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Introduction
Microarray technology is providing us with increasingly 
abundant gene expression-level datasets. For example, the 
cancer genome atlas (TCGA) makes available gene expression-
level data on cases and controls in five different types of cancer. 
Translating the information in these data into a better under-
standing of underlying biological mechanisms is of paramount 
importance to identifying therapeutic targets for cancer. In 
particular, if the data can inform us as to whether and how a 
signal transduction pathway (STP) is altered in the cancer, we 
can investigate targets on that pathway.

An STP is a network of intercellular information flow initi-
ated when extracellular signaling molecules bind to cell-surface 
receptors. The signaling molecules become modified, causing 

a change in their functional capability and affecting a change 
in the subsequent molecules in the network. This cascading 
process culminates in a cellular response. Consensus pathways 
have been developed based on the composite of studies concern-
ing individual pathway components. Figure 1 shows a portion 
of the signaling pathway of human primary naive CD4 T cells, 
downstream from CD3, CD28, and LFA-1 activation. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway1 is 
a collection of manually drawn pathways representing our 
knowledge of the molecular interaction and reactions for about 
136 pathways. Signaling pathways are not stand alone, but 
rather it is believed there is inter-pathway communication.2

Many aberrant STPs have been associated with various 
cancers.3–9 For example, we now know that the ErbB, 
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PI3K-Akt, and Wnt pathways are associated with breast 
cancer. To develop optimal treatments for cancer patients, it is 
important to discover which STPs are implicated in a cancer 
or cancer-subtype.

The phosphorylation activity state of each protein in an 
STP corresponds to the information flow on the STP. How-
ever, protein phosphorylation assays are slow, relatively expen-
sive, and can be performed for a tiny but important fraction of 
the genome. Protein expression level (abundance) is correlated 
with activity, and gene expression level (mRNA abundance) 
is associated with protein abundance (correlation coefficient 
of 0.4–0.6). So, it seems gene expression data should be 
loosely correlated with activity. Furthermore, as mentioned 
above, microarray technology is providing us with increas-
ingly abundant gene expression-level datasets. So, research-
ers developed techniques that investigate which STPs are 
implicated in a cancer by analyzing gene expression datasets. 
Initially, techniques such as over-representation analysis10–12 
were employed. These techniques simply determine which 
genes are differentially expressed in the sample groups. Such 
methods ignore the topology of the network, and so do not 
account for key biological information. That is, if a pathway 
is activated through a single receptor and that protein is not 
produced, the pathway will be severely impacted. However, a 
protein that appears downstream may have a limited effect on 
the pathway. Recently, researchers have developed methods 
that account for the topology of an STP when analyzing gene 
expression data to determine whether the STP is implicated 
in a cancer.13–15 Signaling pathway impact analysis (SPIA)13 is 

a software package (http://bioinformaticsprb.med.wayne.edu/
SPIA) that analyzes gene expression data to identify whether 
a signaling network is relevant in a given condition that com-
bines over-representation analysis with a measurement of the 
perturbation measured in a pathway.

However, the correlation of gene expression with activity 
is not well established. Some studies show that protein expres-
sion level (abundance) is often not positively correlated with 
activity16 and that gene expression level is often not correlated 
with protein abundance.17 Thus, gene expression levels might 
at most be loosely correlated with activity, which means that 
the causal structure of an STP might not be represented by 
the relationships among gene expression levels. More funda-
mentally, it remained an open question as to whether there 
even are causal relationships among the gene expression levels 
of genes coding for proteins on an STP. Neapolitan et al.18 
investigated this question. Specifically, they used a Bayesian 
network (BN) model to study whether the expression levels of 
genes that code for proteins on a given STP are causally related 
and whether this causal structure is altered when the STP is 
involved in a particular cancer. The results of their study sup-
ported that there is a causal structure and that it is altered.

The technique used in the investigation in Ref. 18 pro-
vides us with a new method for analyzing whether an STP 
is implicated in a cancer using gene expression data. In this 
paper, we present this technique. Then we apply both this 
technique and SPIA13 to the analysis of the ovarian carcinoma 
dataset provided by TCGA. We obtained highly correlated 
results using the two methods, and we identified biologically 
plausible STPs as being the ones to be most likely implicated 
in ovarian carcinoma.

