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Myofibrillar myopathy (MFM) is a group of inherited muscular disorders characterized by myofibrils dissolution
and abnormal accumulation of degradation products. So far causative mutations have been identified in nine
genes encoding Z-disk proteins, including acB-crystallin (CRYAB), a small heat shock protein (also called HSPB5).
Here, we report a case study of a 63-year-old Polish female with a progressive lower limb weakness and muscle
biopsy suggesting a myofibrillar myopathy, and extra-muscular multisystemic involvement, including cataract
and cardiomiopathy. Five members of the proband's family presented similar symptoms. Whole exome sequenc-

lc(g(vxgrd& ing followed by bioinformatic analysis revealed a novel D109A mutation in CRYAB associated with the disease.
HSPB5 Molecular modeling in accordance with muscle biopsy microscopic analyses predicted that D109A mutation in-
Myofibrillar myopathy fluence both structure and function of CRYAB due to decreased stability of oligomers leading to aggregate forma-
Mutation tion. In consequence disrupted sarcomere cytoskeleton organization might lead to muscle pathology. We also

Molecular dynamics suggest that mutated RQDE sequence of CRYAB could impair CRYAB chaperone-like activity and promote aggre-

Bioinformatics gation of lens crystallins.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Myofibrillar myopathy (MFM) is a clinically and genetically hetero-
geneous group of disorders characterized by myofibrillar disorganiza-
tion and the presence of ectopic protein aggregates in skeletal muscle.
The dissolution of myofibrils commences at the Z-disk. Abnormal ex-
pression of desmin (DES), myotilin (MYOT), atB-crystallin (CRYAB or
HSPB5) and dystrophin (DMD) results in accumulation of degraded
filamentous material in various patterns mostly in myofibril-free fiber
regions around nuclei and under the sarcolemma. Membranous organ-
elles are dislocated and their degradation in autophagic vacuoles can be
also observed [1].

The clinical features of MFM are diverse. Patients usually present
with slowly progressive muscle weakness that often begins in distal
muscles and spreads proximally, but an early limb-girdle involvement

* Corresponding authors at: Laboratory of Neurogenetics, Department of
Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of
Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland.

E-mail addresses: jfichna@imdik.pan.pl (J.P. Fichna), c.zekanowski@imdik.pan.pl
(C. Zekanowski).
! These authors equally contributed to the manuscript.

http://dx.doi.org/10.1016/j.bbacli.2016.11.004

can also occur. Cardiomyopathy is an associated symptom in 15-30%
of cases [2]. The patients may also display remarkably different clinical
manifestations and extra-muscular involvement, including autosomal
dominant congenital posterior pole cataract (CPPC) in some families
with neither cardiac nor muscular phenotype reported [3]. The age at
onset ranges from infancy to the eighth decade of life, however, the ma-
jority of MFM begins in the fourth and fifth decades [4]. Due to the asso-
ciated phenotypic features, and pathomorphological heterogeneity, the
differential diagnosis between MFM and other late-onset myopathies
with a predominantly distal distribution presents a clinical challenge.

A growing number of genes have been associated with MFM patho-
genesis, causing subtypes of the disease [1]. So far nine MFM-causing
genes encoding Z-disc associated proteins have been identified: DES,
CRYAB, MYOT, Z band alternatively spliced PDZ-containing protein
(ZASP), filamin C (FLNC), Bcl2-associated athanogene-3 (BAG3), four-
and-a-half LIM protein-1 (FHL1), titin (TTN) and sarcomeric actin
(ACTAT) ( see [5] for review). MFM is usually transmitted in an autoso-
mal dominant manner, however, autosomal recessive or X-linked MFM
forms have also been described [6]. So far thirteen different CRYAB mu-
tations were identified not only in isolated cases of MFM, but also in as-
sociation with congenital cataract, cardiomyopathy and multisystemic
phenotypes involving some or all of the above traits [7-9].
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The CRYAB gene maps to 11g23.1, comprises 3 exons spanning
3.2 kb, and encodes a 175-amino-acid protein with a molecular mass
of ~20 kD [10]. The CRYAB protein (also called HSPB5) belongs to the
ATP-independent HSPB family (small HSP), characterized by a con-
served a-crystalline domain [11]. It was initially identified as one of
the structural proteins of the eye lens, however, it is widely expressed
in many tissues and organs, including skeletal and cardiac muscle.
CRYAB upregulation has been linked with a variety of diseases depend-
ing on the tissue [12,13]. It is involved in many processes including pre-
vention of abnormal folding of other proteins, cytoskeletal formation,
apoptosis inhibition, and modulation of membrane fluidity [14]. In the
muscle CRYAB functions as a chaperone in cytoskeletal intermediate fil-
ament assembly and stabilization [15-17]. In addition, CRYAB plays a
role in the mammalian RNAi/microRNA pathway, modulating the
Ago2/RISC activity and as a result cellular homeostasis in the skeletal
muscle [18].

