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Abstract

The recent realization that human-associated microbial communities play a crucial role in 

determining our health and well-being1,2 has led to the ongoing development of microbiome-based 

therapies3 such as fecal microbiota transplantation4,5. Thosemicrobial communities are very 

complex, dynamic6 and highly personalized ecosystems3,7, exhibiting a high degree of inter-

individual variability in both species assemblages8 and abundance profiles9. It is not known 

whether the underlying ecological dynamics, which can be parameterized by growth rates, intra- 

and inter-species interactions in population dynamics models10, are largely host-independent (i.e. 

“universal”) or host-specific. If the inter-individual variability reflects host-specific dynamics due 

to differences in host lifestyle11, physiology12, or genetics13, then generic microbiome 

manipulations may have unintended consequences, rendering them ineffectual or even detrimental. 

Alternatively, microbial ecosystems of different subjects may follow a universal dynamics with the 

inter-individual variability mainly stemming from differences in the sets of colonizing species7,14. 

Here we developed a novel computational method to characterize human microbial dynamics. 

Applying this method to cross-sectional data from two large-scale metagenomic studies, the 

Human Microbiome Project9,15 and the Student Microbiome Project16, we found that both gut and 

mouth microbiomes display pronounced universal dynamics, whereas communities associated 

with certain skin sites are likely shaped by differences in the host environment. Interestingly, the 

universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium 
difficile infection17 but is observed in the same set of subjects after fecal microbiota 
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transplantation. These results fundamentally improve our understanding of forces and processes 

shaping human microbial ecosystems, paving the way to design general microbiome-based 

therapies18.

The underlying dynamics of a microbial ecosystem, i.e. the ecological interactions that 

govern its change, equilibrium and stability, can be represented by a population dynamic 

model

(1)

which describes the time-dependent abundance profile  of N 
microbial species present in a particular body site of subject υ. Here, f (x(υ); Θ(υ)) is 

typically a nonlinear function and Θ(υ) captures all the ecological parameters, i.e. growth 

rates, intra- and inter-species interactions. Those parameters may generally depend on host-

independent factors, e.g. biochemical processes and microbial metabolic pathways19; and 

host-specific ones, e.g. nutrient intake20 and host genetic make-up13. Three fundamental 

cases could represent the dynamics of M healthy subjects: a)Individual dynamics, where 

the ecological parameters are different in different subjects, i.e. Θ(1) ≠ ⋯ ≠ Θ(M); b)Group 
dynamics, where subjects can be classified into K groups (K ≪ M) based on certain host 

factors and subjects in the same group share the same set of parameters, i.e. Θ(υ) = ΘP for all 

subjects in group P (P = 1,⋯,K); c)Universal dynamics, where all the subjects share the 

same set of parameters, i.e. Θ(ν) = Θ for all subjects. If we represent the ecological 

parameters, e.g. the inter-species interactions, in a directed weighted ecological network, the 

above three cases can be easily visualized (see Fig. 1).

Despite its critical consequences, we don’t know which case best represents the microbial 

ecosystems of healthy individuals. Addressing this question is crucial for developing 

microbiome-based therapies3,18. Indeed, if the dynamics are universal, the inter-personal 

variability stems solely from the different assemblages of colonizing species in different 

individuals. Then we can design general interventions to control the microbial state (in terms 

of species assemblage and abundance profile) of different individuals. In contrast, if the 

dynamics are strongly host-specific, we must design truly personalized interventions, which 

must consider not only the unique microbial state of an individual but also the unique 

dynamics of the underlying microbial ecosystem. In addition, host-specific dynamics, if 

exist, raise a major safety concern for FMT because the healthy microbiota, though stable in 

the donor’s gut, may be shifted to an undesired state in the recipient’s gut.

The ideal approach to addressing this fundamental question would be to infer the dynamic 

model captured by (1)for a large number of healthy individuals from temporal metagenomic 

data, and then compare the system parameters Θ(υ) directly. However, empirical 

parameterization of the exact functional form of f (x(υ); Θ(υ)) is extremely difficult for 

complex ecological systems. Furthermore, inferring the system parameters typically requires 

high-quality time series data and well-designed experiments to ensure the system parameters 
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are identifiable21. Such datasets are not currently available. A conventional correlation 

analysis of cross-sectional data cannot address this question either, because it only captures 

effective (or indirect) interactions and is subject to spurious correlations due to the 

compositionality of relative abundances in genomic survey data22.

To overcome these issues, we developed a novel method to detect “fingerprints” of universal 

microbial dynamics. This is achieved by restricting ourselves to answer the question of 

“whether the dynamics are universal or not”, rather than the broader and harder question of 

“what are the dynamics”. The key idea is that when comparing microbial communities 

(samples) from different subjects, we distinguish between two contributors to the inter-

individual variability: the difference in species assemblages and the difference in abundance 

profiles. We quantify those two contributors by: O(x̃,ỹ), the overlap of the species 

assemblages, calculated from the relative abundances of the shared species; and D(x̂,ŷ), the 

dissimilarity between the renormalized abundance profiles of the shared species (see 

Methods section). Note that the two measures (overlap and dissimilarity) are not apriori 

dependent on each other. Indeed, D(x̂,ŷ) is mathematically not constrained by any value of 

O(x̃,ỹ) > 0 (see SI Sec.1.2.1 for the proof). Hence any constraints of D(x̂,ŷ) by O(x̃,ỹ) 

observed from real data deserve our attention and may have ecological interpretations (see 

Fig. 2a,b).