Method
As our method applies BNs to modeling STPs, we first 
review BNs.

bNs. A BN19–21 consists of a directed acyclic graph 
(DAG) G = (V,E) whose nodeset V contains random variables, 
and whose edges E represent relationships between the ran-
dom variables, the prior probability distribution of every root 
variable in the DAG, and the conditional probability distribu-
tion of every non-root variable given each set of values of its 
parents. Often the DAG is a causal DAG, which is a DAG 
containing the edge X→Y only if X is a direct cause of Y.19 The 
probability distribution of the variables in a BN must satisfy 
the Markov condition, which states that each variable in the 
network is probabilistically independent of its nondescendents 
conditional on its parents.

Figure 2 shows a BN representing the causal relation-
ships among a subset of the variables related to lung cancer. 
Using this BN, we can determine conditional probabilities of 
interest using a BN inference algorithm.19 For example, we 
can determine P(L = yes|H = yes, X = yes, T = no).

A BN DAG model consists of a DAG G = (V,E) where V is 
a set of random variables, and a parameter set θ whose members 
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figure 1. a portion of the stP of human primary naive CD4 t cells, 
downstream from CD3, CD28, and Lfa-1 activation.
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determine conditional probability distributions for G, but 
without numerical assignments to the parameters. The task of 
learning a BN DAG model from data is called model selection.

In the constraint-based approach,22 we learn a DAG 
model from the conditional independencies that the data sug-
gested are present in the generative probability distribution P. 
In the score-based approach, we assign a score to a DAG based 
on how well the DAG fits the data. The Bayesian score is the 
probability of the Data given the DAG model.23 A popular 
variant of this score is the Bayesian Dirichlet equivalent uni-
form (BDeu) score.24 If the set of variables in DAG model G 
is {X1, X2, … , Xn}, this score is as follows:
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where α is a parameter called the prior equivalent sample size, 
ri is the number of states of Xi, qi is the number of different 
instantiations of the parents of Xi, and sijk is the number of 
times in the data that Xi took its kth value when the parents of 
Xi had their jth instantiation.

When learning a DAG model from data, we can only 
learn a Markov equivalence class of DAG models rather than 
a unique DAG model. Two DAGs are called Markov equiva-
lent if they entail the same conditional independencies.19 For 
example, the DAGs X → Y→ Z and X ← Y ← Z are Markov 
equivalent.

Many biological processes have been modeled using 
BNs including molecular phylogenetics,25 gene regulatory 
networks,26–28 genetic linkage,29 genetic epistasis,30–34 and 
STPs.35–39

stPs modeled as bNs. If we represent the phosphoryla-
tion activity state of each protein in an STP by a random vari-
able and draw an arc from X to Y if there is an edge from protein 
X to protein Y in the STP, then we are modeling the STP as 
a BN. For this BN to represent the joint probability distribu-
tion of the random variables, the Markov condition must be 
satisfied. Woolf et al.38 argue that steady-state concentrations 
should satisfy this condition. For example, in Figure 1 the phos-
phorylation activity of MEK1/2 should be dependent on the 
phosphorylation activity of PKA because the activity of PKA 
affects the activity of RAF, which in turn affects the activity 
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Chest Xray
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P(X = pos |L = no, T = no) = 0.02

figure 2. a Bn containing a subset of the variables related to lung cancer.
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of MEK1/2. However, once we know the phosphorylation 
activity of RAF, the implication link is broken, which is what 
the Markov condition entails. Sachs37 performed a proof of 
principle study concerning this conjecture, and found that it is 
true.

causal analysis of stP aberration (cAsA). In what 
follows for simplicity we will say that a gene coding for a pro-
tein on an STP is on the STP itself. We assume we have two 
sets of data. The first set contains the gene expression levels of 
all (or at least most) genes in a set of cases (tumors) and the 
second set contains the gene expression levels of all genes in a 
set of controls. Let X be an STP we are investigating, Data1 
be the data concerning cases for genes on X, and Data2 be the 
data concerning controls for genes on X.

