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Individuals with pre-existing diabetes seem to be vulnerable to the COVID-19 due to changes in blood sugar levels and diabetes
complications. As observed globally, around 20–50% of individuals affected by coronavirus had diabetes. However, there is no
recent finding that diabetic patients are more prone to contract COVID-19 than nondiabetic patients. However, a few recent
findings have observed that it could be at least twice as likely to die from complications of diabetes. Considering the multifold
mortality rate of COVID-19 in diabetic patients, this study proposes a COVID-19 risk predictionmodel for diabetic patients using
a fuzzy inference system and machine learning approaches. *is study aimed to estimate the risk level of COVID-19 in diabetic
patients without a medical practitioner’s advice for timely action and overcoming the multifold mortality rate of COVID-19 in
diabetic patients. *e proposed model takes eight input parameters, which were found as the most influential symptoms in
diabetic patients. With the help of the various state-of-the-art machine learning techniques, fifteen models were built over the rule
base. CatBoost classifier gives the best accuracy, recall, precision, F1 score, and kappa score. After hyper-parameter optimization,
CatBoost classifier showed 76% accuracy and improvements in the recall, precision, F1 score, and kappa score, followed by logistic
regression and XGBoost with 75.1% and 74.7% accuracy. Stratified k-fold cross-validation is used for validation purposes.

1. Introduction

HE development of a novel coronavirus, severe acute re-
spiratory syndrome-coronavirus 2 (SARS-CoV-2), has
contributed an unprecedented challenge for the healthcare
community around the world. Higher infectivity and
comparatively low virulence have caused the rapid trans-
mission of the coronavirus disease 19 (COVID-19) all
around the world. Since its earliest instance on December 8,
2019, in the Hubei province of China, COVID-19 has
spread into many countries worldwide together with
21,294,845 cumulative cases and 7,61,779 deaths reported
globally [1]. COVID-19 symptoms often occur 2 to 14 days
after infection, which includes fever (98.6%), cough

(59.4%), and sore throat (5%). Many advanced technologies
are considered to combat COVID-19 and reduce human
interaction [2–5]. Moreover, it is also found in the latest
investigations that age, sex, and recent travel history, along
with preexisting medical conditions, also played a vital role
in the case of COVID-19. It may lead to serious problems
[6], such as pneumonia or death. Patients who have dia-
betes have an elevated risk of serious complications such as
adult respiratory distress [7–9]. *ough there is no recent
finding that people with diabetes are more likely to contract
COVID-19 than people with no diabetes, few recent
findings observed that it could be at least twice as likely to
die from complications of diabetes. Diabetes was shown to
be a disease in 22% of the 32 nonsurvivors in a study of 52
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trauma patients [10], 16.2% from the study of 173 patients
with acute disease, and 12% from the study of 140 hos-
pitalized patients [11, 12]. A twofold gain in the prevalence
of patients in intensive care with diabetes has been detected
compared with nondiabetic patients concerning COVID-
19. Mortality appears to be about threefold greater in
people with diabetes [1, 10–13]. Diabetic patients have been
observed at greater risk of COVID-19. Few recent studies
have demonstrated that the probability of fatal results from
COVID-19 is up to 50% greater in patients with diabetes
[14].

*e machine learning (ML) approach is taken in [15],
and a bunch of classification algorithms such as support
vector machine (SVM), decision tree (DT), and K-nearest
neighbor (KNN) is employed on COVID-19 data. An
adaptive neuro-fuzzy inference system (ANFIS) is used to
create the dataset for disease risk levels. Over these data,
SVM provided 100% accuracy, but when tested against the
test data it resulted in 80% risk prediction. Similarly, a
bunch of patient data is acquired along with their treatment
approaches as categorical values along with the patient’s
geographical origin and survival count [16]. A random
forest approach was taken, and further, this algorithm was
boosted by the AdaBoost algorithm, resulting in an im-
pressive 0.86 F1 score. It also gave the probability of
survival rate based on the travel history, citizenship,
gender, and age group. Kerk et al. [17] established the
parametric conditions for the Takagi–Sugeno–Kang fuzzy
inference system model to operate as an n-ary aggregation
function via fuzzy membership functions and fuzzy rule
specifications.

