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Improving the effectiveness of anti-cancer immunotherapy remains a major clinical
challenge. Cytotoxic T cell infiltration is crucial for immune-mediated tumor rejection,
however, the suppressive tumor microenvironment impedes their recruitment, activation,
maturation and function. Nevertheless, solid tumors can harbor specialized lymph node
vasculature and immune cell clusters that are organized into tertiary lymphoid structures
(TLS). These TLS support naïve T cell infiltration and intratumoral priming. In many human
cancers, their presence is a positive prognostic factor, and importantly, predictive for
responsiveness to immune checkpoint blockade. Thus, therapeutic induction of TLS is an
attractive concept to boost anti-cancer immunotherapy. However, our understanding of
how cancer-associated TLS could be initiated is rudimentary. Exciting new reagents
which induce TLS in preclinical cancer models provide mechanistic insights into the
exquisite stromal orchestration of TLS formation, a process often associated with a more
functional or “normalized” tumor vasculature and fueled by LIGHT/LTa/LTb, TNFa and
CC/CXC chemokine signaling. These emerging insights provide innovative opportunities
to induce and shape TLS in the tumor microenvironment to improve immunotherapies.
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INTRODUCTION

Unprecedented success of immune checkpoint blockade (ICB) in melanoma patients has sparked
considerable interest in immunotherapies (1). Treatment with immune modulatory antibodies has
also highlighted the critical importance of an immune “hot” tumor environment for therapeutic
responsiveness (2). Considerable efforts are now being directed into increasing responsiveness to
ICB in all cancer patients.

The tumor microenvironment including stromal innate immune cells, fibroblasts and the
vasculature has become a major target for new therapies aiming to increase intratumoral T cell
numbers and their activation status prior to ICB (3, 4). Spontaneous and/or therapeutic increase of
T cell numbers into tumors can result in the formation of TLS (3, 5). These TLS have the ability to
effectively prime naïve T cells entering through high endothelia venules (HEV) (6). Notably, the
presence of TLS predicts and improves efficacy of immunotherapy in mice and humans (7).

In this review, we delineate common features of peripheral lymph nodes (LNs), inflammation-
and cancer-associated TLS, and discuss the relationship between the presence of TLS, lymphocyte
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priming and response to immunotherapy. We further elaborate
on potential drivers for intratumoral TLS formation and how
TLS could be exploited therapeutically, in particular for non-
responsive, immune “cold” cancers.
THE BEGINNING: DEVELOPMENT
OF LYMPHOID TISSUE

The immune system is comprised of organs and cell types that
protect the host from foreign pathogens and disease. The highly
specialized adaptive immune system consists of T and B
lymphocytes that form in the bone marrow and later reside in
secondary lymphoid organs (SLOs). SLOs are strategically placed
to facilitate immune surveillance and priming of naïve T cells
and also include LNs (8). The structural framework of LNs are
fibroblastic reticular cells (FRCs) which mediate cross-talk
between various immune cell populations throughout the LN.
In addition, follicular dendritic cells (FDCs) that reside within B
cell zones maximize interactions between antigens, antigen
presenting cells and naïve lymphocytes (9). Embedded in the
paracortical region of LNs are HEVs, highly specialized post
capillary venules that serve as entry portals for naïve and central
memory lymphocytes from the blood; this migration process is
mediated by interactions of L-selectin expressed on lymphocytes
and peripheral node addressins (PNAds) on HEVs (10). TLS are
lymphoid aggregates similar to SLOs which develop in non-
lymphoid tissue, for instance at sites of chronic inflammation
(11). TLS vary in composition and maturity but share with SLOs
separated B and T cell zones, stromal cells, and HEVs.

One proposed mechanism for the initiation of LN
development is upregulation of chemokine (C-X-C motif)
ligand 13 (Cxcl13) by lymphotoxin beta receptor (LTbR)
expressing mesenchymal precursors known as lymphoid tissue
organizer (LTo) cells (12). Cxcl13 subsequently attracts
hematopoietic precursors or lymphoid tissue inducer (LTi)
cells resulting in the first cluster of LTi cells and the initiation
of LN development (12). Mature LTi express lymphotoxin alpha
1 beta 2 (LTa1ß2) which binds LTbR in activated LTo, resulting
in further LTo maturation and expression of intercellular
adhesion molecule 1 (ICAM1), vascular cell adhesion molecule
1 (VCAM1), chemokine (C-C motif) ligand 19 (Ccl19) and 21
(Ccl21), and Cxcl13 which recruit more LTi and promote
interactions between LTi and LTo (8, 9). Mouse LTo may give
rise to stromal lineages such as FRCs, FDCs, lymphatic
endothelium and vascular endothelium within adult LNs (13).