To systematically compare samples from a given microbiome dataset, we first calculate the 

overlap and dissimilarity of all the sample pairs and represent each sample pair as a point in 

the Dissimilarity-Overlap plane. We then perform nonparametric regression and bootstrap 

sampling to calculate the average Dissimilarity-Overlap Curve (DOC) and its confidence 

interval (see Fig. 2b and Methods section). In the case of (i) individual dynamics; or (ii) 

universal dynamics but without inter-species interactions, a flat DOC is expected (see SI 

Sec. 1.2.3). In contrast, for systems with universal dynamics and inter-species interactions, 

we expect the corresponding DOC to display a characteristic feature: a negative slope in the 

high-overlap region, i.e. abundance profiles of sample pairs become more similar as their 

overlap becomes higher(see SI Sec. 1.2 and Extended Data Fig. 1). A negative slope can also 

be seen in the DOC of microbial communities characterized by group dynamics. The 

existence of such group dynamics however can be easily detected by standard ordination 

techniques and clustering analysis23,24 and hence ruled out (see Data Extended Fig. 2). Note 

that the DOC analysis described above is not affected by the compositionality of the 

genomic survey data and requires neither time series data nor any apriori knowledge of the 

specific ecological dynamics. Instead, it only relies on a few reasonable assumptions (see 

Methods).

To verify our DOC analysis, we first applied it to synthetic data generated from the 

canonical Generalized Lotka-Volterra (GLV) model, which has been used for predictive 

modeling of the intestinal microbiota25–27. Extended Data Fig. 3 shows that in the case of 

universal dynamics with strong inter-species interactions, the DOC displays a clear negative 

slope in the high-overlap region. In contrast, in the case of individual dynamics or universal 

dynamics without inter-species interactions, a flat DOC is observed.
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To directly verify the DOC analysis using real data, we analyzed longitudinal gut microbial 

samples of four healthy individuals from two microbiome studies11,28. For each individual, 

we expect a highly universal microbial dynamics throughout the period of measurement, i.e. 

the ecological parameters Θ(ν) of the corresponding microbial community are largely time-

invariant. We found that the DOCs of all four subjects show a clear negative slope in the 

high-overlap region (Extended Data Fig. 4), consistent with our expectation.

Next, we systematically analyzed cross-sectional microbial samples of different body sites 

from two large-scale metagenomic studies, the Human Microbial Project (HMP)9,15 and the 

Student Microbiome Project (SMP)16. The results were shown in Fig. 3 and Extended Data 

Fig. 5. In Fig. 3, for each body site the DOCs calculated from real and randomized samples 

are shown in dark blue and red, respectively. The overlap distributions of the real between-

subjects sample pairs are shown in red. Note that the characteristic overlap in a particular 

body site is different in the two studies. For example, the average overlap between HMP gut 

samples is about 0.4 and between SMP samples is about 0.75. To account for this fact and to 

fairly compare the DOCs across different body sites and different studies, we used two 

different measures to quantify the universality (see Methods). Interestingly, though these two 

measures quantify different features of the DOC analysis, the body sites stratification pattern 

is consistent across the two measures and the two studied datasets (Extended Data Fig. 6). In 

particular, the negative slope of DOC is most significantly observed in samples from the gut 

and mouth and least observed in samples from hand skin (palm and elbow). These findings 

strongly suggest the existence of universal dynamics characterized by inter-species 

interactions in the gut and mouth microbiomes.

An alternative explanation for the observed negative slope of the DOC for gut and mouth 

microbiomes of healthy subjects could be that some host factors not only select for the 

presence of certain microbes but also drive their relative abundances by enforcing certain 

optimally adapted compositions. To test this alternative explanation, we systematically 

analyzed microbial samples while controlling for the effect of several leading candidates for 

potential confounding factors, e.g. body mass index, age, long-term dietary pattern and stool 

consistency. We found that as long as their values are in the normal range those factors 

cannot explain the observed DOC pattern (see Extended Data Figs. 7,8). Hence, the 

alternative explanation for the negative slope in DOC is unlikely to be true. Of course, with 

currently available datasets we cannot possibly account for all other confounders, e.g. drugs, 

genetics, inflammation, or combinations of them. More datasets will be needed to test this 

intriguing alternative explanation.

The above results of healthy subjects raise an interesting question: Does the universality of 
microbial dynamics also exist in subjects with disrupted microbiomes? To address this 

question, we applied the DOC analysis to microbial samples of 17 subjects with recurrent 

Clostridium difficile infection (rCDI) and the same set of subjects after FMT17. Clostridium 
difficile is an opportunistic pathogen that causes disease worldwide and greatly increases 

morbidity and mortality in hospitalized patients. Fortunately, FMT is very efficacious in 

treating patients with rCDI, with pronounced clinical improvement even after a single 

treatment29. Interestingly, we found that the dissimilarity between rCDI subjects is largely 

independent of their species overlap, rendering a flat DOC (Fig. 4a). In contrast, after FMT 
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(median, 4 days) the DOC displays a pronounced negative slope in the high-overlap region 

(Fig. 4b), suggesting a universal gut microbial dynamics. FMT treatments show the 

flexibility of microbial communities and their adaptation to composition changes. Our result 

suggests that this adaptive behavior may be associated with the observed universal microbial 

dynamics after FMT.

Finally, we anticipate that applying our DOC analysis to subjects with other diseases 

(especially non-gastrointestinal diseases) or infants at different developmental stages will 

offer deeper insights into how dynamical processes shape human microbial ecosystems. The 

developed DOC analysis can also be directly applied to other microbial ecosystems, e.g. 

soil, ocean, lakes, phyllosphere/rhizosphere and fermenters microbiome, to detect the 

universality of the underlying ecological dynamics (see Extended Data Fig. 9). This sheds 

light on the design of more advanced methods to extract dynamical information from 

microbial data.

