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Abstract 

Background: A number of studies have examined the association between mold exposure and childhood asthma. 
However, the conclusions were inconsistent, which might be partly attributable to the lack of consideration of gene 
function, especially the key genes affecting the pathogenesis of childhood asthma. Research on the interactions 
between genes and mold exposure on childhood asthma is still very limited. We therefore examined whether there is 
an interaction between inflammation‑related genes and mold exposure on childhood asthma.

Methods: A case–control study with 645 asthmatic children and 910 non‑asthmatic children aged 3–12 years old 
was conducted. Eight single nucleotide polymorphisms (SNPs) in inflammation‑related genes were genotyped using 
MassARRAY assay. Mold exposure was defined as self‑reported visible mold on the walls. Associations between visible 
mold exposure, SNPs and childhood asthma were evaluated using logistic regression models. In addition, crossover 
analyses were used to estimate the gene‑environment interactions on childhood asthma on an additive scale.

Results: After excluding children without information on visible mold exposure or SNPs, 608 asthmatic and 839 
non‑asthmatic children were included in the analyses. Visible mold exposure was reported in 151 asthmatic (24.8%) 
and 119 non‑asthmatic children (14.2%) (aOR 2.19, 95% CI 1.62–2.97). The rs7216389 SNP in gasdermin B gene 
(GSDMB) increased the risk of childhood asthma with each C to T substitution in a dose‑dependent pattern (additive 
model, aOR 1.32, 95% CI 1.11–1.57). Children carrying the rs7216389 T allele and exposed to visible mold dramatically 
increased the risk of childhood asthma (aOR 3.21; 95% CI 1.77–5.99). The attributable proportion due to the interac‑
tion (AP: 0.47, 95% CI 0.03–0.90) and the relative excess risk due to the interaction (RERI: 1.49, 95% CI 0–2.99) were 
statistically significant.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  chenqian01@xinhuamed.com.cn; chenqian911@126.com; 
junjimzhang@sina.com
†Yu Zhang and Li Hua have contributed equally and are considered as 
co‑first authors
1 Ministry of Education‑Shanghai Key Laboratory of Children’s 
Environmental Health, School of Public Health, Shanghai Jiao Tong 
University School of Medicine, Shanghai, China
2 Ministry of Education‑Shanghai Key Laboratory of Children’s 
Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University 
School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-021-01484-9&domain=pdf


Page 2 of 11Zhang et al. BMC Pulm Med          (2021) 21:114 

Introduction
Asthma is a common chronic airway inflammatory dis-
order, characterized by hyper responsiveness, obstruc-
tion and chronic inflammation of the airway [1]. It has 
emerged as a major global public health problem. In 2016, 
the Global Burden of Disease (GBD) study estimated that 
339.4 million people worldwide were affected by asthma, 
which has increased by 3.6% since 2006 [2]. The asthma 
epidemic experienced by high-income countries over the 
past 30 years has now become an increasing problem in 
low- and middle-income countries with the economic 
development and urbanization. As one of the largest 
middle-income countries, China has undergone changes 
with an unprecedented speed of urbanization, leading to 
changes in environment and child lifestyle. Meanwhile, 
the prevalence of childhood asthma has been increasing 
rapidly [3, 4]. The Third Nationwide Survey of Child-
hood Asthma in Urban Areas of China (2010) found that 
the prevalence of asthma in children under 14 years had 
increased from 2.0% in 2000 to 3.0%, and Shanghai had 
the highest rate of 7.6% [2].

The genetic susceptibility of asthma has been dem-
onstrated by numerous studies using candidate gene 
associations and genome-wide associations (GWAS) 
method [5, 6]. Single nucleotide polymorphisms (SNPs) 
in inflammation-related genes have been shown to influ-
ence the development of childhood asthma. However, 
the results are inconsistent and inconclusive, even for the 
most replicated genes [7], probably due to the influence 
of environmental factors, which play an important role in 
the physiological pathways between genes and childhood 
asthma [8].