Emerging evidence also highlights a crucial role of vascular
endothelium in the development of LNs. In adult LNs,
endothelial cells (ECs) and lymphatic endothelial cells (LECs)
express LTbR; EC-specific deletion of LTbR by crossing vascular
endothelial cadherin (VE-Cad)-Cre and LTbRfl/fl mice results in
compromised LN development with a reduced HEV network
demonstrating the importance of EC-specific LTbR for HEV
development and lymphocyte trafficking (14). Moreover, EC and
to a lesser extent LEC-specific deletion of NFkB-inducing kinase
(NIK), one of the major pathways downstream of LTbR
Frontiers in Immunology | www.frontiersin.org 2
signaling, results in an almost complete loss of peripheral LNs
(15). In the remaining LN anlagen of these mice, CD4+ LTi cells
are drastically reduced coinciding with very low VCAM1,
ICAM1, Cxcl13 and Ccl19 expression levels suggesting that
failure of LTi to engage with ECs during LN development
prevents LTo activation. Furthermore, forced retention of LTi
following treatment of pregnant mice with the drug FTY720
which sequesters lymphocytes in LNs, results in formation of
mature ectopic LNs in the inguinal fat pad of the progeny (15).
These findings imply that the numbers of LTi retained by EC/
LECs may be an additional determinant of LN development,
alongside interactions between LTi and mesenchymal LTo (16).
TLS FORM UNDER INFLAMMATORY
CONDITIONS IN MICE

Although the initial events of LN development are not fully
resolved, LTbR signaling is crucial for subsequent LN
maturation, and also plays a major role in TLS formation
during chronic inflammation in mice (Figure 1). For instance,
in apolipoprotein E (ApoE)-/- mice, LTbR expressing aortic
smooth muscle cells (SMC) over time become activated and
produce TLS inducing cytokines such as Cxcl13, Ccl21 and LTb
(17). This leads to the formation of mature aortic TLS containing
B cell follicles and germinal centers (GCs), T cells and HEVs.
Importantly, TLS assembly can be prevented by blocking LTbR
signaling in vivo (17).

LTbR binds two ligands, the developmentally important LN-
inducing cytokine LTa1ß2 and tumor necrosis factor superfamily
(TNFSF) 14orLIGHT. IncreasedLIGHTexpression coincideswith
TLS formation in the pancreas of aged non-obese diabetic (NOD)
mice; in vivo inhibition of LTbR prevents TLS formation and
diabetes (18). TLS in mouse pancreatic islets can also be induced
by overexpressing C-X-C chemokine receptor type 5 (Cxcr5), the
receptor for Cxcl13 (19), Cxcl12, Ccl19 or Ccl21 (20) under the
control of the rat insulin gene promotor. Interestingly, LTbR or
LTa1b2 blockade prevents TLS formation in chemokine
overexpressing mice (19, 20), implying that LTa1b2 and/or
LIGHT are bona fide TLS inducers under inflammatory
conditions. However, mechanisms leading to inflammation-
associated TLS formation are complex and can involve a network
of multiple immune and stromal cell types, and - besides LTa1b2 –
other cytokines such as tumor necrosis factor alpha (TNFa), IL6,
IL13, IL17, IL22 and IL23 (21–25).

In mouse inflammatory lesions, stromal cells can function as
LTo by upregulation of the FRC markers podoplanin, Ccl19,
Ccl21 and Cxcl13 which in turn stimulate lymphocyte
recruitment to sites of inflammation (26, 27). For instance, in
patients with primary Sjögren’s syndrome (pSS) and a mouse
model of salivary gland inflammation, IL13 production by
activated fibroblast activation protein (FAP)+ podoplanin+

fibroblasts, termed “immunofibroblasts”, is the earliest
detectable event during TLS neogenesis which precedes
lymphocyte recruitment into tissue and subsequent IL22/
LTa1b2 secretion (24). As demonstrated in mice deficient for
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Johansson-Percival and Ganss TLS Induction to Improve Immunotherapy
IL13 or its receptor IL4R, “immunofibroblast” activation is
dependent on IL13/IL4R signaling and precedes their
expansion which is subsequently regulated by lymphocyte-
derived IL22 (28). Furthermore, genetic deletion of FAP+

fibroblasts abolishes TLS formation highlighting the LTo role
of fibroblasts during TLS formation (24).

