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Nowadays, in most radiotherapy departments, the commercial treatment planning 
systems (TPS) used to calculate dose distributions needs to be verified; therefore, 
quick, easy-to-use, and low-cost dose distribution algorithms are desirable to test 
and verify the performance of the TPS. In this paper, we put forth an analytical 
method to calculate the phantom scatter contribution and depth dose on the central 
axis based on the equivalent square concept. Then, this method was generalized to 
calculate the profiles at any depth and for several field shapes — regular or irregular 
fields — under symmetry and asymmetry photon beam conditions. Varian 2100 C/D 
and Siemens Primus Plus linacs with 6 and 18 MV photon beam were used for 
irradiations. Percentage depth doses (PDDs) were measured for a large number of 
square fields for both energies and for 45° wedge, which were employed to obtain 
the profiles in any depth. To assess the accuracy of the calculated profiles, several 
profile measurements were carried out for some treatment fields. The calculated 
and measured profiles were compared by gamma-index calculation. All γ–index 
calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement 
(DTA) acceptance criterion. The γ values were less than 1 at most points. However, 
the maximum γ observed was about 1.10 in the penumbra region in most fields 
and in the central area for the asymmetric fields. This analytical approach provides 
a generally quick and fairly accurate algorithm to calculate dose distribution for 
some treatment fields in conventional radiotherapy.

PACS number: 87.10.Ca   

Key words: dose distribution, equivalent field, asymmetric field, irregular field, 
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I. IntroductIon

The fundamental physical quantity of interest for relating radiation treatment to its outcome is 
the absorbed dose. Furthermore, a significant component of the absorbed dose at a point is due 
to the scattering of the primary beam; therefore, it is essential to include the correct amount of 
scattering in any dose calculation algorithm used in treatment planning system (TPS). These 
algorithms are correction-based or model- (or convolution–superposition-) based. Correction-
based algorithms use parameters of dose measured in water phantom and correct the data to 
apply to the patient’s specific situation. This requires the percentage depth dose (PDD) for 
a number of square fields, a set of profiles for a number of square fields measured at some 
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standard depths, and phantom scatter factor curve at reference depth as a function of the field 
size of the square fields.(1,2) Model-based algorithms directly compute the dose to the patient 
by modeling the beam and interactions in the patient, which require some measurements to 
set parameters and verify the model. Monte Carlo methods, implemented to mimic the basic 
processes in a straightforward way, have served many purposes in medical physics. However, 
they have not yet become suitable for routine treatment planning of photon beams due to their 
huge requirement for CPU time.(3) Consequently, analytical methods which would be reliable 
within an acceptable limit of error and for reasonable range of parameters to calculate PDD and 
profile at any depth are increasingly desirable. Increased requirements on standards for safety 
and quality assurance during treatment have also emphasized the important role of simple dose 
calculation methods for independent checks of the output from treatment planning systems.

For a given energy spectrum incident on a homogeneous medium and assuming lateral 
electronic equilibrium, the primary component of central axis depth dose for any field shape 
will be the same, and only differences in the scatter component will affect the final shape of the 
central axis depth dose; therefore, the concept of equivalent field size based on the separation of 
the primary and scatter radiation was proposed by Day and Aird.(4) For regular fields, tabulated 
data was presented by Day and Aird, or some empirical formulas by fitting were carried out, 
such as the equal area-to-perimeter ratio (A/P).(5)      

Various methods have been used for the prediction of off-axis ratio for a symmetric open 
field. Fermi-Dirac distribution function suggested by Kornelson and Young(6) and Wood-Saxon 
term applied by Pal et al.(7) represent the off-axis ratio (OAR) in the SAD and SSD techniques, 
respectively. Usually these methods need data fitting at several depths. 

In the 1990s, some studies have addressed asymmetric and wedged asymmetric fields using 
symmetric field data.(8-11) The method based on work by Thomas and Thomas(10) generates asym-
metric field profiles by computing the off-center ratio (OCR) of the asymmetric field while using 
output factors and PDDs of the equivalent symmetric field. A second method, proposed by Kwa 
et al.,(12) applies to the situation where only one of the independent jaws is closed down to form 
an asymmetric field of smaller width or length than the original symmetric field. This method 
uses the original symmetric field profile corrected point-by-point by a correction factor. 