Cells expressing mutated CRYAB are characterized by protein aggre-
gates of primarily the mutant CRYAB. HSPB family members form
homo- and hetero-oligomeric complexes with other HSPBs, playing a
key role in substrate recognition and chaperoning functions, resulting
in differential clinical manifestation of various CRYAB mutations [19].
It remains unresolved whether aggregates of the CRYAB itself are asso-
ciated with a gain-of-toxic mechanisms or loss of function.

Here, we report the first Polish female patient with MFM clinical di-
agnosis and a novel dominant CRYAB mutation, and we propose a model
presenting the deleterious effect of the mutation on the protein struc-
ture and function.

2. Materials and methods
2.1. Genetic analyses

DNA was extracted from the peripheral blood of the proband using
standard methods. Whole exome sequencing (WES) was performed
commercially at the BGI Tech Solutions (Hong Kong) using SureSelect
Human All Exon v5 + UTR enrichment kit and paired-end 100 nt se-
quencing on the Illumina HiSeq2000 platform. Fastq read files were
generated from the sequencing platform via the Illumina pipeline.
Adapter sequences in the raw data were removed and low quality
reads with low base quality were discarded. In total, 240.451.900
“clean” paired-end reads were aligned to the human hg19 reference ge-
nome using Burrows-Wheeler Alignment (BWA) package [20]. Dupli-
cate reads were removed with Picard and base quality Phred scores
were recalibrated using GATK's covariance recalibration [21]. The
15 GB of aligned sequence data resulted in 99 x median coverage of
the target capture regions with 99.6% of target bases covered at least
10x. Alignments were viewed with Integrative Genomics Viewer [22].
SNP and indel variants were called using the GATK Unified Genotyper.
Annovar was used for initial variant annotation [23] with further anno-
tation, filtering and analysis performed on Galaxy platform (on PL-Grid
Infrastructure). Selected mutations were confirmed using a direct
fluorescence-based sequencing (ABI 3130 Genetic Analyzer, Applied
Biosystems, USA).

2.2. Muscle biopsy

The open muscle biopsy of the proband's biceps brachii was per-
formed, and the muscle specimen was processed for further analyses.

2.3. Light and fluorescence microscopy

Histological and histochemical evaluation was performed using a
routine battery of methods. Immunohistochemistry was performed
using rabbit polyclonal anti-CRYAB antibody (Medac GMBH, Germany)
at 1:100 dilution.

2.4. Electron microscopy analysis of the muscle biopsy

Analysis was performed using standard methods. For electron mi-
croscopy analysis, a fragment of the muscle specimen was fixed in glu-
taraldehyde, post fixed in osmium tetroxide and then embedded in
Spurr embedding medium (Electron Microscopy Sciences, USA). Ultra-
thin sections of the selected areas were stained with uranyl acetate
and counterstained with lead citrate. The samples were viewed using
a JEM 1200 EX2 electron microscope.