The urbanization has led people, especially children, 
spending most of their time in the indoor environment 
[9]. Evidence shows that the indoor environment plays 
a key role in the development of childhood asthma 
[10–13]. Visible mold, a common indoor dampness phe-
nomenon, has been found closely associated with child-
hood asthma. For example, a meta-analysis with 31,742 
children from eight European birth cohorts found that 
visible mold exposure during the first 2 years of life was 
positively associated with childhood asthma [14]. Two 
large epidemiologic studies from China showed that vis-
ible mold on walls was significantly associated with phy-
sician-diagnosed childhood asthma in both boys and girls 
[15, 16].

Shanghai, located at the Yangtze River estuary in the 
East China Sea, has a typical subtropical monsoon cli-
mate. Visible mold in buildings is common and frequent 
[17]. The surface pathogen-associated molecular pat-
terns (PAMPs) in mold could induce distinct inflamma-
tory phenotypes in the lungs, and increase the risk of 
asthma development and exacerbation [18]. Meanwhile, 
inflammation-related genes are involved in pro- and anti-
inflammatory effects, and could modify the pathogenesis 
of asthma caused by mold exposure. Thus, we sought to 
investigate whether there is any gene-environment inter-
action between the inflammation-related gene polymor-
phisms and visible mold exposure in childhood asthma in 
Shanghai.

Material and methods
Study population and design
From June 2015 to January 2016, we conducted a 
case–control study aiming to explore the risk factors 
of childhood asthma. The design, recruitment and the 
characteristics of the study population have been previ-
ously described elsewhere [19]. Briefly, children aged 3 
to 12 years with asthma were recruited in the case group 
from the Xinhua Hospital, Shanghai, China. Children 
with a history of recurrent wheezing (> 2 times) were 
examined by a physician, including medical history, 
physical exams and tests. According to the Global Initia-
tive for Asthma (GINA) guidelines, asthmatic children 
were defined by history of recurrent wheezing, feeling of 
tightness or pain in the chest, cough, and with positive 
bronchial provocation (forced expiratory volume in one 
second (FEV1) > 200  ml after inhaling bronchodilator). 
The control group consisted of non-asthmatic children 
of the same age, from the pediatric outpatient clinic and 
pediatric surgery clinic of the same hospital. 645 asth-
matic and 910 non-asthmatic children were recruited in 
our study. The study protocol was approved by the Insti-
tutional Review Board of the Xinhua Hospital (approval 
number: XHEC-C-2014-065), and conducted accord-
ing to the principles in the Declaration of Helsinki. The 
informed consents were signed by all parents.

Questionnaires
A face-to-face interview was conducted with the parents 
of the participants. The questionnaire included informa-
tion on parental demographic factors, delivery mode of 

Conclusions: In the present study, there was a significant additive interaction between visible mold exposure and 
rs7216389 SNP on childhood asthma. Future studies need to consider the gene‑environment interactions when 
exploring the risk factors of childhood asthma.
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the child, feeding habits, and indoor environment includ-
ing visible mold and environmental tobacco smoke (ETS) 
exposure. Mold exposure was assessed by the following 
question “Have you ever seen visible mold on your walls, 
ceiling, or floor in your home?”.

Genotyping
Oral mucosal swabs were collected at recruitment and 
maintained at -80 ºC immediately after transportation 
to the biobank. Genomic DNA was isolated from oral 
mucosal swabs using the DNA extraction kit (Shanghai 
Lifefeng Biotechnology Co., China) according to the man-
ufacturer’s manual. For the SNP selection, we reviewed 
the literature in PubMed. First, the candidate SNP was 
frequently linked to childhood asthma and associated 
with the inflammatory response. Second, at least one 
study has reported that the SNP interacted with environ-
mental exposures such as mold, ETS, or pet exposure on 
the development of asthma. Eventually, eight SNPs were 
selected (information on the SNPs were shown in Addi-
tional file  1: Table  S1). All SNPs were genotyped using 
the MassARRAY assay based on matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-TOF) mass 
spectrometry platform (Agena Bioscience, USA), follow-
ing the manufacturer’s instruction [20]. In each 384-well 
reaction plate, one positive and one negative control 
were added as quality control. Our primer and probe 
sequences were listed in Additional file  1: Table  S2. All 
assays were performed by laboratory technicians blinded 
to case status.