Given the multifold mortality rate of COVID-19 in
diabetic patients, this work proposes a COVID-19 risk
prediction model for diabetic patients using a fuzzy infer-
ence system and machine learning approaches. *e pro-
posedmodel takes eight input parameters, which were found
as the most influential symptoms in diabetic patients who
contracted COVID-19, namely fever, cough, sore throat,
cardiovascular disease, high blood pressure, age, sex, and
travel history concerning the last three weeks. Possible five
levels of cough, namely chest cough, dry tickling cough,
bronchitis, post-viral cough, and whooping cough, have
been considered. In the same way, all probable phases of
fever are considered. Sex has also played another critical
factor in COVID-19. A mean of all significant suffering
states recorded 61.8% of cases caused to males, with 38.2%
being female. *e case fatality rate for COVID-19 is proven
to be almost 1.4% gains with age.

Computational intelligence techniques [18–22] such as
fuzzy logic are applied to numerous applications [23–25]. A
fuzzy logic controller manipulates the linguistic and inexact
data, which are not to model the process. In our case, expert
knowledge is gained from a few medical practitioners’ ex-
periences in treating various diseases such as COVID-19. It
can simulate human intelligence and allow the application of
real-world rules such as how humans think. Iwendi et al. [16]
have used an adaptive neuro-fuzzy inference system
(ANFIS) to model and control ill-defined and uncertain
systems to predict the risk factors for COVID-19.

Classification of COVID-19 dataset has been done using
support vector machine, which gave 100% accuracy among
all classifiers. *us, a risk prediction of 80% has been
achieved for COVID-19 patients. Furthermore, the authors
of [16] used various information related to COVID-19
patients, such as travel, health, and age, to predict the se-
verity of COVID-19.*e random forest model has been used
for this prediction, which is boosted by the AdaBoost al-
gorithm. As a result, an accuracy of 94% with an F1 score of
0.86 has been achieved. Moreover, the authors of [17]
established the parametric conditions for the Taka-
gi–Sugeno–Kang fuzzy inference system model to operate as
an n-ary aggregation function via the specifications of fuzzy
membership functions and fuzzy rules.

A fuzzy controller can be used to grade uncertainty and
imprecision in a certain domain of knowledge. Domain-
specific knowledge and experience of treating various dis-
eases such as COVID-19 are crucial for designing fuzzy
traffic controller in formulating linguistic protocols that
generate the control input to the control system. A total of
3,888 (3 3 3 3 3 4 2 2) rules are formed based on eight input
parameters and one output, which gives the risk level of
COVID-19, five in number, to the diabetic patients. Risk
level 1 is the lowest risk, while risk level 5 is the highest risk.
With the help of various state-of-the-art machine learning
techniques, fifteen models were built, namely logistic re-
gression, AdaBoost, CatBoost, gradient boosting, random
forest, extreme gradient boosting, extra trees, light gradient
boosting machine, decision tree, linear discriminant anal-
ysis, K-neighbors, SVM-linear kernel, ridge, naive Bayes,
and quadratic discriminant analysis. *e performance of
these fifteen models in terms of accuracy, recall, precision,
F1 score, and kappa score has been calculated. *e hyper-
parameter approach further optimizes the best performer
model.*e block diagram of the proposed inference pipeline
is shown in Figure 1.

*e major contributions of the work are as follows:

(i) *e impact of COVID-19 over diabetic patients is
identified using a fuzzy inference system (FIS) and
machine learning (ML) techniques.

(ii) Various machine learning models are trained using
various ML techniques, and the performance is
validated through stratified K-fold cross-validation.
Chances of bias and variance problems are
neutralized.

(iii) *e output ML model can be directly used to val-
idate the actual data and a learning metric to make
the current model precise.