2.5. Molecular modeling

2.5.1. System preparation

The 24-mer oligomeric structure of human CRYAB was downloaded
from the Protein Data Bank (PDB code 2YGD) [24]. Only first six mono-
mers (chains A to F), which create the symmetrical circular structure,
were taken for the simulation. Three different CRYAB variants were in-
vestigated: the native protein, novel mutation D109A and previously
described mutation affecting the same residue: D109H. The mutated
histidine was used in neutral form as it was assumed for other histidine
residues in the oligomer. D109 residue was mutated in all six monomers
in the oligomer. All energy minimizations, equilibrations and molecular
dynamics (MD) simulations were carried out in the NAMD program
version 2.10 [25] using the CHARMM?27 for protein force field [26]. Ad-
ditionally, instead of explicit water molecules, the implicit solvent
method was applied.

2.5.2. Molecular Dynamics (MD) simulations

Each structure of oligomeric CRYAB was initially subjected to 10,000
steps of energy minimization and then 100 ns MD equilibration with in-
creasing temperature from 20 K to 298 K in the first steps of MD: 1 K per
1 step. The MD simulations were performed using Langevin (stochastic)
dynamics [27], which is a default in the NAMD program for implicit
solvent method. In Langevin dynamics the molecules interact with a
stochastic heat bath via random and dissipative forces. The friction coef-
ficient of 50 ps~! was used and temperature was set to 298 K. For the
van der Waals and electrostatic interactions a cutoff of 14 A was used
with a switching function for soft dampening the remaining interac-
tions. For each investigated system 100 ns MD simulation was per-
formed with a time step of 1 fs. All figures of molecular structures
were created using the VMD program (v.1.9.2) [28].

2.6. Ethics statement

Written consent was obtained from all patients and healthy individ-
uals according to the Declaration of Helsinki. The study was approved by
the Ethics Committee of the Warsaw Medical University and the MSW
Hospital (Warszawa, Poland) in compliance with the national legisla-
tion and the Code of Ethical Principles for Medical Research Involving
Human Subjects of the World Medical Association.

3. Results
3.1. Case description

Proband (I11.20; see Suppl. Fig. 1): a 63-year-old Caucasian fe-
male, with a positive family history of the disease. At 26 years, she
developed progressive lower limb weakness pronounced mainly dis-
tally (dropping feet), followed by difficulty in climbing stairs and fre-
quent falls. Further observation (to date) revealed a constant slow
progression. At the age of 47 the patient fell and broke her vertebral
column at the level Th12 and L1. She stopped walking unsupported at
the age of 55 years and began to be wheelchair-dependent. Her father,
two paternal brothers and two paternal sisters (Fig. 1; for details of
their medical records see supporting information) presented with sim-
ilar symptoms.
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Fig. 1. Analysis of the proband's muscle. A) Hematoxylin/eosin (HE) staining; B) Trichrome staining; C) Succinate dehydrogenase (SDH) staining; D) and E) Electron micrographs; and
F) Immunostaining with anti-CRYAB antibody. Arrows in A) and B) point at the dark material; in C) point to lobulated fibers, and in D) and E) point to electron dense material. Bars:

10 um in A-C and F, and 500 nm in D and E.

Neurological examinations of the proband revealed nasal speech,
dysphagia, high arched palate, significant weakness and wasting of the
upper limbs muscles, mostly pronounced in the proximal part of the
limbs. Deep tendon reflexes were diminished in the upper and lower
limbs. In the lower limbs patient was able to move only her feet. At
the age of 56 years. chronic respiratory failure was diagnosed and the
patient is (to date) on nocturnal noninvasive ventilation. Chronic cardi-
ac insufficiency was diagnosed at the age of 55 years. due to dilated
cardiomiopathy. The biochemical and hematological parameters of the
proband remains within normal limits except of elevation of serum
creatine-kinase (CK) activity (81.39 IU).