To validate the accuracy and reliability of genotyp-
ing results by using MassARRAY assay, the genotyping 
results were verified by two steps. First, 40 (2.5%) samples 
were randomly selected to sequence using 3730xl DNA 
Sequencer (Applied Biosystems, Foster City, USA). No 
inconsistencies were observed. Second, 81 (5%) randomly 
selected samples were re-genotyped by using MassAR-
RAY assay, and the concordance reached 99.7%.

Covariates
Information on covariates was obtained from the ques-
tionnaire. A directed acyclic graph (DAG) was drawn to 
identify the potential confounding factors (see Additional 
file  1: Fig. S1). They were age, gender, parental educa-
tion level, and family history of allergy. In addition, ETS 
exposure was also included as a confounder because it 
was a common cause of childhood asthma and frequently 
adjusted in similar studies [16, 21]. ETS exposure was 
defined as one or both parents smoked (yes) and none 
of parents smoked (no). Parental education level was 
categorized as: middle school or below, high school or 
technical school, college degree, and graduate degree or 

above. Missing data of the covariates were included as a 
separate category in the analyses.

Statistical analyses
The differences in demographic characteristics, envi-
ronmental factors and genotype frequencies of SNPs 
between the cases and controls were calculated using 
chi-square test for categorical variables, Student’s t-test 
or Wilcoxon test for continuous variables. The Hardy–
Weinberg equilibrium (HWE) of allele frequencies in the 
control group was assessed by the goodness-of-fit chi-
square. Odds ratios (ORs) and 95% confidence intervals 
(CIs) were calculated using logistic regression models 
to evaluate the associations between SNPs and child-
hood asthma under assumption of different genetic 
models, including additive (AA vs. AB vs. BB), dominant 
(AA + AB vs. BB) and recessive (AA vs. AB + BB) mod-
els (A represents mutant allele and B represents wild type 
allele). In addition, crossover analyses were used to assess 
the additive interactions between visible mold exposure 
and SNPs under dominant and recessive models. We 
assumed that G and E stand for risk genotype and envi-
ronmental factor, with their absence and presence defined 
as 0 and 1, respectively. Additional file 1: Table S3 showed 
the basic research units in a 2 × 4 crossover analysis of 
the interaction between G and E, indicating the four pos-
sible combinations formed by the two binary variables. 
OR of being exposed to both G and E was labeled as  OR11 
representing joint effect. OR of being exposed only to G 
or E were labeled as  OR10 and  OR01, respectively, rep-
resenting independent effects of G and E. All the ORs 
were estimated with G = 0 and E = 0 as the reference 
group  (OR00 = 1) [22, 23]. In the crossover analyses, all 
ORs were adjusted for the aforementioned potential con-
founders. Relative excess risks due to interaction (RERI), 
the synergy index (SI), and attributable proportion of 
interaction (AP) proposed by Rothman were used to 
evaluate additive interaction effects [24]. AP > 0, RERI > 0, 
or S > 1 indicated additive interaction. In general, the OR 
is a good estimate of the risk ratio (RR) if the disease is 
rare (prevalence less than 10%) [25], then the calculation 
formulas for a case–control study were defined as fol-
lows: RERI =  OR11—OR01—OR10 + 1; AP = RERI/OR11 
and SI =  (OR11—1)/((OR01—1) +  (OR10—1)). CIs of the 
three additive interaction measures were calculated bas-
ing on the delta method described by Hosmer and Leme-
show [26].

The major and minor alleles were referred as wild and 
mutant alleles, respectively. For rs7216389 SNP, minor 
allele was referred to as wild allele due to lower risk 
effect of childhood asthma [27]. False discovery rate 
(FDR) adjusted p values were calculated to correct for 
multiple comparisons. All the analyses were performed 
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in the statistical software package R (version 3.6.0). 
FDR adjusted p value < 0.05 was considered as statistical 
significance.

Results
Study population and genotyping
A total of 1555 children were genotyped for the eight 
SNPs in inflammation-related genes. Children without 
information on visible mold exposure (n = 91) or SNPs 
(n = 17) were excluded, leaving 608 asthmatic and 839 
non-asthmatic children for analysis.

Characteristics of the cases and controls were pre-
sented in Table 1. The cases were younger and had more 
boys than the controls. Parental education level was also 
higher among the cases.