*e remaining part of the study is carried out as follows.
*e fuzzy model for the proposed eight-input fuzzy traffic
controller, fuzzy set membership functions for input and
output variables, and the proposed work’s rule base are all
described in Section 2. Details of the simulation are given in
Section 3. Section 4 presents the machine learning models,
along with results obtained from various machine learning
models. Finally, Section 5 concludes the work with a brief
discussion.
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2. Fuzzy Inference System

A fuzzy logic-based controller is proposed for estimating the
risk level of COVID-19 for the diabetic patients with eight
input parameters, namely fever, cough, sore throat, car-
diovascular disease, high blood pressure, age, sex, and travel
history for the last three weeks and one output, which gives
the risk level of COVID-19, five in number, to the diabetic
patients. Risk level 1 is the lowest risk, while risk level 5 is the
highest risk. Fuzzy sets of various levels of cough have been
taken as low, medium, and high. Cough level from none to
mild refers to low, from mild to moderate as medium, and
moderate to severe as high. All five levels of cough, namely
chest cough, dry tickling cough, bronchitis, post-viral cough,
and whooping cough, have been considered [26].

Fuzzy sets of various levels of fever have been taken as
low, medium, and high. Fever level from 98.0°F to 99°F refers
to low, from 98.0°F to 101°F as medium, and 100.0°F and
above as high. It covers all stages of fever such as no sign of
fever, prodromal stage, second stage or chill, third stage, or
flush or defervescence [27]. Fuzzy sets of various levels of the
sore throat have been taken as low, medium, and high. No
sign of cough to stage 1 of cough refers to low, stage 1 to
stage 2 as a medium, and stage 2 to stage 3 as high. All three
stages of the sore throat have been considered. *e patient
may feel exhausted, fatigued, and have a runny or congested
nose in stage 1. *e patient may suffer a runny nose, slight
pains, sneezing, sleepiness, fatigue, or cough at this stage of
the cold in stage 2. Stage 3 is the most severe stage of a cold
during which the patient may experience congestion, a sore
throat, and other symptoms [28].

Fuzzy sets of various levels of cardiovascular disease have
been taken as low, medium, and high. No sign of cardio-
vascular disease to stage B of cardiovascular disease refers to
low, stage A to stage C as a medium, and stage B to stage E as
high. Stage A is thought of as a pre-heart collapse. Stage B
can also be regarded as pre-heart failure diagnosed with
systolic left ventricular dysfunction but has not had signs of
heart failure. An echocardiogram (echo) that reveals that an
ejection fraction (EF) of 40% or less and decreased EF
(HFrEF) owing to specific causes are considered in stage

B. Patients who have been recognized with heart disease and
have (now) or had (previously) symptoms and indicators of
the condition are regarded in stage C. In stage D, E patients
who do not get better with therapy are considered [29].

Fuzzy sets of various high blood pressure levels have
been low, medium, and high. High blood pressure from 110
to 120 refers to low, 115 to 135 as a medium, and 130 to 140+
as high [30]. *e case fatality rate for COVID-19 is found to
be nearly 1.4% with age. Here, 63% of coronavirus deaths in
India have been observed in the 60+ age group as per the
Health Ministry of the Government of India, which is in line
with international data of COVID-19 fatality rates. Con-
sidering this, fuzzy sets of age have been considered low,
medium, high, and very high. Age from 0 to 20 years refers to
low, 15 to 35 years as a medium, 35 to 55 as high, and 45 and
above as high.

Sex has also played an essential role in COVID-19. Data
show that males have a significantly higher chance of having
acute symptoms and dying than females. Data accumulated
by Global Health 50/50 [31] were considered. In Italy, the
number of death cases observed to be 71% male and 29%
females, while Spain has observed 65% credited to males,
with 35% constituting females.

A mean of all significant nations has been taken that
gives 61.8% of case deaths caused to male with 38.2% being
female. Considering these factors, fuzzy sets of sex have been
taken as low and high. Gender female refers to low, while
gender male refers to high. Fuzzy sets of travel history during
the last 3weeks have been taken as low and high. During the
last 3weeks, no travel history refers to low, while if so, then it
is high (Table 1).

*e proposed version has 3 subprocesses, i.e., fuzzifi-
cation, fuzzy inference, and defuzzification. *roughout
fuzzification, sharp values are converted into fuzzy sets
supporting membership purposes. Afterwards, these fuzzy
sets are passed into the rule base, i.e., if-then statements.
Finally, fuzzy sets of the input and output factors are dis-
played in Table 2.