 Methods

 Overlap between species assemblages

Consider two microbial samples, represented by two abundance vectors x = (x1,…,xN) ∈ ℝN 

and y = (y1,…,yN) ∈ ℝN. For genomic survey data of the human microbiome, only the 

relative abundances are known. Hence, we are dealing with the relative abundance profiles x̃ 

= (x̃1,…,x̃N) and ỹ = (x̃1,…,x̃N), where  and . To quantify the 

similarity of the species assemblages (sets) of the two samples, denoted as X = {i|xi > 0} and 

y = {i|yi > 0}, we defined the overlap measure

where S ≡ X ∩ Y is the set of shared species present in both samples. In case S is empty, 

O(x̃, ỹ) = 0. If S = {1,…N}, i.e. all the species in X and Y are shared, then O(x̃, ỹ) = 1, but 

the abundance profiles x̃ and ỹ can still be very different. In the extreme case when the 

relative abundance is the same for all species in X and Y, the overlap measure can be written 

as a function of the classical Jaccard index. Yet, there are many advantages of using the 

overlap measure, instead of the Jaccard index, in our analysis (see SI Sec. 1.1.4).

 Dissimilarity between abundance profiles

To compare the abundance profiles of two samples, we first renormalize the relative 

abundances of only the shared species (set S), yielding x̃ = {x̃i}i∈S and ỹ = {ỹi}i∈S. Here 

 and ŷi is defined similarly. This way we 

remove the spurious dependence between the relative abundances of the shared and the non-

shared species. More importantly, this renormalization assures that the calculated 

dissimilarity measure is mathematically independent of the overlap measure (see SI Sec. 
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1.2.1). The dissimilarity is then evaluated via the root Jensen-Shannon Divergence (rJSD) 

measure

where  and  is the Kullback-Leibler divergence between 

x̂ and ŷ. The dissimilarity can also be evaluated via any other classical dissimilarity 

measures in ecology and biology, e.g. Bray-Curtis Dissimilarity, Yue-Clayton Dissimilarity, 

and the negative Spearman correlation (see Extended Data Fig. 5). In this work, we focused 

on rJSD because it is a distance metric that satisfies non-negativity, identity, symmetry and 

triangle inequality (see SI Sec.1.1.1). Comparing sample pairs based on phylogenetic 

information, e.g. using weighted- and unweighted-UniFrac30 as quantitative and qualitative 

measures, respectively, has the potential to provide better insight on the communities’ 

dissimilarity-overlap behavior. However, since the weighted- and unweighted-UniFrac are 

not independent, they cannot be trivially integrated into our DOC analysis.

 Dissimilarity-Overlap Curve (DOC)

To systematically compare sample pairs with a wide range of overlap values and analyze 

their dissimilarity-overlap relations, we calculate the overlap and dissimilarity of all the 

sample pairs from a given set of microbiome samples and represent each sample pair as a 

point in the Dissimilarity-Overlap plane. We then use the robust LOWESS (locally weighted 

scatterplot smoothing) method, a standard non-parametric regression method that is resistant 

to outliers, to calculate the DOC.

To get the confidence interval, we use the following bootstrap technique: (1) From a dataset 

of M samples we calculate the overlap and dissimilarity of the M(M − 1)/2 sample pairs, 

represented as M(M − 1)/2 points in the Overlap-Dissimilarity plane. (2) In each bootstrap 

realization, we resample a new set k = {k1,…,kM} from the M original samples with 

replacement. Some of the original samples might not be included and a few might be 

sampled more than once. (3) We create a new cloud of points C: a point associated with 

sample pair (i,j) is included in C only if both i,j ∈ k, while a point is chosen several times if 

the sample i or j were resampled more than once in k. (4)A new DOC is calculated for C 
using the robust LOWESS method. We set the smoothing parameter (“span”) to be 0.2.(5) 

We repeat steps (2)–(4) T times to create T DOCs. (6) The 3 and 97 percentiles of the T 
curves represent the 94% confidence interval for the DOC. In this work, we chose T = 100.

 Assumptions of the DOC Analysis

There are two reasonable assumptions underlying the DOC analysis. First, the abundance 

profiles of the samples should represent the steady states of the microbial ecosystem and 

hence the fixed points of the underlying dynamics that satisfy ẋ = 0. This assumption is 

fairly reasonable because human gut microbiota is a relatively resilient ecosystem3, and until 

the next large perturbation (e.g. antibiotic administration or dramatic dietary change) is 
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introduced, the system remains stable for months and possibly even years11,28,31. Second, if 

two communities have the same species assemblages and the same abundance profile (steady 

state), then the two communities have the same microbial dynamics. Mathematically, this is 

not necessarily true, because different dynamical systems can give rise to an identical steady 

state or fixed point. Yet, given the large number of species and all the other levels of 

complexity in their interactions, the possibility of having different dynamics with the same 

fixed point is very unlikely. Indeed, universal dynamics is the most plausible explanation for 

the observed pattern, i.e. the negative slope of DOC in the high-overlap region.

 Limitations of the DOC Analysis

We point out that for overlap values close to zero, a positive slope may occur as the artifact 

of dissimilarity between relative abundance profiles with small number of species (see Fig. 3 

e4, f1–4, g1–3, h, Extended Data Fig. 10, and SI Sec. 1.1.3).

We also emphasize that a flat DOC does not completely rule out the possibility of universal 

dynamics. For example, the DOC of the gut microbiome samples of rCDI patients is flat 

(Fig. 4a). There are two possibilities. First, the universality of microbial dynamics found in 

healthy subjects (Fig. 3a,d) is completely lost in the rCDI subjects, due to the infection 

or/and the dysbiosis caused by the extensive inciting antibiotic treatment. Second, the 

possibly universal microbial dynamics of the rCDI subjects are just undetectable by the 

DOC analysis. This could be due to the extremely liquid stool samples of the rCDI subjects 

that suffer from diarrhea, as stool consistency has been found to be strongly correlated with 

the gut microbiota compositions32,33. It is also possible that the abundance profiles of rCDI 

subjects are drastically varying over time and hence do not represent the steady states of the 

underlying microbial ecosystem (though a murine infection model doesn’t seem to support 

this hypothesis34).