Accordingly, we put forward a correction-based dose calculation algorithm based on equiva-
lent field concept for the fixed source-to-surface distance (SSD) formalism and develop proper 
analytical expression which could equip the computer with this formula for direct calculation 
of the profiles at any depth for some fields (e.g., symmetric or asymmetric field with or without 
wedge and blocks).                                      

This paper introduces an analytical method to calculate the equivalent field in regard to the 
central axis, first. It will then follow by generalizing this method to a more general case in 
which the equivalent field is calculated concerning off-axis points. Then, some profiles will be 
measured to set the imperial correction factors required to the calculations. Finally, the calcu-
lated and measured profiles will be compared for some practical fields.

A.  theoretical background

A.1 Central axis percentage depth dose (PDD)
In this study, to calculate PDD for a custom field, the equivalent field method is used. A set of 
PDD is tabulated for a number of square fields measured along the central beam axis for both 
energies 6 and 18 MV and for open fields and every wedge angle separately. For any other 
square field size calculated, one can interpolate from the table of PDDs or utilize semiempirical 
equations for PDD depending on field size and depth.(13,14)

For any fixed point at fixed depth on the central axis in the medium, the primary component 
of the dose will be the same for all fields. It therefore follows that equivalency between standard 
and nonstandard fields is determined by the equal dose contribution along the central axis from 
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scattered photons for the two fields.(4) The method used to determine the scatter contribution 
the equivalent field in this study is further explained.

Consider a reference plane normal to the central axis, placed at the fixed source-to-surface 
distance (e.g., SSD = 100 cm). The field bound generated by the collimators can be projected 
over this plane as X1, X2, Y1, and Y2. The origin (e.g., x = 0, y = 0) is on the central axis. 
Suppose that there is a parallel beam striking the surface of the reference plane. Hence, each 
surface element (ds = dx.dy) on that plane acts as a source of scattered radiation. The amount of 
scatter radiation reaching the central axis is inversely proportional to the square of the distance 
between surface elements and the origin; therefore, an asymmetric irregular field (e.g., an asym-
metric field with some shielded parts by cerrobend blocks or multileaf collimators (MLC)) to 
circular field equivalence at the central axis is calculated using the following equation:

 ,  (1)

where , which shows the transmission of the blocks or the leaves of MLC in which  
is the block attenuation coefficient and  is its thickness. (1-Tb) shows the fraction of primary 
photons absorbed by the block when they are passing through it. Therefore, in the absence of 
the block, Tb will be 1 and the second term on the left side will be removed. It should be noted 
the attenuation of the water phantom using the factor of  was considered 
on both sides of Eq. (1), where  was the water phantom attenuation coefficient for scat-
tered photons.(15) However, because of its negligible effect, the attenuation of the water has 
been eliminated. 

Let us use a polar system and eliminate the small area at the origin of coordinate with radius 
ε (refers to the ion chamber radius) to overcome singularity; therefore, by dividing the field 
into four parts regarding the origin and integrating both sides of Eq. (1) with some mathematic 
operations, it can be rewritten as:

  (2)

 

where the exponential parts are computable by numerical calculation using MATLAB software 
(The MathWorks, Natick, MA). As expected, ε will be eliminated because it is present on both 
sides of Eq. (2). As a special case, the circular field equivalent to a square field is obtained by 
substituting S (side of square) in Eq. (2): 

  
(3)

 

where the integral is equal to -0.1728 using numerical integration. After calculating the size of 
the field side, the percentage depth dose at any depth can be interpolated from data tabulated 
for the square fields.

A.2  Computation of profile 
Dose distributions along the beam central axis give only part of the information required for an 
accurate dose description inside the patient. Dose distributions in 2D and 3D are determined by 
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central axis data in conjunction with off-axis dose profiles. Megavoltage X-ray beam profiles 
consist of three distinct regions: central, penumbra, and umbra. The central area represents the 
central portion of the profile extending from the beam’s central axis to within 1–1.5 cm from 
the geometric field edges of the beam (e g., the 50% dose level points on the beam profile). 
In the penumbral region of the dose profile, the dose changes rapidly and depends also on the 
field defining collimators, the finite size of the focal spot (source size), and the lateral electronic 
disequilibrium. Umbra is the area outside the radiation field, far removed from the field edges. 
The dose in this district is generally low and results from radiation transmitted through the 
collimator and head shielding.(16) The flattening filter also produces a differential hardening 
across the transverse direction of the beam which results in off-axis peaking at a depth shal-
lower than 10 cm. However, this model does not include the variations in off-axis beam quality 
affected by a flattening filter.