During ear inflammation in mice, induction of podoplanin+

stromal cells is dependent on myeloid cells, since depletion of
CD11+ Gr1+ cells using monoclonal antibodies significantly
reduces podoplanin+ cells (26). This suggests that circulating
monocytes can acquire a postnatal role as LTi. Indeed, myeloid
cells have been implicated in the development of TLS in various
experimental systems. For instance, global overexpression of
TNFa in mice by expressing a stabilized TNFa mRNA
(TNFDARE) leads to the development of TLS in the intestine in
a process which is dependent on F4/80+ myeloid cells (21).
Mechanistically, F4/80+CD11b+ myeloid cells in the LN
anlagen are the major source of TNFa and inducers of stromal
maturation and expression of LTo chemokines such as Cxcl13,
Ccl19 and Ccl21. The potency of these myeloid cells was further
demonstrated by surgical transplantation of LN anlagen from
TNF/RORc(gt)-/- mice under the kidney capsule of RORC(gt)-/-
Frontiers in Immunology | www.frontiersin.org 3
mice that lack classical LTi; this leads to LN development in the
majority of mice thus demonstrating that TNFa producing
myeloid cells have the capacity to induce LN formation (21).
In atherosclerosis, M1-polarized macrophages act as LTi cells
and produce high levels of LN-inducing cytokines such as TNFa
and LTa (29). In vitro stimulation of vascular SMCs (vSMC)
with M1 macrophage conditioned media induces an LTo profile
and triggers the formation of TLS in vivo following vSMC
injection (29). VSMC activation is dependent on TNFR
signaling as blockade of TNFR1/2 in vivo abolishes the LTo
phenotype and prevents TLS formation. Similarly, adipose
tissue-associated TLS formation is dependent on myeloid
derived TNFa and stromal expression of TNFR, but
independent of LTbR signaling (27).

The effects of DCs on lymph angiogenesis and TLS induction
have also been studied in multiple models (30–35). For instance,
in a mouse model of atopic dermatitis, CD11c+ DCs accumulate
around newly formed HEVs; inhibition of LTbR signaling or
depletion of CD11c+ cells inhibits HEV formation (33).
Similarly, following influenza virus infection in mice, lung
CD11c+ DCs express TLS-inducing cytokines such as LTb,
Cxcl13, Ccl19 and Ccl21 which correlates with formation of
FIGURE 1 | Stromal and immune cell cross talk mediate TLS formation during chronic inflammation. Potential cytokines/chemokines involved in immune (LTi) and
stromal cell (LTo) cross-talk. Stromal cells express cytokine receptors such as LTbR and TNFR (and potentially others, marked with “?”); upon activation, LN inducing
chemokines such as Ccl19, Ccl21 and Cxcl13 are secreted by stromal cells which increase immune cell density and foster their own maturation. Activated stroma
and immune cells coordinate formation of LN aggregates which can mature into clusters containing T cells, B cells, FDCs and MECA79+ HEVs (mature TLS). Created
with BioRender.com.
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mature TLS; in vivo depletion of CD11c+ cells or inhibition of
LTbR signaling perturbs TLS formation (34). Moreover, in
plaques arising in ApoE-/- mice, LTb producing CD11c+

CD68+ Ly6Clo monocytes reside in close proximity to vSMCs
and induce Cxcl13 and Ccl21 secretion, indicating a potential
role of DCs as LTi (17). Overall, multiple models of chronic
inflammation show that stromal cells can gain LTo function
whilst inflammatory myeloid cells play a crucial role as LTi.
Moreover, in the process of TLS formation, TNFa and LTb serve
important non-redundant roles.
SPONTANEOUS TLS FORMATION IN
HUMAN CANCER

Tumors are described as “wounds that never heal” (36), and
indeed rely on continuous stromal remodeling, inflammation
and angiogenesis to support the rapidly growing cancer. The
abnormal angiogenic tumor vasculature often lacks adhesion
molecules such as ICAM/VCAM which prevents efficient
lymphocyte-EC binding (37, 38). However, despite this
“anergic” tumor vasculature, the tumor microenvironment
(TME) can support naïve T cell infiltration, and spontaneous
intratumoral TLS formation has been observed in a subset of
patients across cancer types (7).

Although the precisemechanismof spontaneousTLS formation
in human cancers is unknown, the presence of intratumoral TLS
structures is often associated with a favorable clinical outcome and
extended disease-free survival (7, 39–47). In hepatocellular
carcinoma (HCC) for instance, the presence of intratumoral TLS
reduces the risk for early relapse following tumor resection (43). In
addition, mature TLS harboring GCs rather than poorly defined
lymphocyte aggregates have the lowest recurrence risk (43). In
humanbreast cancer, thepresenceofHEVscorrelateswithoverallT
and B cell infiltration, and improved prognosis (44, 45). Moreover,
flow cytometry and gene expression analysis of CD4+ T cell subsets
revealed that highly infiltrated breast cancers also harbor TLS, and
express markers such as Cxcl13, ICOS, IFNg and TBX21/T-bet,
commonly associatedwith follicular T helper (Tfh) andTh1 profiles
(39, 40). Inmultiple human cancers such as lung, breast, pancreatic,
gastric cancers and melanoma, TLShigh tumors harbor more
activated, cytotoxic or naïve CD8+ T cells together with CD4+ T
cells which are skewed to a Th1 and/or Th17 phenotype when
compared to TLSlow tumors (41, 42, 44–47).