The reference sequence (rs) numbers, minor allele fre-
quencies, and HWE tests of SNPs included in the present 
study were shown in Additional file  1: Table  S4. All the 
SNPs were common polymorphisms with minor allele 
frequencies (MAF) of 10–48% and were in Hardy–Wein-
berg equilibrium (p > 0.12).

Environmental exposure
In total, 24.8% (151/608) of the cases and 14.2% (119/839) 
of the controls were exposed to visible mold, respectively. 
After adjusting for age, gender, family history of allergy, 
parental education level, and ETS exposure before and 
after birth, visible mold exposure was also significantly 
associated with a higher risk of childhood asthma (aOR 
2.19, 95% CI 1.62–2.97).

Associations between inflammation‑related genetic 
polymorphisms and childhood asthma
We evaluated the associations between the SNPs and 
childhood asthma in different genetic models. Under 
the recessive model, comparing to subjects carrying C 
allele of the rs7216389, subjects with the homozygous TT 
genotype had a significantly increased risk of childhood 
asthma (TT vs. CC + TC, aOR 1.34, 95% CI 1.08–1.66, 
P-FDR: 0.06), which remained borderline significant after 
adjusting for multiple comparisons. The risk effect was 
stronger under the dominant model (TT + TC vs. CC, 
aOR 1.72, 95% CI 1.09–2.77, P-FDR: 0.18). Moreover, a 
dose-dependent association was found under the additive 
model, with 1.32-fold increased risk per more T allele 
(aOR 1.32, 95% CI 1.11–1.57, P-FDR: 0.02) (Table  2). 
There was no significant correlation between other SNPs 
and childhood asthma (See Additional file 1: Table S5).

Additive effects of SNPs and visible mold exposure 
on childhood asthma
Compared to non-exposed children who carried 
rs7216389 CC genotype, the relative risk of childhood 

asthma in non-exposed subjects who carried T allele was 
1.52 (95% CI 0.88–2.70). In contrast, the same genotypes 
in children exposed to visible mold were associated with 
a significantly increased risk of childhood asthma  (aOR11: 
3.21, 95% CI 1.77–5.99, P-FDR: < 0.001), which was 
greater than the sum of their independent effects (Fig. 1). 
However, visible mold exposure was not significantly 
associated with asthma in children carrying the CC geno-
type  (aOR01: 1.20, 95% CI 0.38–3.65). The relative excess 
risk contributed by the additive interaction between the 
rs7216389 risk genotypes and visible mold exposure was 
1.49 (95% CI 0–2.99). Furthermore, the proportion of 
childhood asthma attributable to the interaction was as 
high as 47% (AP: 0.47, 95% CI 0.03–0.90) (Table 3).

Regarding the IL13 rs1800925 polymorphism, chil-
dren who carried CC genotype and were exposed to vis-
ible mold had a significantly increased risk of childhood 
asthma with an adjusted OR of 1.79 (95% CI 1.28–2.52), 
compared to children who carried CC genotype with-
out the exposure. The risk of childhood asthma became 
higher in children with T allele (aOR 2.85, 95% CI 
1.72–4.80) (Table 3). However, RERI, AP, and S were not 
significant.

For other SNPs, there was no additive interaction 
between the SNPs and visible mold exposure on child-
hood asthma under the dominant and recessive models. 
The combined effects of the SNPs and visible mold expo-
sure were mainly influenced by the visible mold (Table 3 
and Additional file 1: Table S6).

Discussion
Asthma is a complicated disease caused by genes, envi-
ronmental factors, and their interactions. Our findings 
indicated that both visible mold exposure and rs7216389 
polymorphism increased the risk of childhood asthma. 
Moreover, the effect of visible mold exposure on asthma 
became more prominent in children carrying the 
rs7216389 T allele.