Consider a symmetric open field, regardless of the differential hardening effect of the flat-
tening filter in the central region, the farther from the central axis of the radiation field, the less 
amount of phantom scatter; therefore, to calculate the amount of the phantom scatter reaching 
the point (x0,y0), the equivalent square regarding (x0,y0) is used (Fig. 1). Thus the total amount 
of the scattered radiation from the irradiated field reached to (x0,y0) is considered to be equal 
to the scattered radiation from an equivalent square field to the central axis and the side of this 
square is calculated. In this way, by dividing the field to four parts as regards the point (x0,y0), 
Eq. (2) can be modified as follows:

   (4)

 

 

where  illustrates the calculated equivalent field regarding the point (x0,y0). It can also 
be shown that by substituting x0 = 0, y0 = 0 in Eq. (4), it will be transformed to Eq. (2). Now, 
this method is evaluated for the crossline profile (x0,0) at depth 10 cm for 6 MV energy (Fig. 2). 
At first,  is calculated for some points on the crossline using Eq. (4). Subsequently, the 
percentage depth dose at depth 10 cm for 6 MV energy on the central axis can be interpolated for 

 from data tabulated for the square fields (see Fig. 2, PDD(Seq, x0, 0), dash line). As can 
be seen, it is in good agreement with the results of measurements up to 1.5 cm from the beam 
edge; therefore, for points near the edge of the beam, PDD(Seq,x0,0) should be corrected.

Fig. 1. An asymmetric field with shielded parts by cerrobend blocks or MLC is equivalent to the circular field with radius 
Req , both projected on the phantom surface. ε is the ion chamber radius at SSD = 100 cm. The points (0, 0) or (x0, y0) 
illustrate the central axis of the beam and any point in the irradiated field, respectively. 
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As previously mentioned, in the penumbra region, the dose changes rapidly around the geo-
metric beam edge and creates a sigmoidal shape. Furthermore, the photon source has a Gaussian 
distribution (normal distribution). Accordingly, the 3D photon influences the distribution of the 
primary source in air, which can be calculated by analytical integration of the Gaussian func-
tions leading to an error function.(17) Therefore, to calculate the profile (Fig. 2 circle) at depth, 
d, PDD(Seq, x0, 0) should be multiplied by the correction factor of jaws as follows:

  (5)

where CFJ,X1(x0) is the correction factor of the X1 jaw at x0 which consists of three regions: 
infield, near outfield (penumbra), and far outfield (umbra). In the near outfield, both the trans-
mission of the jaw and the correction of the electronic disequilibrium play a role. However, in 
the far outfield, the transmission of the jaw just presents (see Eq. (6)).

    

   
  (6)

 
 

where TJ is the transmission through the collimator jaws,  is an empirical correction factor 
for electronic disequilibrium, σ2

in and σ2
out are the variance of inside and outside of the field, 

respectively, which are determined empirically for any energy. Due to beam divergence, in 
order to draw in-depth (d) profile, magnification ( ) should be considered. 
The CFJ for X2, Y1, and Y2 are defined as Eq. (6) similarly. Obviously, the empirical constant 
mentioned above is independent from the depth, and field size due to PDD(Seq, x0, 0, d) includes 
the effects of both of them.

In the wedged field case, due to beam hardening, PDD(Seq, x0, 0) should be extracted from 
the table of measured PDD for several wedged square fields. Also, the primary beam is attenu-
ated due to the wedge thickness variation. Hence, the wedge correction factor for any point 

Fig. 2. Profiles measured (solid) and calculated (circle) at depth 10 cm and 6 MV energy. PDD(Seq,x0,0) (dash) shows 
PDDs on the central axis extracted from the data stored in the PDD table with regard to the equivalent square calculated 
from Eq. (5) for the point (x0, 0).
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off-axis is described as the ratio of primary beam attenuation at that point to the central axis, 
as follows:

  (7)

where  is the wedge attenuation coefficient, tw and t0,w are the wedge thickness correspond-
ing to the points (x0,y0) and (0,0), respectively. Finally, by multiplying Eq. (5) in Eq. (7), the 
calculated wedge profile is obtained.

 
  (8)

It should be noted that CFw equals to one for the open field.
For irregular fields, the blocks act like the collimators with variable thickness. So Eq. (6) 

can be rewritten for the block correction factor: 

 

    
  (9)

 

where xi represents the coordinate of the point on the edge of block projected on the phantom 
surface and the crossline profile passes through it.  shows the block transmission 
where  is the block attenuation coefficient and  is its thickness. Eq. (9) can be used for MLC, 
where xi represents the coordinate of the leaves edge of MLC projected on the phantom surface 
and Tb shows the leaves transmission. 