The electromyogram (EMG), performed when the proband was
31 years old, showed myopathic features (decreased duration and size
index of the motor unit action potentials, MUAP) were observed for
the right first interosseous muscle as well as right vastus lateralis and
tibialis anterior muscles. At the age of 52 years the results of the nerve
conduction study were no different from normal subjects except for a
decrease of M-response amplitude to right peroneal nerve stimulation
(presumably due to atrophy of the muscle). CT scans of the lower
limbs indicated complete muscle atrophy of both shins and thighs
with relatively sparing of the adductors magnus and semimembranosus
muscles.

In addition, among other symptoms the proband presented with
cataract in the right eye, which was identified and operated at the age
of 35 years. Fundus of the eye was normal. At that time, myotonic dys-
trophy was also suspected due to cataract and myopathy.

The morphological analysis of the muscle biopsy performed at
51 years showed moderate myopathic changes (see Fig. 1). The fas-
cicular architecture of the muscle revealed a marked variability in
fiber size and shape, with atrophy of some fibres, partially preserved
as “nuclear clumps” (Fig. 1A-C). The presence of dark red material in
hematoxylin/eosin (HE) staining (Fig. 1A, arrows) and dark blue ma-
terial in trichrome staining (Fig. 1B, arrows) as well as of lobulated
fibers in succinate dehydrogenase (SDH) staining (Fig. 1C, arrows)
was observed.

Electron microscopy revealed profound changes in the fiber and
sarcomer organization (Fig. 1D-E). In particular, disorganization of the
sarcomers as well as the presence of electron dense material (Fig. 1D, ar-
rows) was observed in the longitudinal sections. In addition, myelin fig-
ures and vacuolar structures were visible in the transverse sections,
along with the electron dense material (Fig. 1E, arrows).

Immunohistochemistry using an anti-CRYAB antibody showed
that unlike in normal muscle which show faint CRYAB positivity,
especially at myomuscular and myotendinous junctions [29] but
not at neuromuscular junctions CRYAB was located in aggregate-

like structures distributed not only beneath the sarcolemma but also
within the fibers, both in atrophic and normal-sized ones (Fig. 1F).

3.1.1. Proband’s relatives

Proband's father (IL.11, see Suppl. Fig. 1) developed progressive
lower limb weakness distal > proximal (dropping feet) followed by dif-
ficulty climbing stairs at the age of 48 years. Neurological examination
performed one year later revealed distal weakness and wasting of the
upper and lower limbs. Deep tendon reflexes were diminished in the
upper and lower limbs. Condition of the patient steadily deteriorated.
The patient died at the age of 69 years.

Proband's uncle (1.3, see Suppl. Fig. 1) developed slowly progressive
distal weakness followed by proximal paresis at around 50 years of age.
Cataract in both eyes was found and surgery was performed at the age
of 53.

Proband's aunt (1.8, see Suppl. Fig. 1) developed muscle weakness
from distal part of the lower limbs (dropping feet) at around 40 years
of age. She experienced cataract of both eyes and had surgery at the
age of 45. Neurological examination performed at the age of 61 years re-
vealed significant weakness and wasting of the upper as well as lower
limbs muscles.

Moreover, the second proband's uncle (I.1) and aunt (I.10) showed
similar symptoms, however, no detailed medical history is available. For
a detailed comparison of the clinical characteristic of the affected family
members of the proband see Suppl. Table 1.

3.2. Genetic analyses

Whole exome sequencing identified 126.804 SNPs and 23.284
InDels, of which 76.101 and 14.815 respectively were off target (defined
as intergenic or intronic, but not affecting splice sites) and removed
from further consideration.

Further filtering was based on allele frequency in EXAC database
(<3% for variants in genes already associated with MFM, and <1% for
variants in other genes), and predicted pathogenicity (predicted patho-
genic by at least one out of Mutation Taster, PolyPhen2, and SIFT soft-
ware). In total, 1.674 genes were further analyzed. Prioritization was
based on the predicted effect, with truncating and elongating variants
being evaluated more carefully, on predicted pathogenicity, and on
known association with myopathic phenotypes. Independent additional
analysis was performed with Exomiser2, PhenIX and Exome walker,
prioritising variants based on their potential association with the
Human Phenotype Ontology term “myopathy” and based on random-
walk analysis of protein interaction networks [30]. As a result of each
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Putative causative or phenotype-modifying genetic variants identified in the proband. SNVs and indels that passed initial filtering (Phred quality score of at least 30, missense/nonsense/
indel mutations for coding sequences = MODERATE or HIGH impact) and filtering for “muscle weakness” in HPO terms related to the gene. cDNA and protein alterations are reported in
the following transcripts: ENST00000460472 (TTN), ENST00000533475 (CRYAB), ENST00000337435 (NIPA1), ENST00000261866 (SPG11).