The presence of intratumoral TLS can be determined by
analyzing chemokine gene-expression signatures which were
first described in colorectal cancer (48) and subsequently
validated for other types of cancer such as HCC, breast cancer
and melanoma (43, 49, 50). The ability to assess TLS status prior
to therapy is of clinical significance and may offer an opportunity
to improve immunotherapy (49).

However, the predictive value of TLS for patient outcome is
complex, and other parameters besides presence or absence of
lymphocyte aggregates seem to be important. In colorectal
cancer, for instance, TLS structures with high densities of M2
macrophages and T helper cells expressing GATA3, a master
Frontiers in Immunology | www.frontiersin.org 4
regulator of Th2 differentiation, contribute to immune
suppression and thus correlate with relapse rather than
improved prognosis (51). In HCC, TLS in the tumor margin
are associated with an increased risk of recurrence (52).
Moreover, TLS which arise in HCC patients, or mice with
persistent and high NFkB activation in hepatocytes, promote
tumor progression rather than anti-tumor immunity (52).
Similarly, early human hepatic lesions can harbor immature
TLS characterized by the expression of immune suppressive
cytokines and T cell exhaustion markers such as IL10RA,
TGFb1, TIM-3 and PD-L2 (53). In other cancer types, for
instance breast, colorectal and pancreatic cancers, TLS are
often found in peri-tumoral locations, and are associated with
more advanced disease (41, 54, 55). Overall, these studies
indicate that intratumoral location and TLS maturity are
crucial parameters for productive anti-tumor immunity and
improved patient outcome (7, 56).
TLS AS INTRATUMORAL PRIMING SITES
FOR ADAPTIVE IMMUNITY

It is commonly accepted that naïve lymphocytes do not enter
peripheral tissues or tumors, but circulate through lymphoid
organs to encounter cognate antigen for activation. However,
there is emerging evidence that HEV+ TLS may activate effector
T cells intratumorally thus bypassing the need for tumor-antigen
presentation in draining LNs (57). For instance, LIGHT
accelerates development of diabetes in NOD mice even after
surgical removal of pancreatic draining LNs implying that naïve
T cells are primed within TLS in pancreatic islets (18). In B16
melanoma-bearing mice, adoptively transferred naïve anti-
tumor T cells differentiate into effector cells, reduce tumor
growth and improve survival even when lymphocyte egress
from LNs is blocked by FTY720 (6, 58). This suggests that
HEV+ mouse melanomas can facilitate naïve T cell infiltration,
and support subsequent priming and differentiation (6).

Naïve T cell activation in TLS relies on the presence of antigen
presenting cells such as B cells and DCs. Indeed, in lung (42, 59),
breast (60) and renal cancers (61), a high density of TLS-associated
mature DCs correlates with the degree of Th1 effector T cell
infiltration and improved prognosis. Interestingly, DCs are also
involved in HEV function. In peripheral LNs, for instance, DCs
maintain HEV maturity and thus naïve T cell infiltration through
LTbR signaling (30). In human breast cancer, DCs produce high
levels of LTb and the density of mature DC-LAMP+ DCs strongly
correlates with the frequency of HEVs (60). Collectively, this
indicates that DCs maintain HEV maturity and facilitate T cell
egress and priming in both LNs and TLS.

B cells are an integral part of mature TLS and potent antigen
presenting cells. In some cancers, B cells have been shown to
foster tumor development by secreting factors which contribute
to a pro-tumorigenic immune environment (62). However,
mature B cells in TLS produce antibodies within GCs which
correlates with a higher degree of T cell infiltration and disease
free survival (63–65). Improved prognosis in human breast
May 2021 | Volume 12 | Article 674375
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cancer is associated with CD4+ Tfh cells which produce an
abundance of Cxcl13 and support B cell differentiation, TLS
formation and GC maturation (39, 66). In pancreatic
adenocarcinoma (PDAC), the presence of B cells within
mature TLS correlates with improved prognosis in patients, or
increased immune response to vaccination in mice (67).
Furthermore, initial evidence in human melanoma suggested a
potential link between antibody producing B cells and ICB
responsiveness (68, 69). This has now been confirmed in a
series of studies which performed in-depth molecular analyses
in ICB responder and non-responder tumor tissues (70–72). For
instance in human sarcoma, ICB responders are characterized by
B cell-rich intratumoral TLS and an immune gene signature
related to T cell infiltration and activation, immune checkpoints
and expression of Cxcl13 (70). In human melanoma, B cell-
enriched TLS confer improved survival and responsiveness to
ICB, and also contain naïve and/or memory T cells and an
immune signature indicative of enhanced B-T cell interactions
and antigen presentation (71, 72). In contrast, T cells in TLS
negative melanomas expressed elevated TIM3 and PD-1 levels
which may indicate a dysfunctional state (72). Furthermore,
RNA-seq analysis of B cell receptors (BCRs) in melanomas
showed greater BCR diversity and B cell maturity in ICB
responders versus non-responders supporting an active role for
B cells in anti-tumor immunity (71). In summary, these studies
demonstrate a major role of TLS-associated B cells in antigen
presentation, T cell polarization and activation thus placing B
cells at the center of TLS function (62, 70–75).