 
II. MAterIAls And Methods

Varian 2100 C/D and Siemens Primus Plus with 6 and 18 MV photon beam were used for 
measurements. The treatment units were equipped with independent jaws assigned to as Y1 and 
Y2 for the upper and X1 and X2 for the lower jaws. A Scanditronix blue phantom (Wellhofer, 
Germany) (50 cm × 50 cm × 50 cm) with two 0.13 CC ionization chambers (IBA, Germany) 
were employed for the measurement. Omni-AcceptPro 6.5 software (Wellhofer, Germany) was 
connected to the interface and utilized for collecting and recording data from two chambers.

At first, PDDs were measured for a large number of square fields for both energies and for 
45º wedge which were employed for profiles in any depth in this model. Then, to access the 
accuracy of the model for profile prediction, several profiles were measured for some special 
treatment fields such as symmetric, asymmetric, wedged asymmetric, and irregular fields 
(shown in Figs. 3-7).

Several dose distribution comparison methods have been developed based on various 
combinations of doses and spatial acceptance tolerances, including the simple dose difference 
(DD) test and the distance-to-agreement (DTA) test.(18,19) The gamma index calculation and 
modified dose difference (MDdiff) evaluation are dose comparison methods which produce 
a quantitative measure based on both dose and spatial criteria.(20-22) In this paper, the γ–index 
evaluation was utilized which was accorded a 3% dose criterion and a 3 mm dose-to-agreement 
(DTA) acceptance criterion. 
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Finally, a homemade computer program was developed in MATLAB 7.14 on Windows 
platform to process the data quickly, to plot the profiles, and to compare the calculations with 
measurements (see Appendix). 

 
III. results 

At first, to set the empirical correction factors, profiles were calculated for a series of estimated 
correction factors for a standard field 10 cm by 10 cm in depth 10 cm and both energies 6 and 
18 MV. Then, the calculated profiles were compared with the measured profiles using γ-index 
evaluation. This procedure was repeated for different correction factors until the best ones were 
selected (e.g., γ ≤ 1). The final correction factors were obtained as follows:

  (10)
 

As shown in Figs. 3(a) and (b), these correction factors could be applied for depths 5 and 
15 cm with acceptable γ-index due to interpolating PDDs at 5 and 15 cm. In other words, the 
calculated correction factors for a given depth can be generalized to other depths. As can be 
seen in Figs. 3(a) and (b), the γ is less than 1 for most points. However, in the penumbra, γ-index 
values represent larger numbers. The maximum γ values were 1.00, 0.93, and 1.00 for 6 MV, 
and 1.10, 0.75, and 0.73 for 18 MV at depth 5, 10, and 15 cm, respectively. It seems that the 
misalignment of the chamber axis plays role in the relatively high gamma values visible in the 
penumbral region. To clarify this, one can slightly shift the measured profile. Consequently, 
the γ values will be reduced in the penumbral region.    

In the second place, the calculated correction factors were used to the wedged field. Figure 4 
shows the measured and calculated profiles in depth 10 cm for a symmetric wedged field 10 
by 10 cm, wedge angle of 45°, Varian linac, and two energies 6 and 18 MV. As expected, the 
calculated profiles show good agreement with measurements by the γ less than 1 for most 
points, like the symmetric open field. Using the PDDs table regarding the wedged square fields 
will obviate the beam hardening which can affect the shape of profile at different depths. The 
maximum γ value was 0.96 and 1.05 for 6 MV and 18 MV, respectively.   

For asymmetric fields, Fig. 5 represents the profiles measurement and calculation in depth 
10 cm for an asymmetric open field 10 by 10 cm, with 3 cm offset at 100 cm SSD, Siemens 
linac, and 18 MV energy. As can be seen in Fig. 5, the asymmetric field has larger γ values in 
the central region, unlike the symmetric field. The maximum γ value was 1.09 in the central 
area. As shown in Fig. 6, the measured and calculated profiles were plotted in depth 10 cm for 
an asymmetric wedged field 10 by 10 cm with 3 cm offset, wedge angle of 45°, Siemens linac, 
and two energies 6 and 18 MV. As was mentioned for asymmetric field, here there are some 
points at which γ-indexes are greater than 1 in the center district. This issue seems to be due 
to the lack of the flattening filter effect on the primary beam in this model, and this effect was 
larger in the profiles of Siemens linac.