If true multi-stability exists, i.e. multiple stable states (abundance profiles) are associated 

with the same set of species present in the same environment, then our DOC analysis may 

not detect it. However, true multi-stability in human-associated microbial communities has 

not been demonstrated experimentally, partially because any subtle differences in the species 

assemblages can drive those microbial communities35.

In sum, our DOC analysis hence detects universal dynamics under certain conditions. More 

precisely, it provides a means of discriminating dynamics into universal or possibly 
universal.

 Universality Measures and Statistical Test

Note that the DOCs of different datasets/studies must be compared with caution, especially 

if the microbial samples were preprocessed by different pipelines36, e.g. with different OTU 

clustering thresholds, or different OTU picking methods, etc. As shown in Fig. 3, the 

characteristic overlap in a particular body site is different in the two studies. For example, 

the average overlap between HMP gut samples is about 0.4 and between SMP samples is 

about 0.75. To account for this fact and to fairly compare the DOCs across different body 

sites and different studies, we used two different measures to quantify the universality:
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1. fns. For each cohort we determined the fraction of data points for which the 

DOC displays a negative slope, denoted as fns. Specifically, for a given DOC 

calculated from a cohort of M microbial samples, we first detected the “change 

point” Oc such that  for any O > Oc, where y(O) is a smoothed curve of 

the DOC (e.g. using the default “smooth” function of Matlab with moving 

average over 5 neighbors). Then, fns is defined as

In Fig. 3a–h this is the area of the overlap distribution to the right of the green 

vertical line, which represents the change point, the minimal overlap above 

which a negative slope is observed. The results of fns for different body sites 

are shown in Extended Data Fig. 6a.

2. p-value. To estimate the slope of the DOC, we used a linear mixed-effects 

model, which explicitly takes into account the fact that those data points in the 

Dissimilarity-Overlap plane are not completely independent (because each 

sample affects (n − 1) data points). To avoid any potential biases due to the 

detection of change point, we use data points with overlap larger than the 

median value, that is 50% of all the data points, for all the datasets (from all 

the body sites). We repeated this step for 200 bootstrap realizations. The 

distributions of the slopes for different body sites are shown in Extended Data 

Fig. 6b. We than calculated the one-tailed p-value as the fraction of bootstrap 

realizations with a non-negative slope. Benjamini and Hochberg procedure was 

used to calculate the false discovery rate (FDR) for multiple comparisons.

We emphasize that those two measures are complementary. In the first measure (fns), we 

consider the existence of a negative slope and ask what is the fraction of data points that 

support it. In the second measure, we consider a fixed fraction of data points (50%) and 

asked whether a significant negative slope is observed. Interestingly, though these two 

measures quantify different features of the DOC analysis, the body sites stratification pattern 

is consistent across the two measures and the two studied datasets (see Extended Data Fig. 

6).

 Population Dynamics model

The GLV model represents the dynamics of N interacting species as a set of ordinary 

differential equations: , i = 1, N. Here, ri is the intrinsic growth rate 

of species i, aij is the interaction strength between species j and i and  (with aii < 0) 

represents the logistic growth term. We considered a microbial “sample” as a steady state of 

a GLV model parameterized by the growth rate vector r = {ri} ∈ RN and the interaction 

matrix A = (aii) ∈ RN×N and we set N = 100 and aii = − 1 in our simulations. We generated 

different “cohorts”, each consists of M = 100 “samples”. The GLV models differ from each 

other in their specific parameters (ri and aij). To achieve that, for each cohort, we first 

constructed a “base” GLV model (r★, A★) as follows:  is randomly chosen from the 
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uniform distribution (0,1).  is randomly chosen from the normal distribution ℕ (0, 

(σ̃σmax)2), σ̃ varies between 0 and 1, σmax is the maximal interaction strength allowed to 

ensure stability of the ecological system (here σmax = 0.1). Then, different GLV models (ν = 

1,…,M) are generated as random variations of this base model with  and 

where both  and  are randomly chosen from a uniform distribution (1 − δ, 1 + δ) so 

that the expected values of the parameters of those models in the same cohort are the same 

as the base model, i.e. E[r]ν = r★ and E[A]ν = A★. In other words, all the samples of the 

same cohort are generated from GLV models that share the same structure and sign pattern 

of the base interaction matrix A★. As δ → 0 the model parameters become identical in all 

the GLV models of the same cohort. Thus, δ̃ ≡ 1 − δ quantifies the “universality” of the 

dynamics of those models. Finally, for each cohort, the 100 samples (steady states) were 

generated by integrating the GLV differential equations with random initial conditions (both 

initial assemblage and abundance profile are randomly chosen).

 Human microbiome datasets analyzed in this work

 Longitudinal microbiome datasets

(1) Two time series of gut microbiome consist of 336 and 131 stool samples, respectively. A 

16S rRNA gene-based dataset, variable region V4, analyzed here at the OTU level. For 

detailed description of this dataset see ref. 28. The data is available at http://qiita.ucsd.edu 

under study ID 550. (2) Two time series of gut microbiome consist of 299 and 180 stool 

samples, respectively. A 16S rRNA gene-based dataset, variable region V4, analyzed here at 

the OTU level. For detailed description of this dataset see ref.11. The data is available in the 

European Bioinformatics Institute (EBI) European Nucleotide Archive (ENA) under the 

nucleotide accession number ERP006059.