Our finding on mold exposure is consistent with several 
previous studies [16, 28–32]. For example, the Swedish 
BAMSE (Barn/Child, Allergy, Milieu, Stockholm, Epide-
miology) birth cohort study reported that mold exposure 
during infancy was associated with asthma and rhinitis 
up to 16 years old [30]. Cai et al. also found that exposed 
to visible mold spots was significantly associated with the 
increased risk of lifetime-ever asthma in 3–6-years-old 
children in China [16]. Caillaud et  al. reviewed papers 
published from 2006 to 2017 on the effect of indoor 
mold exposure on asthma and rhinitis. They concluded 
that there were sufficient evidences on the association 
between qualitative mold exposure in indoor environ-
ments and asthma development, especially in children 
[31]. Meanwhile, some quantitative assessment of mold 
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exposure studies also found the similar associations [33–
36]. Environmental Relative Moldiness Index (ERMI) 
quantified by 36 indicator-molds in dust samples using 
DNA-based assays was often used to evaluate the mold 

level. In a prospective study, Reponen et al. reported chil-
dren living in a high ERMI value (≥ 5.2) home at 1 year 
of age had more than twice the risk of developing asthma 
at the age of 7 years than those in low ERMI value (< 5.2) 

Table 1 Characteristics of the study population

SD standard deviation, IQR inter-quartile range, ETS environmental tobacco smoke

Asthma cases
(N = 608)

Non‑asthma controls
(N = 839)

Age (y), mean (SD) 6.1 (2.0) 6.6 (2.1)

BMI, median (IQR) 15.8 (2.9) 15.7 (3.4)

Birthweight, mean (SD) 3309 (489) 3276 (507)

Gestational weeks at birth, median (IQR) 39 (2) 39 (1)

Maternal age at birth (y), mean (SD) 28.6 (3.5) 27.9 (3.9)

Maternal educational level, (n, %)

 ≤ 9 years 40 (6.6) 138 (16.4)

10–12 years 79 (13) 151 (18)

13–16 years 395 (65) 443 (52.8)

 > 16 years 49 (8.1) 45 (5.4)

Paternal educational level, (n, %)

 ≤ 9 years 38 (6.2) 125 (14.9)

10–12 years 74 (12.2) 153 (18.2)

13–16 years 383 (63) 437 (52.1)

 > 16 years 68 (11.2) 66 (7.9)

Gender, (n, %)

Boy 368 (60.5) 454 (54.1)

Girl 240 (39.5) 385 (45.9)

Family history of allergy, (n, %)

No 275 (45.2) 627 (74.7)

Yes 314 (51.6) 194 (23.1)

Delivery mode, (n, %)

Vaginal 211 (34.7) 328 (39.1)

Caesarean section 394 (64.8) 507 (60.4)

Exclusive breastfeeding, (n, %)

 < 6 months 301 (49.5) 426 (50.8)

 ≥ 6 months 305 (50.2) 413 (49.2)

Carpet in the dwelling, (n, %)

No 562 (92.4) 786 (93.7)

Yes 37 (6.1) 41 (4.9)

Pet in the dwelling, (n, %)

No 539 (88.7) 740 (88.2)

Yes 58 (9.5) 94 (11.2)

ETS at birth, (n, %)

No 430 (70.7) 547 (65.2)

Yes 172 (28.3) 289 (34.4)

ETS at present, (n, %)

No 421 (69.2) 521 (62.1)

Yes 178 (29.3) 312 (37.2)

Visible mold in the dwelling, (n, %)

No 457 (75.2) 720 (85.8)

Yes 151 (24.8) 119 (14.2)
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homes [33]. Furthermore, the authors found that the risk 
of asthma at age of 7 years was 1.8 times greater for every 
10-unit increase in ERMI values in the infants’ homes in 
a larger cohort study [34].

We also found that the rs7216389 polymorphism 
was strongly associated with the development of child-
hood asthma. Rs7216389, a SNP in the GSDMB gene 

on chromosome 17q12-21, was first linked to childhood 
asthma in a genome-wide associations study in 2007 [27]. 
Subsequently, more studies confirmed this association 
in diverse populations [37–40]. Our results further indi-
cated that the effect was dose-dependent with each C to 
T substitution at the SNP site. For other SNPs, we did not 
successfully replicate the risk associations with childhood 
asthma in our study population. The inconsistency might 
result from diverse genetic backgrounds in different eth-
nic populations, different asthma phenotypes, and/or 
small sample size.