The profiles for a rectangular field (10 × 20 cm) with three blocks (7 × 7 cm ) with 2.5, 
4, and 7.9 cm thickness in the right corner were evaluated in depth 10 cm for two energies 6 
and 18 MV (Figs. 7(a) and 7(b)). Note that, to avoid clutter, these figures do not show the γ 
calculations. For more details, the mean γ-index values and 1 standard deviation are given in 
Table 1 for all fields.
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Fig. 3. Measured and calculated crossline profiles and γ-index (a) in depths 5, 10, and 15 cm for a symmetric open field 
10 by 10 cm, Varian linac, and 6 MV energy; (b) measured and calculated crossline profiles and γ-index in depths 5, 10, 
and 15 cm for a symmetric open field 10 by 10 cm, Varian linac, and 18 MV energy. 

(a)

(b)

Fig. 4. Measured and calculated crossline profiles and γ-index in depth 10 cm for a symmetric wedged field 10 by 10 cm, 
wedge angle of 45°, Varian linac, and two energies 6 and 18 MV. The wedge attenuation coefficient μW was 0.5 and  
0.45 1/cm for energy of 6 and 18 MV, respectively.
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Fig. 5. Measured and calculated the asymmetric profiles and γ-index in depth 10 cm for asymmetric open field 10 by  
10 cm with 3 cm offset at 100 cm SSD, Siemens linac, and 18 MV energy.

Fig. 6. Measured and calculated asymmetric wedged profiles and γ-index in depth 10 cm for field 10 by 10 cm with 3 cm 
offset at 100 cm SSD, wedge angle of 45°, Siemens linac, and two energies 6 and 18 MV. The wedge attenuation coef-
ficient μW was 0.3 and 0.24 1/cm for energy of 6 and 18 MV, respectively.
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Fig. 7. Measured and calculated symmetric shielded profiles and γ-index (a) for three blocks dimensions of 7 by 7cm with 
2.5, 4, and 7.9 cm thickness in the right corner of 10 by 20 cm field in depth 10 cm, Varian linac, and 6 MV energy, with 
the attenuation coefficient of block μblock as 0.44 (1/cm); (b) measured and calculated symmetric shielded profiles and 
γ-index for three blocks dimensions of 7 by 7 cm with 2.5, 4, and 7.9 cm thickness in the right corner of 10 by 20 cm field 
in depth 10 cm, Varian linac, and 18 MV energy, with the attenuation coefficient of block μblock as 0.42 (1/cm).

(a)

(b)

Table 1. Mean γ-index and standard deviations of calculated and measured dose profiles for the fields used in this study.

(Fig. 3(a), 3(b))      10 × 10 – open
	 γ-index – 6 MV γ-index – 18 MV
 Depth	 Infield	 Outfield	 Infield	 Outfield
 (cm) AVR STD AVR STD AVR STD AVR STD

 5 0.20 0.2 0.30 0.29 0.21 0.21 0.32 0.23
 10 0.16 0.17 0.56 0.25 0.20 0.19 0.32 0.19
 15 0.08 0.09 0.61 0.33 0.17 0.16 0.45 0.18

(Fig. 4)      10 × 10 – wedge 45°
 10 0.36 0.23 0.51 0.26 0.25 0.20 0.38 0.22

(Fig. 5)      10 × 10 – open (offset 3 cm)
 10     0.25 0.22 0.47 0.31

(Fig. 6)      10 × 10 – wedge 45°  (offset 3 cm)
 10 0.51 0.24 0.44 0.27 0.45 0.27 0.37 0.22

(Fig. 7(a),7(b))      10 × 20 – shielded
 10(small) 0.43 0.73 0.51 0.26 0.44 0.44 0.46 0.53
 10(med) 0.41 0.64 0.50 0.29 0.64 0.77 0.36 0.16
 10(large) 0.49 0.62 0.56 0.24 0.47 0.67 0.36 0.17
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IV. DISCUSSION & CONCLUSION

Today, the use of radiotherapy treatment planning systems (TPSs) is inevitable. Beam profile 
and PDD are the parameters used to verify the dose calculation algorithms of TPS; therefore, 
a patient-independent model calculating beam profile and PDD can be used to minimize the 
number of measurements for verification processes.(3)