Chr  Position dbSNP REF ALT Type Impact Gene HGVS.c HGVS.p Genotype EXAC Inlab Mutation
MAF MAF  count

2 179597600 r1s72648937 C T Missense MODERATE  TTN c15352G>A  p.Val5118Met het 0.00564 0.021 4/188

2 179599667 r1s72648927 G C Missense MODERATE TTIN c.14033C > G p.Pro4678Arg het 0.01062 0.021 4/188

4 184596309 rs140871779 CT C Intronic/splice LOW TRAPPC11 het 0.1467 0.064 12/188

11 111779690 . T G Missense/splice  MODERATE CRYAB c.326A > C p.Asp109Ala het - 0.005 1/188

14 68194090 rs58392863 AG A Downstream LOW ZFYVE26 het - 0.016 3/188

14 68233171 . G A Intronic/splice LOW ZFYVE26 het - 0.005 1/188

15 23086364 rs531550505 GGCC G Inframe deletion MODERATE NIPA1 c.45_47delGGC  p.Alal6del het 0.01442 0.149 28/188

15 44907562 rs111347025 T C Missense/splice ~ MODERATE  SPG11 c.3037A > G p.Lys1013Glu  het 0.00993 0.011 2/188

Chr: chromosome; Position: genomic position within a chromosome; dbSNP: record in Database of Single Nucleotide Polymorphism; REF: reference base; ALT: alternative base (base
change); Type: mutation type; Impact: simple estimation of putative impact by snpeff; Gene: gene symbol; HGVS.c: coding RNA sequence variant; HGVS.p: protein sequence variant; ge-
notype: zygosity; EXAC MAF: minor allele frequency in EXAC database; in-house MAF: minor allele frequency within 94 samples in our in-house database; mutation count: number of

alleles with a mutation in our in house database.

of the above-described approaches, the identified CRYAB D109A muta-
tion ranked in top places (Table 1).

CRYAB D109A mutation is a novel mutation, not registered in
the EXAC database, despite over 120.000 sequenced CRYAB alleles.
D109A mutation is predicted to be causative by the MutationTaster2,
Polyphen2 and SIFT algorithms. According to the SIFT effect protein
function score for D109A is 0.00, where <0.05 means deleterious. Like-
wise, Polyphen2 suggested that D109A substitution is damaging to the
protein structure with a score of 1.00. D109A mutation is located within
the fourth B strand of the conserved Alpha-Crystallin Domain (ACD)
that consists of seven 3 strands and is involved in the protein dimeriza-
tion. The other domains flanking ACD, i.e. hydrophobic and flexible N-
terminal (NTR) and hydrophilic C-terminal (CTR) contribute to regula-
tion of the protein activity and the solubility of the oligomers, respec-
tively [31] (see Fig. 2). As shown in Table 2, aspartic acid residue at
position 109 is present not only in the mammalian but also in the inver-
tebrate CRYAB homologues.

The D109A mutation was confirmed using a direct fluorescence-
based sequencing in the proband. Every affected family members that
was tested (II1:20, 1I:3, 11:8) harbored the mutation, and it was not
present in the healthy family member (IV:7). The mutation was also ab-
sent in 86 ethnically matched exomes from our in-lab database.