There are two models. Model MA represents that the same 
causal structure (BN) is generating both Data1 and Data2. In 
this case, the two datasets can be considered as coming from 
the same population and therefore combined. Model MB rep-
resents that two different causal structures (BNs) are generat-
ing the data. We compute the log Bayes factor of model MB 
relative to model MA as follows. We first compute
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where m is the number of possible DAG models containing 
the variables and g is a variable whose value can be any DAG 
model. In these computations, we are summing over all DAG 
models according to the law of total probability (model averag-
ing), and we are assuming all DAG models are equiprobable. 
The likelihoods are computed using the BDeu score (Equa-
tion 1). As there are an intractable number of models, we do 
approximate model averaging using Markov Chain Monte 
Carlo (MCMC) as described in Ref. 19. Next, we compute 
the log Bayes factor K as follows:
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The larger the value of K, the more the data indicate 
that the causal structure of STP X is altered in the tumorous 
tissue. In our investigations, we approximate the Bayes factor 

by approximately learning the most likely model and then use 
the Bayesian information criteria (BIC) to approximate the 
probability of the data given that model. In the limit, the BIC 
and the BDeu score (Equation 1) choose the same model.19

We call the method CASA.
Jiang et al.18 used Equations (2) and (3) to analyze 5 

STPs associated with breast cancer, 10 STPs associated with 
other cancers, and 10 randomly chosen STPs, using a breast 
cancer gene expression-level dataset containing 529 cases 
and 61 controls. They obtained significant results indicat-
ing that K (Equation 4) is larger in the cancer-related STPs 

Table 1. The number of cases and controls in the five TCGA 
datasets.

DATASET # CASES # CONTROLS

breast cancer 530 62

colon adenocarcinoma 156 20

glioblastoma 596 11

lung squamous cell carcinoma 156 0

ovarian carcinoma 591 9

 

Table 2. the stPs analyzed using the tCGa ovarian carcinoma 
dataset.

CANCER PAThwAYS RANDOM PAThwAYS

P13k Polycystic Liver Disease  
Protein Proc. in endo. ret.

Wnt alpha-1-antitrypsin  
deficiency_Comp. and  
Coag. Cascades13

erbB Viral myocarditis

notch salivary secretion

Hedgehog type I Diabetes mellitus

LUSC-Cell_Cycle Cancer type II Diabetes mellitus

GBM_Ras Cancer

small Cell Lung Cancer

Nasopharyngeal Cancer_Viral Carc.

Chronic myeloid Leukemia

GBM_TGF Cancer

Glioma Cancer

malignant melanoma

Pancreatic Cancer

LUSC_p53 Cancer

non-small Cell Lung Cancer

Colorectal Cancer

LUSC_mTOR Cancer

thyroid Cancer

Bladder Cancer
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than in the randomly chosen ones. These results support that 
the causal structure is altered in the cancer-related pathways. 
However, the possibility exists that these significant results 
were obtained simply because the genes are over or under 
expressed in cancer-related STPs, and the causal structure is 
not relevant. To test this possibility, they redid the study with 
all BNs constrained to having no causal edges. They obtained 
results that had no significance at all. Hence, their overall 
results support that there is an underlying causal structure 
among expression levels of genes on an STP and that this 
causal structure is altered when an STP is involved in cancer. 
These results indicate that CASA should be able to effectively 
identify cancer-related STPs.

Application to ovarian cancer. TCGA makes available 
datasets concerning breast cancer, colon adenocarcinoma, 
glioblastoma, lung squamous cell carcinoma, and ovarian 

carcinoma. Each dataset contains data on the expression 
levels of 17,814 genes in cases (tumorous tissue) and controls 
(non-tumorous tissue). Table 1 shows the number of cases and 
controls in each of these datasets.

These datasets are highly unbalanced in that there are 
many more cases that controls. Difficulties can occur with 
unbalanced datasets. For example, predictive accuracy, 
a method often used for evaluating the performance of 
a classifier, is not appropriate when the data are unbalanced.40 
However, our application is discovery, not prediction. The 
BDeu score, which we employ, automatically incorporates 
both the number of cases and controls into the resultant 
score. Too few data items would make it more difficult to 
distinguish models, but not produce an inappropriate mea-
sure. Furthermore, to increase the number of controls, we 
used the controls from all five datasets, resulting in a total 
of 102 controls.