The algorithm used in this study calculates the beam profile in the water phantom by sepa-
ration of the primary and the scatter beams, for irregularly blocked fields of open or wedged 
photon beam. The requirements are only the PDDs for several squares for each energy and 
wedge angle and some profiles to set the empirical correction factors. As can be seen in Table 1 
and Figs. 3-7, the comparison with measurements using γ-index shows that the accuracy of 
the calculated dose distributions fits well in a 3% error in low-dose gradient region, except 
for asymmetric fields. In general, the primary dose rate at shallow depths in the phantom may 
actually increase at distances away from the central axis (called horns) as a result of flattening 
filter effect on the radiation beam.(10-12) A flattening filter correction that depends on depth in 
a phantom and radial distance from the central axis is required to model the increase in dose 
rate away from the central beam axis that is not included in this paper. The comparison also 
shows an approximate agreement in a 3 mm isodose shift in the penumbra region. The dose near 
the edge of the beam changes rapidly and depends also on the field defining collimators, the 
source size, and the lateral electronic disequilibrium. Since the photon source has a Gaussian 
distribution (normal distribution), the dose falloff around the geometric beam edge is sigmoid 
in shape, for which an error function has been employed. However, considering the fact that 
the Gaussian distribution alone, like the models proposed by Pal et al.(7)  The Kornelsen and 
Batho(23) model suffer from lack of electronic disequilibrium; therefore, a correction factor, 
CFe.diseq, has been considered here.

The correction-based algorithm(1,2) and the previous methods mentioned(7,23) need beam 
profile data for a large number of depths to predict the off-axis ratio. In addition, a general 
problem with empirical scatter scaling techniques is that they are developed for open, not 
modulated beams, and there is a great need to improve these models to include effects from 
modulations.(3) Nevertheless, the findings of the current study show the empirical correction 
factors are independent on depth. The depth independence is due to PDD(Seq, x0, 0, d) which 
includes the effects of the depth. In addition, the correction factor of jaw, CFJ,X1, acts similarly 
not only for symmetric fields but also for asymmetric fields. The depth dose differences between 
symmetric and asymmetric field at any point are indicated by PDD(Seq, x0, 0, d) unlike the 
previous studies.(8-12) 

This method is valuable due to the calculated profile in the presence of the blocks with 
variable thickness. The variable thickness shields can protect organ at risk inside the field. 
This means that organ at risk and normal tissue receive desirable tolerance dose, whereas the 
lethal dose is delivered to the tumor; further research should be done to investigate this in 
compensator-based IMRT.

Consequently, a general algorithm was proposed to calculate the profile at any depth for 
symmetric and asymmetric, wedged or open photon fields. The advantages of this algorithm are 
depth independence, minimum measurement data requirements, quick-run, low cost, easy-to-use, 
and fairly accurate. Moreover, this algorithm can be carried out to plot 2D or 3D isodose for 
multiple field treatment planning. A number of important caveats need to be considered about 
the calculation algorithm. First, it is limited to rectangular and triangular block shape. Second, 
it does not include the curvature of body surface and inhomogeneity. Finally, the flattening 
filter effect should be considered as another correction factor. It is recommended that further 
research be undertaken to solve these problems. 
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APPendIces 

Appendix A: The Procedure to Transition Eq. (2) from Eq. (1). 
Using a polar system and eliminate the small area at the origin of coordinate with radius ε and 
dividing the field into eight parts regarding the origin and integrating both sides of Eq. (1), it 
can be written as:

  Eq. (A1)

 

Integration with respect to r leads to natural logarithm as follows:

    
  Eq. (A2)

 
 

In the next step, integration respect to θ and by more simplification, it will be rearranged 
as Eq. (2).

The algorithm to calculate profile was as follows:

1) PDDs were measured for a number of square fields along the central beam axis, for open 
fields and 45º wedge and for both 6 and 18 MV energies separately. The PDDs were tabulated 
for desired interval (e.g., 0.5 cm) and stored in the MATLAB program.

2) A set of required parameters such as field size, wedge angle, and blocks properties (e.g., 
thickness, location and size), was fed to the calculation algorithm. 

3) For open symmetric field, the equivalent square, , was calculated for any point placed 
on crossline (x0, 0) using Eq. (4).  

4) To plot the profile at depth 10 cm, PDD( ) was interpolated from stored data for both 
energies at depth 10 cm.

5)  According Eqs. (5) and (6), profiles were calculated for a series of estimated correction fac-
tors for a standard field 10 cm by 10 cm in depth 10 cm and both energies 6 and 18 MV.

6) The γ-index was calculated for every point; σin, σout, TJ, and CFe.diseq were changed until  
γ ≤ 1.

7) Finally, CFJ, CFw and CFb were calculated to plot profiles for asymmetric, wedged, and 
irregular fields at any depth. 