3.3. Molecular modelling

CRYAB is composed mostly of B-sheets and forms a large oligomeric
structure. For the purpose of this research a hexamer (1050 residues)
taken from 24-mer structure was used (Fig. 2A). This approach was
used to increase statistical probability of finding an influence of a single
mutation on the whole oligomeric structure of CRYAB, since there are
six mutations in the structure and additionally the 3-barrel-like struc-
ture of hexamer can be more sensitive to the possible changes intro-
duced by the mutation. Each monomer is composed of a double p-
sheet (larger and smaller with three 3-threads in each) in form of a

Fig. 2. Circular hexamer of CRYAB. A) WT crystal structure. The particular monomers are colored yellow and green, alternatively. D109 residue is colored in purple and shown as balls. B),
C) and D) CRYAB oligomeric structure after 600 ns of MD simulation. D109 residue is labeled in purple. Prim marked positions in adjacent monomer (in yellow). The structures: WT,
D109H, and D109A, respectively. Mutations rearrange the network of local interactions (D109A to the largest extent) which leads to destabilization (partial unfolding) of monomer-

monomer interfaces and in consequence to decreased stability of the whole oligomer.
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Table 2

Alignment of CRYAB amino acid sequence (H. sapiens positions: 98-120) with homologs'
sequences. Aspertic acid residue affected in the proband and its evolutionary conserved
homologs marked in red.

Species Gene aa Alignment

position
H. sapiens ENST00000533475 109 IEVHGKHEERQDEHGFISREFHR
P. troglodytes ENSPTRG00000004274 109 IEVHGKHEERQDEHGFISREFHR
M. mulatta ENSMMUG00000022133| 109 IEVHGKHEERQDEHGFISREFHR
F. catus ENSFCAG00000015671 109 IEVHGKHEERQDEHGFISREFHR
M. musculus ENSMUSG00000032060 109 IEVHGKHEERQDEHGFISREFHR
G. gallus ENSGALG00000007945 108 IEIHGKHEERQDEHGFIAREFSR
D. rerio ENSDARG00000052447 98 | IEIHAKHEDRQDGHGFVSREFLR
D. melanogaster | FBgn0001229 115 IVVEGKHEEREDDHGHVSRHFVR
C. elegans F52E1.7 91 LIEGKHNEKTDKYGQVERHFVR
X. tropicalis ENSXETG00000010174 108 IEITHGTHEERQDEHGYVSRDFQR

sandwich and a larger [3-sheet of all monomers contributes to a central
ring of oligomer. The primary, longer interface between monomers
(residues 112-122) forms very strong intermolecular 3-sheet, while
the secondary interface in the 3-barrel (residues 91-94) contains a
large gap between p-threads so the intermolecular 3-sheet is weak.
This contact is mostly maintained by extended coiled-coil interactions
by the rest of CRYAB structure.

In a wild type (WT) protein, the aspartic acid residue 109 (D109)
forms hydrogen bonds and ionic interactions with adjacent residues,
namely arginine 107 (R107) from the same monomer as well as with ar-
ginine 120 (R120") and tyrosine 122 (Y122’) on the adjacent monomer.
The interaction of R107 and R120 is stabilized by D80’ from adjacent
monomer, which closely interacts with both arginine residues
(Fig. 2B). The other causative mutation, D109H, is predicted to maintain
a hydrogen bond to Y122 but not ionic interactions with arginine resi-
dues R107 and R120. Instead, it frequently forms a hydrogen bond
with adjacent residue E110 from the same monomer (Fig. 2C). The
ionic interactions between residues R107-D80’-R120’ are preserved
however lack the stabilizing negative charge from D109. The whole
structure of the oligomer is less stable than WT since some of the -
sheets are unfolded. The identified mutation, D109A, is predicted to
lead to additional unfolding of 3-sheets. Number of residues participat-
ing in b-sheets, which form the core of CRYAB, diminished by >10%
compared to reduction by 4% for D109H. In consequence, the contact
between monomers decreases, making the oligomer less stable. Since
a side chain of A109 cannot participate in the hydrogen bonds as well
as in ionic interactions with any adjacent residues, the triple interaction
R107-D80’-R120’ is less stable. Hence, in some interfaces between
monomers a disintegration of the triple interaction into two pair inter-
actions (E106-R107 and D80’-R120’) was observed. As a result, CRYAB
monomers lose the contact with each other (Fig. 2D). Not all interfaces
change to the same extent in the same time as this is a statistical pro-
cess, so it seems that changes start in one particular interface and
then, possibly due to a resonance effect in the 3-barrel, they are distrib-
uted to other interfaces via weakening them.