In addition, our study is the first to show an addi-
tive interaction between the rs7216389 SNP and visible 
mold exposure on childhood asthma. Specifically, the 
mold effect became dramatically greater in subjects car-
rying the rs7216389 T allele. While this particular find-
ing is new, the gene-environment interaction between 
rs7216389 genetic variant and exposure to purred pets 
has been reported. Early cat exposure increased the risk 
of childhood asthma only in genetically susceptible sub-
jects carrying the rs7216389 high-risk TT genotype [41]. 
The authors reported that the interaction might be medi-
ated by the expression of orosomucoid-like 3 (ORMDL3), 
which was modulated by the rs7126389 polymorphism 
and cat exposure. Similar to cat exposure, mold could 
activate the expression of ORMDL3 as well.

ORMDL3, adjacent to GSDMB gene, encodes trans-
membrane proteins localized in the endoplasmic reticu-
lum. It is expressed in multiple cell types including lung 
structural cells and immune cells [42]. Studies have dem-
onstrated that rs7126389 risk allele (T allele) and Alter-
naria, which is a common mold in homes, could increase 
the expression of ORMDL3 in human airway epithelial 
cells [43–45]. Overexpression of ORMDL3 in airway epi-
thelial activates several downstream pathways including 
sphingolipids, activating transcription factor 6 (ATF6), 
sarcoplasmic/endoplasmic reticulum calcium-ATPase 
(SERCA2b), T-helper 2 cytokines and chemokines [46]. 
These pathways are closely involved in airway remod-
eling, hyperresponsiveness and inflammation, which are 
key features of asthma pathophysiology [42, 47].

Meanwhile, rs7216389 T allele can increase the expres-
sion of ORMDL3 in primary immune cells such as CD4+ 
T cells, where ORMDL3 negatively regulates Interleu-
kin-2 (IL-2) production [48]. Furthermore, IL-2 can 
modulate the differentiation of CD4+ T helper (Th) cell 
subsets, including T-helper 1 (Th1), T-helper 2 (Th2), 
T-helper 17 (Th17), and regulatory T (Treg) cells, the 
key pathways in allergic and non-allergic inflammation 
and childhood asthma [49, 50]. Similar to rs7216389 
SNP, some fungal components can serve as both aller-
gens and non-allergens and trigger Immunoglobulin 
E (IgE) response and Th17 response, contributing to 

Table 2 Association between rs7216389 polymorphism and 
childhood asthma under different genetic models

aOR adjusted odds ratio, Ref reference, FDR False discovery rate
a The genotypes were categorized into a three-level variable for the number of 
major alleles under the additive model (0, 1, 2)

Models were adjusted for age and gender

Genetic model Genotype aOR (95% CI) FDR 
adjusted p 
value

Dominant CC ref 0.18

TT + TC 1.72 (1.09, 2.77)

Recessive CC + CT ref 0.06

TT 1.34 (1.08, 1.66)

Additive a T allele 1.32 (1.11, 1.57) 0.02
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Fig. 1 Additive effect of visible mold exposure and rs7216389 SNP 
on childhood asthma under the dominant model (TT + TC vs. CC). 
Definition of abbreviations: SNP = single nucleotide polymorphisms; 
G = risk genotype, 0 and 1 represent absence and presence of the 
factor, respectively; E = environmental factor, 0 and 1 represent 
absence and presence of the factor, respectively; OR = odds ratio. 
“G0E0”, “G1E0”, “G0E1” and “G1E1” represented four combinations of G 
and E exposure. Gene & mold represented the relative excess risk due 
to interaction between rs7216389 polymorphism and visible mold 
exposure on childhood asthma
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Table 3 Combined effects of selected SNPs and visible mold exposure on childhood asthma under the dominant model

SNP single nucleotide polymorphisms, Ref reference, aOR adjusted odds ratio, AP the attributable proportion due to interaction, S the synergy index, RERI the relative 
excess risk due to interaction

Models were adjusted for age, gender, family history of allergy, parental education level, and ETS before and after birth

*FDR adjusted p value < 0.05; FDR, False discovery rate

SNP/visible mold exposure No. of 
asthma 
cases

Group size aOR (95% CI) AP S RERI

rs1042713/mold − 0.09 (− 0.70, 0.53) 0.86 (0.32, 2.35) − 0.19 (− 1.51, 1.13)