We investigated the ovarian carcinoma dataset. 
We analyzed 20 cancer-related STPs to see which ones the Table 3. the Casa results for the stPs analyzed using the tCGa 

ovarian carcinoma dataset.

PAThwAY LOG bAYES  
fACTOR

P-vALUE

P13k 7924 0.0000007

GBM_Ras Cancer 4389 0.002

Nasopharyngeal Cancer_Viral  
Carcinogenesis

3621 0.009

LUSC-Cell_Cycle Cancer 3122 0.021

Wnt 3060 0.023

Polycystic Liver Disease_Protein  
Processing in endoplasmic  
reticulum

2768 0.035

small Cell Lung Cancer 1949 0.102

erbB 1833 0.116

Chronic myeloid Leukemia 1761 0.125

GBM_TGF Cancer 1703 0.133

Glioma Cancer 1619 0.146

malignant melanoma 1587 0.151

Pancreatic Cancer 1531 0.159

salivary secretion 1494 0.165

LUSC_p53 Cancer 1389 0.183

Alpha-1-antitrypsin deficiency_ 
Complement and Coagulation  
Cascades13

1386 0.183

non-small Cell Lung Cancer 1313 0.196

Colorectal Cancer 1310 0.197

LUSC_mTOR Cancer 1224 0.213

Hedgehog 1147 0.227

Viral myocarditis 1031 0.251

Bladder Cancer 1004 0.257

notch 1003 0.257

type II Diabetes mellitus 924 0.274

thyroid Cancer 642 0.338

type I Diabetes mellitus 332 0.414

Table 4. the sPIa results for the stPs analyzed using the tCGa 
ovarian carcinoma datasets.

PAThwAY P-vALUE

P13k 0.00005

Glioma Cancer 0.001

erbB 0.003

GBM_Ras Cancer 0.013

malignant melanoma 0.02

Pancreatic Cancer 0.039

LUSC-Cell_Cycle Cancer 0.051

Chronic myeloid Leukemia 0.147

LUSC_p53 Cancer 0.147

notch 0.244

Viral myocarditis 0.253

salivary secretion 0.286

Wnt 0.297

Bladder Cancer 0.338

type II Diabetes mellitus 0.378

Colorectal Cancer 0.435

LUSC_mTOR Cancer 0.459

small Cell Lung Cancer 0.462

Polycystic Liver Disease_Protein Processing in  
endoplasmic reticulum

0.469

Nasopharyngeal Cancer_Viral Carcinogenesis 0.535

thyroid Cancer 0.644

type I Diabetes mellitus 0.732

Alpha-1-antitrypsin deficiency_Complement and  
Coagulation Cascades13

0.753

non-small Cell Lung Cancer 0.776

Hedgehog 0.814

GBM_TGF Cancer 0.906
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technique, which discretizes the data into partitions of K 
equally sized intervals (K = 3 in our application).

Using the resultant datasets, we used CASA to learn Bayes 
factors and SPIA to determine P-values for the 26 pathways. 
We used the BN learning package HUGIN41 to approxi-
mately learn the most probable DAG models and to calculate 
the BICs. We obtained SPIA from http://bioinformaticsprb.
med.wayne.edu/SPIA.

results
Table 3 shows the results for CASA, and Table 4 shows the 
results for SPIA. The P-values for CASA were obtained by 
making the null hypothesis that the log Bayes factor is #0, 
assuming a normal distribution, and approximating the vari-
ance by the variance of the observed log Bayes factors.

Table 5. the combined results for the stPs analyzed using the tCGa ovarian carcinoma dataset. there is an X in the far right columns if Casa 
or sPIa separately found the stP noteworthy.