The efficacy of anti-cancer effector T cells is intimately linked
to the presence or absence of CD4+CD25+FoxP3+ regulatory T
cells (T regs), and interestingly, T reg depletion induces TLS. For
instance, in a mouse model of chemically induced fibrosarcoma
genetic T reg deletion triggers intratumoral HEV formation, T
cell recruitment and tumor control (76, 77). Similarly, T-reg
depletion in a model of autochthonous lung adenocarcinoma
induces TLS, increases T cell proliferation and DC activation
with ensuing tumor control (78).

Overall, current evidence strongly supports a role of
intratumoral TLS as priming sites for anti-tumor immunity and
prognostic indicators for ICB efficacy. Spontaneous formation of
mature and functional TLS in cancer is highly orchestrated and
context-dependent; insights into this process will provide exciting
opportunities for innovative drug development.
FROM CONCEPT TO TREATMENT:
THERAPEUTIC INDUCTION OF TLS

Experimental TLS induction in animal models provides an
important opportunity to study the complex interplay between
immune cell populations which foster adaptive anti-cancer
immunity. Therapeutic TLS induction in cancer patients holds
the promise to advance immunotherapy. Numerous attempts
have been made to induce TLS in mouse models, so far with
mixed outcomes. For instance, both Ccl21 and LTbR play
Frontiers in Immunology | www.frontiersin.org 5
important roles during peripheral LN development. Early work
in a mouse melanoma model indeed found that a recombinant
antibody targeting LTa to melanoma cells induced intratumoral
HEVs, B and T cell zones, and improved survival (79). In
contrast, Ccl21 overexpressing melanoma cells promoted
infiltration of suppressive immune cells and cytokines which
collectively stimulate tumor growth (80). Thus, to harness TLS
therapeutically better mechanistic insights into intratumoral TLS
formation are urgently needed.

More recent attempts to induce TLS in mouse tumors have
employed sophisticated technologies such as artificial scaffolds,
gene engineering, and vaccination strategies. Given the crucial
role of LTo cells in the recruitment of LTi during LN
development (8, 12), a role of stromal cells as TLS inducers
has been widely explored (48, 81–83). For instance, LTa
overexpression in a stromal cell line derived from thymus
induces lymphoid-like organoids in mice when co-implanted
with DCs in a collagenous scaffold (81). Moreover, a collagen
sponge with a cocktail of LN-inducing cytokines when implanted
under the kidney capsule also initiates formation of artificial LN-
like TLS (artTLS) with distinct B/T cell zones, FDC/FRCs and
HEVs. Intriguingly, implantation of these sponges into
immunodeficient mice generates antibody producing cells
following immunization (82), further supporting a role of TLS
in adaptive immunity. Similarly, a LN-derived stromal cell line
which expresses high levels of the FRC marker podoplanin and
chemokines such as Ccl19, Ccl21, Cxcl10 and Cxcl13 -
reminiscent of the chemokine gene signature first identified in
human colorectal cancer (48) - when implanted subcutaneously
in mice also generates TLS (83). Within these TLS, resident T
cells were successfully activated into effector T cells by tumor-
lysate-pulsed DCs which suppressed the growth of adjacent
MC38 colon cancer cells (83).

In gene engineering studies, DCs were generated to produce
high levels of T-bet/Tbx21, a transcription factor that drives the
development and functionality of immune cells, particularly by
producing the key Th1 cytokine IFNg. T-bet overexpressing DCs
also produce high levels of pro-inflammatory cytokines such as
TNFa, IL12p40 and IL-36g, and induce TLS in a mouse colon
cancer model; even in the absence of peripheral LNs
intratumoral DC-Tbet therapy prolongs survival (84). In
contrast, tumor growth control is abolished in IL36R-deficient
mice indicating a crucial role of T-bet/IL-36g in therapeutic TLS
induction (84). This is supported by findings in human colon
cancer where IL-36g is highly expressed in M1 macrophages and
cells of the vasculature, including vSMCs and HEVs, and
correlates with spontaneous TLS formation (85).

In human papilloma virus (HPV) 16-positive cervical cancer,
intramuscular vaccination targeting HPV16 E6/E7 antigens
induces intratumoral TLS which contain antigen-experienced
effector memory T cells (86). Moreover, TLS-rich tumor stroma
harbors a typical Th1 gene signature with increased levels of
Cxcr3, TBX21, IFNg and IFNb.