AA/no 148 398 Ref

GG + GA/no 309 779 1.13 (0.87, 1.47)

AA/yes 42 73 2.23 (1.30, 3.86)*

GG + GA/yes 109 197 2.17 (1.50, 3.15)*

rs1042714/mold 0.10 (− 0.51, 0.70) 1.23 (0.32, 4.70) 0.20 (− 1.15, 1.55)

CC/no 376 958 Ref

GG + GC/no 81 219 0.91 (0.65, 1.25)

CC/yes 120 217 1.96 (1.43, 2.70)*

GG + GC/yes 31 53 2.07 (1.15, 3.79)*

rs7216389/mold 0.47 (0.03, 0.90) 3.08 (0.36, 26.06) 1.49 (0, 2.99)

CC/no 21 69 Ref

TT + TC/no 436 1108 1.52 (0.88, 2.70)

CC/yes 7 20 1.20 (0.38, 3.65)

TT + TC/yes 144 250 3.21 (1.77, 5.99)*

rs5498/mold − 0.16 (− 0.74, 0.43) 0.77 (0.31, 1.89) − 0.34 (− 1.50, 0.83)

AA/no 220 592 Ref

GG + GA/no 237 585 1.18 (0.92, 1.51)

AA/yes 78 135 2.27 (1.52, 3.42)*

GG + GA/yes 73 135 2.11 (1.41, 3.17)*

rs1800925/mold 0.35 (− 0.03, 0.74) 2.2 (0.75, 6.43) 1.01 (− 0.51, 2.53)

CC/no 318 834 Ref

TT + CT/no 139 343 1.05 (0.79, 1.38)

CC/yes 102 192 1.79 (1.28, 2.52)*

TT + CT/yes 49 78 2.85 (1.72, 4.80)*

rs2243250/mold − 0.03 (− 0.61, 0.55) 0.94 (0.25, 3.49) − 0.05 (− 1.04, 0.94)

TT/no 321 792 Ref

CC + CT/no 136 385 0.80 (0.61, 1.04)

TT/yes 95 167 1.98 (1.38, 2.85)*

CC + CT/yes 56 103 1.73 (1.12, 2.69)*

rs1801275/mold − 0.20 (− 0.88, 0.47) 0.67 (0.19, 2.34) − 0.35 (− 1.40, 0.70)

AA/no 334 849 Ref

GG + GA/no 123 328 0.93 (0.70, 1.23)

AA/yes 106 181 2.13 (1.51, 3.03)*

GG + GA/yes 45 89 1.72 (1.08, 2.73)*

rs324015/mold 0.39 (− 0.04, 0.81) 5.79 (0.03, 1237.72) 0.73 (− 0.16, 1.61)

CC/no 142 336 Ref

TT + CT/no 315 841 0.80 (0.61, 1.05)

CC/yes 35 69 1.35 (0.78, 2.35)

TT + CT/yes 116 201 1.88 (1.29, 2.74)*
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the development of asthma and asthma severity [51, 
52]. Thus, there could be a synergistic effect between 
rs7216389 SNP and mold on the development of child-
hood asthma.