PAThwAY COMbINED
P-vALUE

CASA
NOTEwORThY

SPIA
NOTEwORThY

P13k 0.000 X X

GBM_Ras Cancer 0.005 X X

Glioma Cancer 0.012 X

erbB 0.018 X

LUSC-Cell_Cycle  
Cancer

0.032 X X

malignant melanoma 0.055 X

Nasopharyngeal Cancer_Viral Carcinogenesis 0.069 X

Pancreatic Cancer 0.078 X

Wnt 0.082 X

Polycystic Liver Disease_Protein Proc. in Endo. Reticulum 0.128 X

Chronic myeloid Leukemia 0.136

LUSC_p53 Cancer 0.164

salivary secretion 0.217

small Cell Lung Cancer 0.217

notch 0.250

Viral myocarditis 0.252

Colorectal Cancer 0.292

Bladder Cancer 0.295

LUSC_mTOR Cancer 0.313

type II Diabetes mellitus 0.321

GBM_TGF Cancer 0.348

Alpha-1-antitrypsin deficiency_Comp. and Coag. Cascades13 0.371

non-small Cell Lung Cancer 0.390

Hedgehog 0.431

thyroid Cancer 0.467

type I Diabetes mellitus 0.551

data indicate are involved in ovarian cancer. We also analyzed 
six arbitrary STPs to see whether STPs involved in cancer in 
general have more implicating scores than arbitrary STPs. 
These pathways were selected at random from the KEGG 
pathways list after removing the cancer-related pathways. The 
STPs analyzed appear in Table 2.

Using the KEGG database, we identified all the genes 
related to each of the 26 pathways. We extracted gene expression 
profiles for the 591 ovarian carcinoma cases and 102 controls  
in the TCGA database. By mapping the gene names of the 
genes in the gene sets identified using KEGG pathways and 
the gene names in TCGA data, we were able to extract the gene 
expression profiles for each of the 26 pathways for the 591 cases 
and 102 controls. All expression levels were discretized to val-
ues low, medium, and high using the equal width discretization 
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Notice that in both tables, the cancer-related pathways 
in general are near the top. Based on a two-sample t-test, the 
cancer-related pathways scored higher (larger K values for 
CASA and smaller P-values for SPIA) than the noncancer 
pathways at the 0.047 level for CASA and at the 0.083 level 
for SPIA. Also, the P-values for the two methods are highly 
correlated (correlation coefficient = 0.405; P = 0.040).

We combined the P-values using Brown’s42 modification 
of Fisher’s method because both CASA and SPIA analyzed 
the same dataset and therefore we do not have independence. 
The combined P-values appear in Table 5. In this table, we 
show whether CASA and SPIA individually found each 
STP noteworthy, where by noteworthy we mean a P-value no 
larger than 0.05.

Many of the results obtained are plausible according to 
current knowledge. PI3 K, which is “probably one of the most 
important pathways in cancer metabolism and growth,”43 has 
P-value essentially equal to 0 based on each method indi-
vidually and based on the combined results. Furthermore, 
PI3 K, Ras, ErbB, and Wnt, all of which rank high, are 
known players in normal growth regulation and deregula-
tion in cancer cells.

discussion
We developed CASA, which is a BN-based method for inves-
tigating whether STPs are implicated in cancer using case–
control gene expression datasets. We applied both CASA and 
another topology-based method, SPIA, to the TCGA ovarian 
carcinoma dataset to analyze 20 cancer-related STPs and 6 
randomly selected STPs. The results of the two methods were 
highly correlated. CASA ranked the cancer-related STPs over 
the randomly selected STPs at a significance level below 0.05 
(P = 0.047) but SPIA did not (P = 0.083). Furthermore, sev-
eral of the STPs that ranked highest are linked to all cancers 
based on current knowledge.

These results open up avenues for future research. In 
particular, we can analyze all 136 pathways in KEGG path-
way with the purpose of identifying undiscovered pathways 
related to ovarian cancer. This analysis will require a good deal 
of manual effort to develop the individual STP datasets from 
the manually drawn pathways and the TCGA datasets. Sec-
ond, we can analyze the remaining four cancers in the TCGA 
datasets, and perform a pan cancer analysis, looking for STPs 
involved across all cancers.

conclusion
We conclude that our study supports that both CASA and SPIA 
can identify aberrant STPs in cancer using case/control gene 
expression-level data. These results open up avenues for discov-
ering cancer-related STPs across different types of cancers.
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