In human PDAC, T cell infiltration and activation is
positively linked to survival in some patients (87, 88), and TLS
can be induced following an allogeneic granulocyte-macrophage
May 2021 | Volume 12 | Article 674375
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colony stimulating factor secreting vaccine (GVAX) when given
in combination with T reg-depleting cyclophosphamide (89).
TLS display a distinct Th17 gene signature, a high T effector to T
reg ratio, and serve as a prognostic tool to segregate long term
from short term survivors (89). Although this clinical trial
provides rare evidence for therapeutic TLS induction in
humans, PDAC can harbor spontaneous intratumoral TLS
which are linked to better prognosis (41). Interestingly,
spontaneous TLS in PDAC are associated with a more mature
vascular network that expresses the vascular adhesion molecule
VE-Cadherin and is covered by aSMA+ pericytes, a mural cell
type which wraps around and supports the endothelium (41),
suggesting a possible link between TLS formation and stabilized
tumor vessels.
A POTENTIAL LINK BETWEEN VASCULAR
NORMALIZATION AND TLS INDUCTION

T cell infiltration into solid cancers is controlled by the
vasculature which co-evolves with an immune-suppressive
microenvironment and plays an active part in limiting T cell
influx (37, 90–93). In contrast, activating tumor blood vessels to
express adhesion molecules such as ICAM and VCAM enables
productive endothelial-T cell interactions and fosters effector T
cell transmigration (3, 92, 94–97). Moreover, tumor vessel
normalization which improves vascular morphology and
function lowers hypoxia and indirectly changes the tumor
microenvironment to support Th1-driven anti-tumor
Frontiers in Immunology | www.frontiersin.org 6
immunity (98–100). Therefore, compounds which normalize
tumor blood vessels and attract T cells may have the capacity
to induce intratumoral TLS. Indeed, a fusion compound of the
cytokine LIGHT conjugated to a homing peptide (vascular
targeting peptide or VTP) which delivers LIGHT specifically to
angiogenic tumor vessels is such a reagent (95). LTbR and
Herpes virus entry mediator (HVEM) are major LIGHT
receptors, expressed in stroma and immune cells, respectively,
and thus link LIGHT to LN neogenesis and immune regulation
(101–106). Treatment of neuroendocrine pancreatic cancer
(PNET) in mice with low dose LIGHT-VTP normalizes blood
vessels and induces intratumoral TLS with distinct B and T cell
zones and high expression of the T cell attractant Ccl21 in
vascular cells as well as macrophages (Figures 2A, B) (3, 95).
Importantly, the capacity to induce TLS correlates with the
degree of vessel normalization and is abolished with high dose
LIGHT-VTP which induces vessel death, demonstrating a causal
link between vessel normalization and TLS formation (3). Other
treatment regimens which are known to normalize tumor vessels
in PNET such as low dose anti-vascular endothelial growth
factors (VEGF) or anti-angiopoietin-2/anti-VEGF therapies
facilitate lymphocyte infiltration but do not induce TLS as
monotherapies (107, 108). Similarly, cytokine fusion
compounds which deliver for instance TNFa or IFNg to tumor
vessels in PNET induce vessel normalization and/or vessel wall
inflammation without TLS formation demonstrating the unique
opportuni t ies of target ing LIGHT into the tumor
microenvironment (97, 109). Furthermore, intratumoral
treatment of melanoma-bearing mice with low dose stimulator
A B C

FIGURE 2 | Induction of cancer-associated TLS during LIGHT-VTP therapy. (A, B) Treatment of transgenic PNET-bearing mice with bi-weekly i.v. injections of 20 ng
LIGHT-VTP specifically targets abnormal angiogenic blood vessels and induces chemokines important for TLS formation (e.g. Ccl21) in (A) vascular cells (co-staining
of CD31+ endothelium in green and Ccl21 in red, overlay in yellow marked by arrow) which attract CD8+ T cells, and (B) tumor-resident CD68+ macrophages which
are recruited to the vascular niche (co-staining of CD68 in green and Ccl21 in red, overlay in yellow marked by arrows) and re-programmed to secrete other
cytokines such as TNFa and IL1b which in turn attract T/B cells to form TLS (3). (C) Adoptive transfer of LIGHT-stimulated macrophages into PNET-bearing mice
leads to CD68+ macrophage accumulation in the TME and subsequent formation of mature TLS 8 days after transfer. TLS with organized T cell (red) and B cell
(green) zones as well as MECA79+ HEVs (blue) are depicted. Scale bars 50mm. Images are unpublished microscopic photographs similar to work published in (3).
Created with BioRender.com.
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of interferon genes (STING) agonist (ADU S-100) normalizes
angiogenic blood vessels and upregulates TLS-inducing factors
such as Ccl19, Ccl21, LTab and LIGHT (110). This induces
unstructured HEV-containing lymphocyte aggregates
resembling TLS which contain T cells and CD11c+ DCs.
STING activation enables recruitment of pre-primed peripheral
T cells and expansion of unique T cell clonotypes in the TME
thus further supporting the benefits of reagents with dual
capacity to induce vessel normalization and intratumoral
priming. Nevertheless, the anti-tumor effects of LIGHT-VTP
or STING monotherapies are modest, and the clinical relevance
of these reagents lies in increasing the potency of current
immunotherapies (3, 110).
TLS AND IMMUNOTHERAPY

Immunotherapies which boost the host’s intrinsic immunity
such as anti-cancer vaccines and ICBs have dramatically
changed clinical oncology. However, based on the increasing
number of drug combination trials, ICB therapies will be
predictably more effective in combination with other therapies
such as TLS induction (7, 111).