Interleukin (IL)-4/IL-13 pathway genes, including IL-4, 
IL-13, IL-4 receptor alpha (IL-4Ra), and signal transducer 
and activator of transcription 6 (STAT6), were frequently 
linked to serum IgE levels and asthma as they can reg-
ulate IL-4 and IL-13 cytokines. IL-4 and IL-13 are the 
critical cytokines that regulate the switching from Immu-
noglobulin M (IgM) to IgE in activated B lymphocytes 
and the differentiation of Th2 cells, which is the patho-
genesis of allergic inflammation or childhood asthma 
[53]. In our study, there was no interaction between these 
genetic polymorphisms and visible mold exposure on 
childhood asthma, although they both can trigger the 
differentiation of Th2 cells. It is possible that the risk of 
one SNP involved in the IL-4/IL-13 pathway was not suf-
ficient to result in profound changes in asthma suscep-
tibility, just as our genetic associations have shown (see 
Additional file 1: Table S5) [53]. Larger studies are war-
ranted to investigate the combined effects of the SNPs in 
the IL-4/IL-13 signaling pathway and the interaction with 
mold exposure on childhood asthma. Beta-2 adrenergic 
receptor (ADRB2) gene is located on chromosome 5q31-
q32 and encodes β2-adrenergic receptor (β2-AR), which 
modulates the severity of asthma and the response to 
β2-AR agonists [54]. Rs1042713 and rs1042714 are two 
common variants associated with the increased airway 
responsiveness and the reduced lung function by regulat-
ing β2-AR. Therefore, they were more prone to be linked 
to asthma severity but not asthma [55, 56]. Wang et  al. 
reported that ADRB2 rs1042713 polymorphism signifi-
cantly interacted with mold odor on asthmatic children 
with a symptom of night-time awakening, a phenotype 
of severe asthma. ADRB2 genetic polymorphisms might 
increase bronchoconstriction which was further accen-
tuated by mold exposure, leading to asthma exacerba-
tion [57]. Severe asthma is a type of asthma that does not 
respond well to standard asthma treatment. The defini-
tion of severe asthma usually relies on the symptoms. 
Unfortunately, we didn’t have sufficient information to 
identify the severity of asthmatic children. Therefore, we 
compared asthmatic and non-asthmatic children without 
stratifying by severity, which might have led to inconsist-
ent findings.

Our study indicated that indoor mold exposure was 
associated with an increased risk of childhood asthma. 
Urbanization has been shown to be associated with 
asthma and its severity. A probable mechanism was 
that urbanization could cause the reduction of urban 
green space, which could protect asthma and other 
respiratory diseases through reducing environmental 

pollutants and improving outdoor physical activity 
[58]. Besides, more and more children might spend 
their time at home with reduced green space. The 
indoor mold exposure was more harmful with long-
term exposure. As China is one of the biggest develop-
ing countries undergoing rapid urbanization, our study 
indicates that improving indoor air quality may be an 
important step in preventing childhood asthma in the 
process of urbanization.

Strengths and limitations
The current study has several strengths. First, to our 
knowledge, this is the first study to show an interac-
tion between visible mold exposure and rs7216389 SNP 
on childhood asthma. Second, asthmatic children were 
diagnosed by pediatrician according to GINA, reducing 
the misclassification of outcome.

Moreover, some limitations are worth mentioning. 
First, mold exposure was ascertained by parents report-
ing as whether there was visible mold at home, which 
was subjective and might lead to exposure misclas-
sification. The parents of the case group might have 
overreported visible mold at home if they knew the 
potential link between mold and asthma [59]. However, 
Cai et  al. [16] argued that the knowledge of effects of 
mold on childhood asthma was still limited in Chinese 
parents. Our own data on self-reported carpet use and 
pet at home (Table 1) also suggested that reporting bias 
was likely to be small. On the other hand, mold may be 
undetectable to the naked eye in spite of being present, 
resulting in underreporting. In general, subjects tend 
to underreport household mold growth compared to 
observations done by trained inspectors or dust mold 
measurement [60]. Nevertheless, the underreported 
exposure would more likely to be non-differential in 
cases and controls. Such a non-differential misclas-
sification of exposure might only lead to an underesti-
mated risk estimate in our study [61]. Mold exposure 
assessment is difficult and complex. In recent years, 
some studies used Environmental Relative Moldiness 
Index (ERMI) to quantify mold contamination in the 
household. ERMI is a quantitative indicator of 36 indi-
cator-molds in dust samples and is more objective and 
accurate. Unfortunately, our study did not collect the 
household dust samples. Second, as in all case–control 
studies, causality between household visible mold and 
childhood asthma could not be made. Finally, our sam-
ple size was not large enough to study the interaction 
between SNPs with low allele frequencies and envi-
ronmental factors. More large studies are needed to 
explore other gene-mold exposure interaction on child-
hood asthma.
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Conclusions
In conclusion, we found that visible mold exposure 
increased the risk of childhood asthma, and a dose-
dependent effect of rs7216389 T allele variants on child-
hood asthma. Moreover, we observed that the effect of 
visible mold exposure on childhood asthma became more 
prominent in children carrying the rs7216389 T allele, a 
gene-environment interaction. Our finding suggests that 
genetic susceptibility plays a key role in the associations 
between environmental factors and childhood asthma.
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