio ERC
achieves. The reason is that ERC exploits limited cache capacity to store content objects
that have more access frequency and explores nodes nearby consumers as content routers
to optimize the caching reward. When we increase the cache size of nodes, nodes in all
three cases are able to cache more content objects which can be popular or less popular.
Therefore, the improvement ratio of ERC is lower. This implicates that ERC is more efficient
for resource-constrained IoT nodes.
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Figure 5. Average cache hit ratio under various cache sizes.

5. Discussion and Conclusions

The main motivation behind this work is to propose an energy-efficient caching
mechanism for information Internet of Things by considering energy efficiency as the key
factor. We conduct extensive analysis for energy consumption of caching operations and
packet forwarding to compute caching energy reward for caching decisions. Based on
caching energy reward, we design an energy reward-based caching (ERC) mechanism to
enhance cache placement and cache replacement in IoT. Through analysis and experimental
results, we show that the proposed mechanism achieves a significant improvement in terms
of energy efficiency, stretch ratio, and cache hit ratio compared to state-of-the-art caching
schemes. The limitation of this work is that we focus purely on energy-efficient factors. In
future works, we plan to find an approach to combine energy reward with other metrics to
design a mechanism that optimizes multiple objectives for the Internet of Things.
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