*e final phase of this paradigm is defuzzification, which
involves using the fuzzy rule basis to create crisp output
signal values. It is the inverse of the fuzzification procedure.

Rule Base Engine

Rule Base Viewer

Input Fuzzy Inference
System

Data
Preprocessing ML Techniques Model Generation

Model
IdentificationFinal Model Hyperparameter

Tuning

Figure 1: Proposed inference pipeline.
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Mamdani devised a method of inference based on centroid
defuzzification, which was used to turn fuzzy locations into
crisp values. *e membership functions are shown in
Figure 2.

*e rule base of the fuzzy set is shown in Table 3. A total
of 3,888 (3∗3∗3∗3∗3∗4∗2∗2) rules are formed based on eight
input parameters and one output, which gives the risk level
of COVID-19, five in number, to the diabetic patients. *us,
risk level 1 is the lowest risk, while risk level 5 is the highest
risk.

3. Simulation

*e simulation was carried out with the help ofMATLAB 8.1
and the fuzzy logic toolbox. For two reasons, the fuzzy logic
toolbox was employed. To begin with, this toolbox may be
used to quickly and easily create a rule basis, and updates can
be made as needed. Second, it lowers the time it takes to
construct the rule base. Table 3 demonstrates the rule base
for various input variables and outcomes. Table 4 shows a
sample of eight outputs.

4. Machine Learning Models

It is categorised as a multiclass classification problem based
on eight inputs and one output parameter, i.e., target var-
iable. During the data preprocessing phase, the crisp values
of input and output parameters are converted into numeric
values. Once the dataset is ready, it is used to train and test

using various machine learning models. Fifteen machine
learning models are used for this purpose, namely logistic
regression, AdaBoost, CatBoost, gradient boosting, random
forest, extreme gradient boosting, extra trees, light gradient
boosting machine, decision tree, linear discriminant anal-
ysis, K-neighbors, SVM-linear kernel, ridge, Näıve Bayes,
and quadratic discriminant analysis. Furthermore, a few
parameters have been chosen to calculate the performance of
these fifteen models: accuracy, AUC, recall, precision, F1,
and kappa scores. Based on the values of these parameters,
the best model among these fifteen models is selected. Fi-
nally, hyper-parameter tuning is performed based on the
dataset and various patterns for better performance.

Performance characteristics of ML techniques on
COVID-19 symptoms are shown in Table 1. Five perfor-
mance characteristics are used: accuracy, recall, precision, F1
score, and kappa score. Except for F1 score, all parameters
are independently derived, whereas F1 score is derived using
recall and precision. Except for the AUC score, all parameter
follows the same trend. It is observed that the logistic re-
gression model gives the best performance, followed by the
AdaBoost and CatBoost classifier. *ese characteristics can
further be improved using the hyper-parameter optimiza-
tion process.

*e performance metrics that were used in this work are
accuracy, recall, precision, F1 score, kappa, confusion ma-
trix, ROC, and AUC curves. Additionally, learning rate
graphs were also drawn alongside the number of training
instances. Accuracy purely defines the chances of identifying

Table 1: Performance characteristics of ML techniques on COVID-19 symptoms.

S. no Model Accuracy Recall Precision F1 score Kappa
1 Logistic regression 0.7391 0.503 0.7536 0.7195 0.5995
2 AdaBoost classifier 0.7324 0.549 0.7433 0.7093 0.5908
3 CatBoost classifier 0.7166 0.601 0.7159 0.7136 0.5817
4 Light gradient boosting machine 0.7041 0.557 0.7031 0.6997 0.561
5 Gradient boosting classifier 0.6968 0.483 0.7052 0.6816 0.537
6 Extreme gradient boosting 0.6935 0.473 0.7037 0.6757 0.5303
7 Extra trees classifier 0.6928 0.562 0.6929 0.6908 0.5494
8 Decision tree classifier 0.6909 0.59 0.697 0.6922 0.5501
9 Random forest classifier 0.6909 0.558 0.6898 0.6884 0.5459
10 SVM-linear kernel 0.6733 0.449 0.703 0.639 0.4971
11 K-neighbor classifier 0.6534 0.495 0.6474 0.6461 0.485
12 Ridge classifier 0.6487 0.345 0.4885 0.5572 0.4365
13 Quadratic discriminant analysis 0.5182 0.426 0.5352 0.5067 0.3164
14 Naive Bayes 0.4943 0.493 0.6474 0.5279 0.3152

Table 2: Input/output variables and their fuzzy sets.