 Cross-sectional microbiome datasets

In order to quantitatively compare the universality of microbial dynamics in different body 

sites, we used two large-scale microbiome datasets:(1) Human Microbiome Project 

(HMP)9,15. A 16S rRNA gene-based dataset, variable regions V3 to V5, of the human 

microbiome from 239 healthy subjects. The data is available at http://hmpdacc.org/ and was 

detailed inref.9,15. This dataset covers 18 body sites in five areas: the oral cavity (nine sites: 

saliva (M = 262), tongue dorsum (M = 291), palatine tonsils (M = 285), keratinized gingiva 

(M = 289), hard palate (M = 275), buccal mucosa (M = 287), throat (M = 283), and sub- and 

supragingival plaques ( M = 283 and M = 289, respectively)), the gut (one site: stool (M = 

297)), the vagina (three sites: introitus (M = 115), mid-vagina (M = 124), and posterior 

fornix (M = 124)), the nasal cavity (one site: anterior nares (M = 230)), and the skin (four 

sites: left and right antecubital fossae (M = 161 and M = 171, respectively) and 

retroauricular creases (M = 240 and M = 257, respectively)). Full protocols are available on 

the HMP DACC website (http://hmpdacc.org/HMMCP). OTU level was used for our 

analysis. We used a single sample from each subject. In case more than one sample is 

available, we used the first visit. (2) Student Microbiome Project (SMP). A 16S rRNA gene-

based dataset, variable region V4 from 85 college-aged adults. The dataset covers four body 

sites: gut (M = 72), tongue (M = 79), forehead skin (M = 78) and palm skin (M = 60). In 
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case there are multiple samples measured for one subject, we used the sample from the first 

visit. For detailed description of this dataset seeRef.16. The data is available at https://

github.com/gregcaporaso/student-microbiome-project/tree/master/otu-tables.

In order to rule out several leading candidates of confounding factors in our DOC analysis, 

we analyzed two additional datasets: (3) A data set of healthy volunteers (M = 98) from the 

Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO). Diet 

information was collected using two questionnaires that queried recent diet (“Recall”) and 

habitual long-term diet (food frequency questionnaire; “FFQ”). Stool samples were 

collected, and DNA samples were analyzed by 454/Roche pyrosequencing of the variable 

region V1–V2 of the 16S rDNA gene segments. Samples were analyzed at the OTU 

taxonomic level. For detailed description of this dataset see Ref.37.(4) A dataset of healthy 

women (M = 53), aged 20–55 years (median 42.5), as part of the Flemish Gut Flora Project 

(FGFP). Stool consistency levels using Bristol Stool Scale (BSS)scores were self-reported. 

The V4 region of the 16S rDNA gene was sequenced. Samples were analyzed at the OTU 

taxonomic level. For detailed description of this dataset see Ref.33.

 Clinical trial dataset

Stool samples of patients with recurrent Clostridium difficile infection (rCDI): before and 

after fecal microbiota transplantation (FMT). This clinical trial was approved by the Partners 

Human Research Committee as well as by the US Food and Drug Administration (FDA) 

(Investigational New Drug application number 15199) and registered at Clinical Trials.gov 

(NCT01704937). Informed consent was obtained from all participants. Microbial samples 

from 17 patients with rCDI were analyzed in the groups of “pre-FMT” and “post-FMT”. 

Only subjects for whom both pre- and post-FMT samples are available were included. In 

case where more than one post-FMT samples is available we included only the first one 

(median, 4 days after FMT). The V4 region of the 16S rRNA gene was sequenced using an 

Illumina MiSeq. Samples were analyzed at the OTU level. For detailed description of this 

dataset see ref.17.

 Code availability

The Matlab code for computing the DOC and the universality measures as well as an 

example dataset (i.e. the dataset used to generate Fig. 2b) are freely available at the project 

webpage:http://scholar.harvard.edu/yyl/doc.
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 Extended Data

Extended Data Figure 1. Displacement of normalized N-dimensional random walks
a, Trajectory of a 2-dimensional random-walk represents the absolute abundance of two 

species x1, x2. The initial state is marked by a red circle and the first 100 steps are shown. 

The solid black line is the 1-dimensional simplex upon which the locations are projected to 

obtain the relative abundances x̃1, x̃2. The dotted lines starting at the origin represent the 

projection process: all the points in a dotted line have the same relative abundances and they 

are all projected to the intersection of the dotted line and the simplex (e.g. the solid red and 

green circles are projected to the red and green open circles, respectively). We define a new 

coordinate z̃(t) ≡ x̃2(t)− x̃1(t) for the location of normalized relative abundance on the 

simplex. The displacement of the normalized random walk after t steps is then z̃(t) − z̃(0), 

where z̃(0) is the projected location of the initial state (see, as an example, the distance 

between the green and the red open circles in a). b, Distributions of displacement of an 

ensemble of 1,000 random walks after t steps (t=1, 5, 10, 100, 1000). For small t, the 

displacement distributions depend on t, while for large t (t=100, 1000) the distributions are 

the same. c, Symbols represent the average displacement of 1,000 N-dimensional 

normalized random walks (here we set N=50), measured as DrJSD, and the error-bars 

represent the standard deviation. Each random walk is forced to stay on the positive orthant, 

i.e. if  we set  . The DrJSD was calculated using all N coordinates, setting 

 as a pseudo count for . Where t is small, the distance grows with increasing 

t, however, the distance saturates for large t. The dashed red and green lines represent the 

average distance between two random locations (green) and between the final locations 

(x(t=1,000)) of the random walks (red).
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Extended Data Figure 2. Detection of group dynamics using ordination technique
In each raw, 500 synthetic samples were generated. Samples in the same group were taken 

from the steady states of the same GLV model of 100 species. The initial species 

assemblages were determined in two scenarios: at random (columns a–d) or based on the 

group (e–h). In the latter scenario, in each group the species were first randomly ordered and 

then in each of the samples the first f species were selected and the other been removed (f is 

randomly chosen from a uniform distribution 20,100)). In columns a and e, a standard 

ordination technique, i.e. the principal coordinate analysis (PCoA), was applied. All 500 

samples were shown in the plane of the first two principal coordinates (using rJSD as the 

distance metric) and coloured according to their group. In columns b and f only the samples 

that have high overlap (>0.95) with at least one other sample were shown. Columns c and g 
show the dissimilarity distributions P(rJSD) between the high-overlap sample pairs. 