4. Discussion

We have presented a case of the first Polish patient with a clinical
and morphological diagnosis of MFM, carrying a novel dominant muta-
tion in the CRYAB gene. Using bioinformatic tools, we propose a putative
model presenting effects of the D109A mutation on the protein struc-
ture and function.

First, using WES approach we have identified in the proband eight
putative causative or phenotype-modifying genetic variants. SNVs and
indels that passed initial filtering are listed in Table 1. Out of these

variants only D109A mutation matches the clinical and morphological
phenotype of the proband characteristic for crystallinopathies described
so far [32]. Variants identified within TTN (affecting Ig-like domains 28
and 31) though predicted to have a moderate impact do not match
the symptoms, as TTN-causative myopathy are known to have early-
late adulthood onset and early respiratory insufficiency associated
with the titin-associated subtype of MFM [32]. Also, the TRAPPC11 vari-
ant does not seem to be pathogenic as mutations within this gene cause
a myopathy with intellectual disability as well as with fatty liver and in-
fantile cataract which are not the case here [33,34]. Variants identified
in ZFYVE26 also seem not to be pathogenic as known ZFYVE26 muta-
tions are associated with complicated hereditary spastic paraparesis
and autophagy [35]. The same is the case of NIPA1 and SPG11 variants,
as abnormalities within both proteins are known to be associated with
hereditary spastic paraplegia [36]. However, it is possible that afore-
mentioned variants could affect the course of the disease, worsening
the proband condition.

Most of the myopathy-associated mutations described so far (D109H,
R120G, Q151X, G154S, P155Rfs9X, R157H) were found in the ACD [8]. Be-
sides myopathy, mutations D109H, R120G and X176Wfs19X are so far the
only ones associated with signs of cardiomyopathy and cataract or dis-
crete lens opacities [7]. Other recessive (e.g. R11C, R12C, R56W), and
dominant (R11H, P20R, P20S, R69C, D140N, K150Nfs34X, A171T) CRYAB
mutations associated with congenital cataract were also described, uni-
formly scattered all over the coding sequence [37].

D109 residue is located in the core domain between 33 (75-83) and
FISREFHR motif (113-120, see Table 2). D109 residue is adjacent to 113-
120 sequence important for microtubule assembly and aggregation pre-
vention [38].

The first identified mutation in this residue (D109H) is responsible
for autosomal dominant multisystemic phenotype, not only with myo-
pathic features, but also with cardiomyopathy and lens cataract [39].
Previously, it was shown that D109H mutant protein can enhance pro-
tein aggregation and cell apoptosis in the HelLa cells [40]. This explains
well the mechanism of CRYAB mutations associated with myopathy
and decreased lens transparency, and also the involvement of CRYAB
expression in tauopathies [41]. In muscle, mutated CRYAB binds stron-
ger to desmin and instead of facilitating formation of intermediate
filament network, it promotes aggregation of both proteins [42]. In
our study, such CRYAB stained large aggregates as well as desmin-
derived electron dense material were found in the proband's muscle
(see Fig. 1D-F).

Involvement of CRYAB in the regulation of intracellular apoptotic
signals and inhibition of apoptosis through activation of Akt pathway
and enhancing PI3K activity [43,44]; could also easily explain not only
CRYAB mutations in myopathy [45], but also CRYAB overexpression in
some types of cancer [46].

Previous reports on D109H and R120G mutations, both associated
with a multisystemic phenotype, suggested that residues D109 and
R120 interact with each other during dimerization of CRYAB [39]. For
a better delineation of molecular interactions between the mutated res-
idues and their immediate surrounding we performed molecular dy-
namics simulations.