Input/output variables Fuzzy sets
Cough (Input 1) {Low, medium, high}
Fever (Input 2) {Low, medium, high}
Sore throat (Input 3) {Low, medium, high}
Cardiovascular disease (Input 4) {Low, medium, high}
High blood pressure (Input 5) {Low, medium, high}
Age (Input 6) {Low, medium, high, very high}
Sex (Input 7) {Low, high}
Travel history during the last 3 weeks (Input 8) {Low, high}
Prescription (output) {Risk level 1, 2, 3, 4, 5}
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the correct class from all other classes. Precision is the ratio
of correctly classifying the class, positive classifications from
all the positive classifications. Higher precision means fewer
chances of misclassifying a class as not that particular class.
At the same time, recall or sensitivity helps to identify and
revisit the observations that were correctly classified from all
the possible true observations in the experiment. F1 score is
the weighted average of both precision and recall, which can

help to identify the uneven class distribution. In this case, the
classes are evenly distributed. *erefore, it is not preferred
over accuracy. Hence, only accuracy scores are discussed
widely. Similarly, kappa values describe the distribution of
the class variable and data collection. Since the current
dataset is created from a fuzzy rule base, this metric does not
add any value over accuracy. Table 1 represents each ma-
chine learning model and its respective performance
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Figure 2: Fuzzy set membership diagrams.

Table 3: Rule base of the fuzzy inference.

Sl. no.
Input parameters Output parameter

Cough Fever Sore throat Cardio. Disease B.P. Age Sex Travel history Risk level
1 Low Low Low Low Low Low Low Low Risk level 1
2 Medium Low Low Low Low Low Low Low Risk level 1
3 High Low Low Low Low Low Low Low Risk level 1
4 Low Medium Low Low Low Low Low Low Risk level 1
5 Medium Medium Low Low Low Low Low Low Risk level 1
6 High Medium Low Low Low Low Low Low Risk level 1
7 Low High Low Low Low Low Low Low Risk level 1
8 Medium High Low Low Low Low Low Low Risk level 1
9 High High Low Low Low Low Low Low Risk level 1
10 Low Low Medium Low Low Low Low Low Risk level 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3888 High High High High High Very high High High Risk level 5

Table 4: Sample of eight outputs.

Cough Fever Sore throat Cardiovascular disease BP Age Sex Travel history Prescription
3 101.5 0.5 4.5 120 27 0.5 0.5 Risk level 2
2 105 0.6 5 110 37.5 0.8 0.8 Risk level 3
5 103 0.3 4 140 47 0.6 0.8 Risk level 4
5 105 0.8 5 150 32 0.4 0.7 Risk level 5
2 99 0.3 4 110 48 0.5 0.4 Risk level 1
6 99 0.6 3 120 25 0.4 0.4 Risk level 2
6 103 0.2 6 125 20 0.5 0.8 Risk level 4
2 98 0.6 5 135 55 0.3 0.3 Risk level 3
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parameters such as accuracy, recall, precision, F1 score, and
kappa score. Based on these scores, one would pick the
appropriate models, preferably testing and predicting fur-
ther use cases. However, since these models are not perfect,
they can be further used by tuning the algorithm’s hyper-
parameters while training the model. After this process, bar
graphs are drawn for each model and each of their per-
formance metric (Figures 3–7). Observing these findings,
CatBoost, logistic regression, and XGBoost improved their
performance. Every model created from these algorithms
showed significant improvement, followed by hyper-pa-
rameter optimization. CatBoost showed almost a 3% im-
provement in its accuracy. Logistic regression and XGBoost
got improved over 1.1% and 3%, respectively. Each model is
now executed for various performance attributes of accu-
racy, recall, precision, F1 score, and kappa score. Hyper-
parameter optimization is used to improve performance
further. *e accuracy, recall, precision, F1 score, and kappa
score after hyper-parameter optimization are shown in
Figures 3-7 respectively.