Columns d and h show the DOCs. The ordination technique successfully detects the 

existence of group dynamics (especially when the number of groups is small). We anticipate 

that the group dynamics can also be detected by classical clustering analysis. In the scenario 

of random collections, the PCoA of high-overlap samples, i.e. samples that have high 

overlap (>0.95) with at least one other sample, is doing better than the PCoA of all samples 
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to detect group dynamics, especially for a small number (2~10) of groups. Moreover, for a 

small number of groups, the dissimilarity distributions P(rJSD) can distinguish between the 

two scenarios of initial assemblage selection: random or group-based. The ordination 

technique cannot distinguish between the cases of 500 groups (“individual dynamics”) and 

single group (“Universal dynamics”). Those cases can be distinguished by the DOC 

analysis.

Extended Data Figure 3. Detecting universality in population dynamics models
Synthetic microbial samples were calculated as steady states of Generalized Lotka-Volterra 

(GLV) models (see Methods section). The GLV models are generated as “cohorts” (100 

models in each cohort) with different levels of i) inter-species interaction strength; and ii) 

universality, tuned by the parameters σ̃ and δ̃, respectively (see Methods section). In each of 

the 100 models, a random fraction f of the species (f ~ 0,0.8)) was initially removed, and 

the remaining species were initiated with random abundance (x ~ 0,1)). The Dissimilarity-

Overlap points of sample pairs in each cohort and of the corresponding randomized samples 
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are shown in light blue and yellow respectively. The solid curves represent the DOCs 

calculated using the robust LOWESS method. The DOC of “cohorts” generated by GLV 

models without inter-species interactions (a1, a4, a7) is flat even in the high-overlap region. 

This is because, without inter-species interactions, for any sample pair the presence or 

absence of unique (i.e. non-shared) species has no effect on the shared ones. A flat DOC is 

also observed in the case of individual dynamics (a7, a8, a9), where a higher overlap 

between sample pairs does not lead to more similar abundance profiles. However, in the case 

of universal dynamics with strong inter-species interactions (e.g. a3), the DOC displays a 

clear negative slope in the high-overlap region.

Extended Data Figure 4. DOC analysis of gut microbiome samples from longitudinal studies
In plots a–d, sample pairs are selected from four different subjects, with number of samples: 

Ma = 299, Mb = 180, Mc = 336, Md = 131, respectively. The mean DOCs (calculated from 

100 bootstrap realizations using the robust LOWESS method) of each subject and the 

corresponding randomized samples are shown in dark blue and yellow, respectively. The 

shaded area indicates the range of the 94% confidence intervals. The overlap distributions 

are shown in red. For all the four subjects, a clear negative slope of the DOC is observed at 

the high-overlap region, indicating a largely time-invariant or universal dynamics for each 
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subject throughout the measurement period. This is in marked contrast with the flat DOC of 

the null model (See SISec. 1.3). The secondary peak of lower overlap samples in b (overlap 

≈ 0.8) is of sample pairs from two different periods, before and after a Salmonella infection, 

which represent two distinct microbial steady states and thus exhibit a flat DOC. This is 

consistent with our assumption of time-invariant microbial dynamics for a given healthy 

individual.

Extended Data Figure 5. DOC analysis of gut microbiome samples is consistent across different 
studies and different dissimilarity measures
For two microbiome samples, the dissimilarity of their abundance profiles over shared 

species can be evaluated by different measures. Weighted measures, such as root Jensen-

Shannon Divergence (rJSD), Bray-Curtis (BC) dissimilarity and Yue-Clayton (YC) 

dissimilarity should be applied to the renormalized abundance profiles, to ensure 

mathematical independency between the overlap and the dissimilarity measures. Rank-based 
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dissimilarity measures, e.g. negative Spearman Correlation (nSC), can be directly applied 

without renormalization. We used the four dissimilarity measures (rJSD, BC, YC and nSC) 

to calculate the DOC (using robust LOWESS)of gut microbiome samples from two studies: 

the HMP and SMP. In all cases, we observed a pronounced negative slope in the DOC (dark-

blue curve) of real sample pairs (light-blue points) and a flat DOC (orange curve) for the 

pairs of randomized samples (yellow points).

Extended Data Figure 6. 
a, The fraction of data for which a negative slope is observed in Fig. 3. Note that for overlap 

values close to zero (e.g., Fig. 5 d, f1–4, g1–3) a positive slope occur as the artifact of 

dissimilarity between relative abundance profiles with small number of species (See SI Sec. 

1.1.3). For gut and mouth, a negative slope of DOC is observed in the two data sets for a 

broad range of overlap, indicating a significant universality of microbial dynamics in those 

habitats. In contrast, the negative slope of DOC in the hand’s skin microbiome is observed 

only for small part of the sample pairs. b, Box plot of the slope of DOC calculated from 200 

bootstrap realizations. The slope is calculated by fitting a linear mixed-effects model for data 

points with overlap larger than the median. The one-tailed p-value is then calculated as the 

fraction of bootstrap realizations with a non-negative slope. The Benjamini-Hochberg 

procedure was used to calculate the false discovery rate (FDR) for multiple comparisons. 