The presence of spontaneously arising B cell-rich TLS within
cancers has recently been shown to predict the response to ICB
in patients with melanoma, soft-tissue sarcoma and renal cell
carcinoma (see above) (70–72). In addition, a retrospective
analysis of human lung cancer samples identified PD-1hi

expressing CD8+ T cells within TLS to predict response to PD-
1 blockade (112). These proliferating PD-1hi T cells were highly
tumor-reactive, secreted Cxcl13, and are thus potential drivers of
TLS formation (112). Similarly, non-small cell lung carcinoma
biopsies from PD-1 blockade responders are enriched in TLS and
mature B cells (113). Furthermore, patients with desmoplastic
melanoma, a subtype of melanoma with dense fibroblastic
stroma and high frequency of TLS, respond particularly well to
PD-1 blockade compared to other advanced forms of melanoma
(114). Although the correlation of TLS frequency and patient
responsiveness in retrospective studies might be biased,
collectively these studies support the notion that TLS induction
prior to ICB is beneficial and will improve response rates
to immunotherapy.

Strong evidence for beneficial TME-immune stimulating
combination therapies also comes from animal studies. For
instance, experimental induction of TLS with LIGHT-VTP
therapy renders PNET and Lewis lung carcinoma (LLC)
sensitive to ICB targeting cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and PD-1. The combined treatment
induces intratumoral activation of cytotoxic T cells with
ensuing survival benefits which can be further improved when
combined with anti-cancer vaccination. Notably, neither
vaccination, ICB or a combination thereof match the survival
outcome achieved with LIGHT-VTP combination treatment (3).
In mouse breast cancer, PNET, and glioblastoma (GBM), VEGF
inhibition renders tumors susceptible to anti-PD-L1 therapy.
The combination treatment of anti-VEGF and anti-PD-L1
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activates intratumoral DCs and T cells and reaches maximal
efficacy when combined with agonistic LTRb antibodies; this
triple treatment induces HEV+ immune clusters even in highly
therapy-resistant GBM (115). In the same GBM tumor model,
LIGHT-VTP treatment in combination with anti-VEGF and
anti-PD-L1 is even more effective than agonistic LTbR
antibodies, and generates an abundance of intratumoral HEV+

TLS and granzyme B+ (GrzB) CD8+ effector T cells (116). This
highlights the importance of LTbR signaling for TLS
combination immune therapies but also the potential
involvement of other pathways since LIGHT activates cells
within the tumor microenvironment through multiple
receptors including LTbR and HVEM.

Overall, there is already strong evidence that intratumoral
TLS are an important prognostic tool for immunotherapies (70–
72). However, beyond risk stratification, inducing TLS in
combination with ICB generates a synergism which is likely to
promote lymphocyte infiltration, intratumoral activation and
immune rejection, in particular in immune-deserted or “cold”
tumors. Given the significant toxicities of ICB as observed in
recent combination trials of Nivolumab and Ipilimumab (117,
118), the presence of TLS may be helpful to select patients who
will benefit most from ICB. In addition, TLS/ICB combination
therapies could contribute to more effective anti-tumor
responses with lower ICB doses. In this context, a preliminary
study of low dose Nivolumab and Ipilimumab combined with IL-
2 and hyperthermia treatment shows similar overall response
rates when compared to high dose ICB with significantly lower
overall toxicity (119). This indicates an exciting possibility to
lower ICB doses when used in combination with other immune
stimulating reagents.
SEARCHING FOR THE INSTIGATOR(S)
IN CANCER-ASSOCIATED TLS

Much like LN neogenesis, formation of cancer-associated TLS
presumably involves a network of stromal and immune cells
linked by multiple cytokines/chemokines. However, mechanistic
insights into this process are rudimentary. Since these
interactions are precisely orchestrated in a 3D environment in
vitro studies are challenging. Nevertheless, some cell types and
cytokines/chemokines by virtue of their crucial role in
experimental systems and presence in human TLS+ cancer
tissue deserve further consideration (Figure 3).

Non-Hematopoietic Stromal Cells: Blood
Vessels and Fibroblasts
Tumor vasculature and TLS formation are intimately linked (3,
4, 110). For instance, LIGHT-VTP in mouse PNET increases the
expression of Ccl21 in the vascular bed and in CD68+ tumor-
resident macrophages associated with TLS (Figures 2A, B) (3).
Moreover, a 3D scaffold environment and slow interstitial flow
are essential for Ccl21 expression by LN-derived FRCs both in
vitro and in vivo; without lymph flow Ccl21 expression is not
detectable suggesting that fluid flow dynamics may regulate
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Ccl21 expression (120). It is therefore interesting to speculate
that modulation of blood flow dynamics and transport of
cytokines/chemokines during tumor blood vessel normalization
may regulate Ccl21 expression levels in the vascular bed, and
thus TLS formation in vivo.