*e CatBoost classifier gives the highest accuracy, recall,
precision, F1 score, and kappa score.

*e CatBoost classifier model is selected for testing over
the confusion matrix. Figures 8-9 show the confusion
matrices of CatBoost classifier before and after hyper-pa-
rameter tuning. ROC curve is drawn against false-positive
rate and accurate positive rate prediction scores of the
CatBoost model after hyper-parameter optimization,
which tells whether the model is going wrong. For all five
classes of the output parameter, AUC scores were observed
as substantially good, approaching 1. Figure 10 shows the
ROC curve for the CatBoost classifier with AUC scores.
After hyper-parameter optimization, this CatBoost clas-
sifier model is trained and tested again for about 2500
instances. Again, stratified k-fold cross-validation is used,
which reaches about 74% accuracy.*e shaded area around
the line is the variance of accuracy. Figure 11 shows the
validation of training and cross-validation scores. As the
current model is a multinomial decision-making problem,
a set of these classifications, decision-making, and en-
semble algorithms is used in Figure 8. Specific performance
parameters are used to validate the model, such as AUC
and confusion matrix. *e area under the curve (AUC) is
generally used to validate the model’s performance. AUC is
decided using measures such as true-positive rate (TPR)
and false-positive rate (FPR). A confusion matrix is a good
measure to identify true positives, true negatives, false
positives, and false negatives using TPR and FPR calcu-
lated. If the FPR is higher, the graph generally tends to drop
below the region of operation (which is a diagonal line from
the origin), making the model unusable. As a rule of thumb,
the AUC score should generally be more than 0.5, above the
diagonal line. On the other hand, the TPR would be higher
if the model finds the best fit. In such a case, CatBoost is
observed to have better TPR since most of the data are
categorical.

Table 5 shows the top three best performing models after
tuning hyper-parameter in accuracy, recall, precision, F1
score, and kappa score.

While modelling a machine learning model, one could
come across the term hyper-parameters. Hyper-parameters
are not updated while training the model, whereas the
model is trained over an algorithm and validated based on
its accuracy. *erefore, these hyper-parameters welcome
new possibilities to improve the existing machine learning
model. *ough many other parameters can explain the
model performance such as accuracy, recall, precision, F1

Naive Bayes

Decision Tree Classifier

K Neighbors Classifier

Random Forest Classifier

Extra Trees Classifier

CatBoost Classifier

Extreme Gradient Boosting

0.2 0.4 0.6 0.8 10

Before tuning
A�er tuning

Figure 3: Comparison of accuracy after hyper-parameter
optimization.
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Decision Tree Classifier

K Neighbors Classifier

Random Forest Classifier
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Figure 4: Comparison of recall after hyper-parameter
optimization.
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Figure 5: Comparison of precision after hyper-parameter
optimization.
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score, kappa score, and AUC, modelling the accuracy is only
considered. *erefore, hyper-parameters help to improve
performance. Hyper-parameter optimization maintains the
existing accuracy and improves other parameters that