The null hypothesis of non-negative slope is rejected for all body sites (p < 10−2) except four 

skin sites: forehead (p = 0.099), palm (p = 0.377) in the SMP study and left/right antecubital 

fossa in the HMP study (p = 0.099 and p = 0.495).
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Extended Data Figure 7. Effects of various host factors on the DOC analysis
a, The effect of body mass index (BMI) on the DOC analysis. a1, DOC analysis of all gut 

microbiome sample pairs among 190 subjects from the HMP study. Red points represent 

samples pairs associated with at least one obese subject (with BMI > 30). a2, Same as 

shown in a, but 13 obese subjects with BMI > 30 were excluded. a3, blue points represent 

the gut microbiome samples’ overlap and ΔBMI. The red curve is the average (error bars 

represent the s.e.m.). a4, dissimilarity versus ΔBMI. a5, distribution of ΔBMI values, 

divided to four groups of equal number of pairs. a6–a9, DOC analysis of the sample pairs in 
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each group. b, The effect of diet on the DOC analysis. b1, Diet difference (ΔDiet)between 

two subjects is defined as the Euclidean distance between their associated diet scores in the 

two leading principal components PC1 and PC2. In total there are M = 97 healthy subjects in 

the Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO) study37. 

b2, overlap versus ΔDiet. Blue points represent the overlap and ΔDiet of all gut microbiome 

pairs among the 97 subjects from the COMBO study. The red curve is the average (error 

bars represent the s.e.m.). b3, dissimilarity versus ΔDiet. b4, distribution of ΔDiet values, 

divided to four groups of equal number of pairs. b5–b8, DOC analysis of the pairs in each 

group. c, The effect of age on the DOC analysis. c1, overlap versus ΔDiet. Blue points 

represent the overlap and ΔAge of all gut microbiome samples pairs between the 190 

subjects from the HMP study. The red curve is the average (error bars represent the s.e.m.). 

c2, dissimilarity versus ΔAge. c3, distribution of ΔAge values, divided to four groups of 

equal number of pairs. c4–c7, DOC analysis of the pairs in each group. d, The effect of stool 

consistency on the DOC analysis. d1, DOC analysis of all sample pairs. In this dataset the 

subjects have BSS values between 1 and 6. The points (sample pairs) associated with 

subjects with BSS = 6 (at least one subject has BSS = 6)are colored in red. The black line is 

the DOC. d2, DOC analysis of all subjects with BSS < 6. d3–d4, among all subjects with 1 

≤ BSS ≤ 5, the overlap and the dissimilarity are independent on ΔBSS. d5, Distribution of 

ΔBSS values for the 46 subjects with 1 ≤ BSS ≤ 5. d6, DOC analysis of the pairs with 

similar BSS values, 0 ≤ ΔBSS ≤ 1 and (d7) pairs with more different BSS values, 2 ≤ ΔBSS 
≤ 4. In both cases, a clear negative slope of the DOC isobserved. e, The effect of race on the 

DOC analysis. e1, All subjects (M = 190), e2, White subjects (M = 153) and e3, Asian (M = 

25). Note that in the HMP study, stool samples were collected from 153 White, 10 Black, 25 

Asian, and 2 subjects with other races.
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Extended Data Figure 8. DOC analysis under special conditions
a, The effect of strongly interacting species. A comparison of two GLV models of 100 

species with random inter-species interactions. The system parameters were fixed for all the 

simulated samples (M = 100), representing maximal universality. In a1, all species have the 

same characteristic interaction strength, while in a2, the inter-species interactions of one 

species are significantly stronger than all other species, representing a strongly interacting 

species. The presence/absence of the strongly interacting species dramatically affect (either 

directly or indirectly) the abundance profile of many other species leading to a pronounced 

secondary cloud of points in the Dissimilarity-Overlap plane (a4). The effect is the most 

pronounced in the region of high overlap (top 5%) pairs, and can be detected by looking at 

their dissimilarity distributions (a5–a6). b, DOC behaves the same for samples with uniform 

or skewed abundance distribution. b1, b2, Samples were generated from the steady states of 

the GLV model with largely uniform abundance distribution (determined mainly by the 

species growth rates). In the case of interacting species (b1), a negative slope of the DOC is 

observed but not in the case of noninteracting species (b2). b3, Real samples from the gut 

(from the HMP study, genus level) exhibit a high level of alpha-diversity and a very skewed 

abundance distribution. A negative slope of the DOC in the high-overlap region is observed. 

b4, The randomized samples preserve the abundance distribution of the real samples but the 
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effect of inter-species interactions is removed, leading to a flat DOC. c, Effect of core 

species and non-interacting periphery species. c1, Samples were generated as steady states 

of the GLV model with N = 100 species. The parameters of the GLV model were fixed for 

all the samples, representing maximal universality. The initial species assemblages were 

chosen as follows: 30 species were present in all the samples, representing a set of “core 

species”, and the other 70 “peripheral” species were present with lower probability (mean 

0.18, min 0.12, and max 0.24). c2, Presence probability of real gut microbial samples, from 

the HMP at the genus level. Only one genus (Bacterioides) is present in all the samples. c3, 

Species presence probability in a GLV model where all species are present with average 

probability 0.6. c4, The effect of the interactions of the peripheral species. In the GLV 

model, the inter-species interactions among the core species (“core-core”) has a 

characteristic strength σcore = 0.15, and both the “periphery-periphery” and the “periphery-

core” interactions have a characteristic strength σp. When σp = 0, i.e. the peripheral species 

do not interact with the core species, the DOC is flat. When σp > 0, the DOC has a negative 

slope. c5–c6, In the case of real gut microbiome samples as well as the GLV model without 

core species, the DOC has a negative slope in the high-overlap region. d, The effect of 

sequencing depth on the DOC analysis. d1, Richness (number of present OTUs) vs. 