We have shown in more detail that D109 is a part of a network of in-
tramolecular interactions with residues within same monomer and ad-
jacent monomers, strengthening the hexamer structure. The D109H
mutation decreases the stability of oligomer since H109 interacts with
less residues. Some of the 3-sheets, which form the core of CRYAB, are
unfolded. Likewise the D109A mutation cannot stabilize interaction
with adjacent monomer of CRYAB and the 3-sheets of this protein are
even additionally unfolded, as compared to D109H. In consequence
CRYAB monomers lose the contact with each other.

Our results are consistent with and strengthen the previously pub-
lished results, showing that CRYAB interactions, also with a variety of
target proteins, depend on weak non-covalent interplay between a
number of bioactive sequences scattered all over the CRYAB sequence
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and forming a network of highly sensitive areas for protein-protein
interactions [47]. Interestingly, the mutated residue studied herein
(D109) is located in the HGKHEERQDE sequence, which is one of
the most effective inhibitors of amyloid-beta (AP) fibril formation
[47-49]. This motif is located not in the monomer-monomer interface
but in the second row (2nd -thread in B-sheet). Since 3rd 3-thread is
about a half-length of previous ones, the whole motif is open to water
solution and hence exposed to additional oligomerization. D109 is locat-
ed at the end of 2nd B-thread close to 3-turn linking to 1st B-thread.
Therefore, the identified mutation D109A destabilizes not only the in-
terface between monomers so the whole oligomer loses its stability,
but also, due to the modified sequence motif, makes it more prone to fi-
bril formation. This is particularly important, as the distal parts of this
sequence (i.e.: HEER and RQDE) were shown to enhance fibril formation
of AP [47-49]. As native CRYAB is protective against aggregation of lens
crystallins in aging cataract, it could be speculated that D/A and D/H
substitutions in position 109 diminish the native functional role of the
whole HGKHEERQDE sequence [50]. These predictions were confirmed
by immunostaining for CRYAB of the proband's biopsied muscle that
showed the presence of large aggregate-like structures distributed not
only at the fiber periphery but also within the fiber.

Therefore, we suggest two ways of explaining the pathogenic mech-
anism of the D109A mutation. First, the mutation may cause aggrega-
tion of other proteins including lens crystallins and muscular desmin
via dominant negative effect on the chaperone function of oligomeric
CRYAB complexes with other partners (including other HSPB family
members), leading to insufficient prevention of aggregation of other
proteins. Alternatively, the structural instability and propensity to ag-
gregate of the mutated CRYARB itself results in gain-of-function i.e. for-
mation of the visible CRYAB aggregates.

The molecular differences between both mutations (D109A and
D109H) cannot be directly translated into differences in clinical pheno-
types of affected individuals. It could be speculated that CRYAB oligo-
meric structures of diverged stability display disturbed interaction
with the same protein partners, resulting in common clinical symptoms.
The phenotypic diversity has been related to the different interactions
between target proteins, including members of the HSPB family with in-
dividual CRYAB mutated residues impairing hetero-oligomeric com-
plexes resulting in differently impaired chaperoning functions towards
different substrates [51]. However, in the case of D109A mutation we
observed a minor intrafamiliar variability in the clinical phenotype
and the age of onset (30-50 years), however with homogenous domi-
nant features involving muscular, cardiac and ocular systems.

In conclusion, this is a first report of a Polish patient presenting with
crystallinopathy and multisystemic involvement. According to the co-
segregation within a family and in silico analyses, the CRYAB D109A mu-
tation may be assumed pathogenic [52]. Molecular modeling in accor-
dance with muscle biopsy microscopic analyses and the clinical data
predicted that D109A influence both structure and function of CRYAB
due to decreased stability of oligomers leading to aggregate formation.
In consequence disrupted sarcomere cytoskeleton organization might
lead to muscle pathology. Additionally, impaired CRYAB chaperone-
like activity due to mutated RQDE sequence, could promote aggregation
of lens crystallins [50].

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbacli.2016.11.004.
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