enhance the overall performance of the machine learning
model. *is can be achieved by employing an optimization
problem on top of the existing model, searching for the best
hyper-parameter. A randomized grid search is opted to
explore the appropriate parameters to improve AUC and
accuracy scores for the current scenario. CatBoost classifier
is the current state-of-the-art performer for decision-
making using gradient boosting algorithms. It is an en-
semble technique such as extra trees, AdaBoost, and
XGBoost classifier, but it comes with way better parametric
identification as it demands categorical features in case of
any. *e entire dataset combines categorical values, both
input and output in the current work. *erefore, the
problem is fitted to the exact use case for CatBoost after grid
searching the major hyper-parameters such as learning rate
(0.05) and depth (6). Other hyper-parameters were either
machine-specific or data-specific, and hence, they were set
to their defaults. After implementing the algorithm with the
updated hyper-parameters, the model’s performance was
the best among the other algorithms. Generally, the logistic
regression algorithm is preferred for binary classification.
For logistic regression classifiers, the hyper-parameters are
solver, penalty, C, and max iterations. *ese parameters
play a crucial role in the performance of the model. For this
work, Sklearn offers five options for solver and saga (sto-
chastic average gradient descent with L1 regularisation). C
is the strength of the penalty, which is identified to be
7.0028. Since the data are not massive, the maximum
number of iterations was set to default. XGBoost is a
gradient boosting technique in the decision-making pro-
cess, which also comes with a few hyper-parameters, and
after grid searching, the following are discovered: min child
weight � 7, max depth� 6, learning rate � 0.1, gamma� 0.4,
and sample tree� 0.5. *ere are other parameters in
XGBoost, but these parameters affected AUC and accuracy
the most.
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Extreme Gradient Boosting

0.2 0.4 0.6 0.8 10

Before tuning
After tuning

Figure 6: Comparison of kappa score after hyper-parameter
optimization.
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Figure 7: Comparison of F1 score after hyper-parameter
optimization.
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Figure 8: Confusion matrices of CatBoost classifier before hyper-
parameter tuning.
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Figure 9: Confusion matrices of CatBoost classifier after hyper-
parameter tuning.
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Figure 11: Validation of training and cross-validation scores.

Table 5: Top three best performing models after tuning hyper-parameter.

S. no. Model Accuracy Recall Precision F1 score Kappa score
1 CatBoost classifier 0.7582 0.64 0.772 0.767 0.663
2 Logistic regression 0.751 0.57 0.753 0.731 0.631
3 XGBoost classifier 0.7471 0.55 0.727 0.721 0.591
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5. Conclusion

Although diabetes was associated with worse results in
COVID-19 patients, no clinical report demonstrates the
susceptibility concerning COVID-19 to be greater in people
with diabetes. In a few recent findings, it is found that humans
are twice as likely to die from complications of diabetes. *e
overall mortality of COVID-19 in China from January to
April 2020 was almost thrice higher in patients with diabetes.
Given the multifold mortality rate of COVID-19 in diabetic
patients, this work proposes the COVID-19 risk prediction
model for diabetic patients using a fuzzy inference system and
machine learning approaches to estimate the risk level of
COVID-19 in diabetic patients, making it possible for timely
action. *e proposed model also helps minimise the medical
practitioner’s advice for estimating the risk level of COVID-
19 for diabetic patients, which is mainly engaged in treating
COVID-19 patients. *e proposed model takes eight input
parameters that were found as the most influential symptoms
in diabetic patients who contracted COVID-19, namely fever,
cough, sore throat, cardiovascular disease, high blood pres-
sure, age, sex, and travel history for the last three weeks. A
total of 3,888 (3∗3∗3∗3∗3∗4∗2∗2) rules were formed based on
eight input parameters and one output, which gives the risk
level of COVID-19 for diabetic patients, five in number, to the
diabetic patients. Risk level 1 is the lowest, while level 5 is the
highest. With the help of various state-of-the-art machine
learning techniques, fifteen models were built, namely logistic
regression, AdaBoost, CatBoost, gradient boosting, random
forest, extreme gradient boosting, extra trees, light gradient
boosting machine, decision tree, linear discriminant analysis,
K-neighbors, SVM-linear kernel, ridge, näıve Bayes, and
quadratic discriminant analysis. *e CatBoost classifier gives
the best accuracy, recall, precision, F1 score, and kappa score.
After hyper-parameter optimization, the CatBoost classifier
showed 76% accuracy and improvements in the recall, pre-
cision, F1 score, and kappa score, followed by logistic re-
gression and XGBoost with 75.1% and 74.7% accuracy.
Stratified k-fold cross-validation was used for validation
purposes. *ough the fuzzy inference system’s knowledge
base provides reasonably good insights, accuracy and preci-
sion can be improved with the actual medical record. A better
synthetic data generation technique can eliminate the slight
bias of being completely naive and variance fluctuations,
avoiding hyper-parameter optimization.
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