sequencing depth of 190 HMP gut samples. 12 subjects with less than 1,300 reads/sample 

were excluded and the remaining 178 were assigned into two groups of n = 89 subjects, with 

average sequencing depth 3,019 and 8,640 reads/sample, respectively. d2, d3, The 

characteristic overlap between samples of Group 1 is smaller than between samples of 

Group 2. However, DOC analysis of each group shows a clear negative slope. d4–d6, 

Samples of each group were rarefied prior to analysis with minimal community size of 1,317 

and 4,333 in Group 1 and Group 2 respectively, as represented by the black dashed lines in 

d4. d7–d9, Samples of both groups were rarefied prior to analysis with the same minimal 

community size of 1,317, as represented by the black dashed line in d7.
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Extended Data Figure 9. DOC analysis of longitudinal microbiome data from six lakes in 
Germany38

(Data downloaded from http://qiita.microbio.me, Study ID: 945). a. ‘Stechlin’ (M = 440); b. 

‘Haus’ (M = 26); c. ‘Tiefwaren’ (M = 164); d. ‘Melzer’ (M = 68); e. ‘Breiter Luzin’ (M = 

89); f. ‘Fuchskuhle’ (M = 355). Blue points represent the dissimilarity-overlap values of 

sample pairs from the same lake. The DOCs of real samples from each lake and that from 

the corresponding randomized samples are calculated using robust LOWESS and shown in 

red and yellow, respectively. For all the six lakes, a clear negative slope is observed for the 

DOCs of real samples, suggesting universal or time-invariant microbial dynamics for each 

lake. Differences in the DOC shapes (e.g. the moderate DOC slope in b, c and d, in contrast 

with the steep DOC in a, e and f) deserve a systematic study of those microbial ecosystems. 

This example clear demonstrates the applicability of DOC analysis to general microbial 

ecosystems, e.g. soil, ocean, rizosphere/phyllosphere, fermenters, etc.
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Extended Data Figure 10. Average dissimilarity between two normalized random vectors
Two indepdent vectors x, y of n elements randomly choosen from uniform distribution u 

(0,1) were generated and then normalized  and  . (Note that in 

practice all n elements are always shared in x and y, since zeros are very unlikely). The 

dissimilarity D(x̂, ŷ) is then calculated using the five dissimilarity measures (DJSD, DrJSD, 

DBC, DYC and DnSC). Average dissimilarity and standard deviations of 1,000 pairs are 

shown in a1, b1, c1, d1 and e1, for the different measures. The horizontal black dashed line 

represents the average dissimilarity for n = 100. For all the measures here, the dissimilarity 

displays no n-dependence for n > 15, while DnSC is n-independent for any n > 0. Similar 

analysis was performed for vectors whose elements were chosen from power-law 

distributions P(x)~x−α with α = 3 (a2, b2,c2,d2ande2)and P(x)~x−α with α = 2 (a3, b3, c3, 

d3 and e3).
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Figure 1. Alternative scenarios of microbial dynamics across different healthy subjects
Microbial dynamics captured by (1) is simply characterized by an ecological network, where 

nodes represent species (with node sizes proportional to growth rates) and edges represent 

inter-species interactions (with green/red arrows represent excitatory/inhibitory interactions, 

respectively). Different subjects typically have different species assemblages, represented by 

colored circles near each subject. a, The underlying dynamics/network is unique for each 

subject. b, Subjects within the same group share the same dynamics/network that is 

significantly different from that of other groups. c, Different subjects have the same 

underlying dynamics/network.
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Figure 2. Higher overlap of microbial communities is associated with lower dissimilarity
a, Four gut microbial sample pairs (i–iv)represented by stacked bars at the genus level. For 

each sample pair, their shared genera are colored while non-shared genera are shown in gray. 

b, DOC(in dark blue) of gut microbial sample pairs from the HMP study (M = 190 samples). 

Gray dots represent all the 17,955 sample pairs. c, DOC (in dark red) of the randomized 

samples is flat. In (b) and (c), and throughout the paper, shaded area indicates the range of 

the 94% confidence intervals (see Methods section).

Bashan et al. Page 26

Nature. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Detecting universality of microbial dynamics in different body sites
We calculated DOCs for real (dark blue) and randomized samples (dark red) of two datasets: 

(1) SMP- a, gut, b, tongue, c1, forehead skin, c2, palm skin; (2) HMP – d, gut, e1, tongue 

dorsam, e2, attached keratinized gingiva, e3, buccal mucosa, e4, hard palate, e5, palatine 

tonsils, e6, subgingival plaque, e7, supergingival plaque, e8, throat, e9, saliva, f1,2, left/right 

antecubital fossa, f3,4, left/right retroauricular crease, g1, vaginal introitus, g2, mid vagina, 

g3, posterior fornix, h, anterior nares. The vertical green line represents the “change point” 

(see Methods section).
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Figure 4. DOC analysis of human subjects with rCDI
a, Before FMT, the DOC (dark green line) of the rCDI subjects is nearly flat. b, After FMT, 

the DOC (dark blue line) displays a pronounced negative slope in the high-overlap region. 

We denoted a subject pair as a solid (or hollow) circle if the two subjects received FMT from 

the same donor (or two different donors), respectively. Interestingly, solid circles spread over 

a wide range of overlap values, suggesting that even if two subjects share the same donor, 

their post-FMT microbiomes may still display strong inter-individual variability.
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