Cancer associated fibroblasts (CAFs) form a large part of the
tumor microenvironment, reduce fluid flow by increasing tumor
stiffness, and support tumor-promoting inflammation (121).
Thus, modulation of CAFs can enhance anti-cancer
immunotherapy (121, 122) and potentially support TLS
formation. More recently, a crucial role for CAFs as LTo and
effector CD8+ T cells/B cells as LTi was delineated in an
intraperitoneal melanoma model of spontaneous TLS
formation (4). Therein, effector T cells recruit FAP-

podoplanin+ fibroblasts to HEVs where they differentiate into
Cxcl13 secreting FRCs via TNFR signaling, similar to previous
models of chronic inflammation (26, 27). This in turn promotes
recruitment and proliferation of LTa1b2 secreting B cells which
further stimulate TLS formation in a positive feedback loop (4).
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In human and mouse lung cancer, Ccl19 producing fibroblastic
stromal cells (FSC) correlate with increased CD8+ T cell
infiltration and tumor growth control. Although TLS
formation was not examined in this study, Ccl19-expressing
FSCs reside in peri-vascular niches within LLC tumors and T cell
recruitment is impaired upon Ccl19 gene deletion suggesting an
early role of FSCs in forming immune-stimulating stromal
niches (123). Collectively these studies support the notion that
vascular cells and fibroblasts are important mediators of TLS
neogenesis in cancer (4, 38, 94).

Hematopoietic Stromal Cells: Macrophages
Monocytes/macrophages are a major component of tumor
stroma (124). In a hypoxic tumor environment, macrophages
are immunosuppressive and support tumor growth. However,
their phenotype is highly dynamic and macrophage “re-
education” can support immunotherapy (125). In the
context of TLS neogenesis, M1 macrophages can produce
chemokines similar to those detected in TLS+ human
cancers, including Ccl21 and TNFa (3, 126). Furthermore,
ex vivo LIGHT-stimulated macrophages in contrast to control
macrophages when adoptively transferred into tumor-bearing
mice are necessary and sufficient to induce intratumoral TLS
in a T cell-dependent manner (Figure 2C) (3). In addition to
Ccl21, these LIGHT-stimulated macrophages also express
high levels of TNFa (Figure 2B) which is a key driver of
inflammation-induced TLS formation in mice (21, 27). It is
therefore possible that LIGHT-stimulated macrophages drive
TLS formation via the TNFa/TNFR signaling pathway which
has so far not been investigated. Whilst the importance of
macrophages during TLS formation in cancer is understudied,
robust data in inflammatory disease support their importance
in TLS neogenesis (21, 27, 29), warranting further
investigations in cancer.

Hematopoietic Stromal Cells: DCs
LTa/LTb producing CD11c+ DCs play a critical role in
regulating lymphocyte trafficking and maintaining HEV
phenotype and function in adult mouse LNs (30, 32), and are
involved in TLS formation during chronic inflammation (30–
35). In human tumors, DCs are a major source of LTb and their
density correlates with HEV formation and favorable clinical
outcome in breast cancer (60). Similarly, in primary human lung
and ovarian cancers the number of mature DCs correlates with
the degree of CD8+ T cell infiltration, anti-tumor cytotoxicity
and survival (42, 127). Furthermore, immune-stimulating and
vascular normalization therapies in mice increase intratumoral
CD11c+ DCs coinciding with the formation of lymphocyte
aggregates and HEVs (110, 115). Treatment of B16 melanoma
with low-dose STING agonist, for instance polarizes DCs to
produce TLS-inducing cytokines such as LTa, IL36b and TNFa
(110), implicating mature DCs in TLS neogenesis. Overall,
mechanistic tumor data are still sparse; plasticity of myeloid
cells as well as shared marker expression in myeloid cell and DC
populations complicate interpretation of the data. Further
analysis of stromal innate immune cells such as monocytes/
FIGURE 3 | Concepts for creating functional TLS in cancer. Multiple immune
and stromal cell types orchestrate TLS formation potentially involving
activated T cells and/or depletion of T regs (upper left), DCs which express
TLS supporting cytokines/chemokines, maintain HEVs and promote antigen
presentation (upper right), mature B cells which produce antibodies, enhance
antigen presentation, act as LTi cells (lower left), and stromal cells such as
fibroblasts, macrophages and vascular cells which can act as LTo, secrete
chemotactic cytokines/chemokines and/or provide structural support (lower
right). Some or all cell types may be necessary in an intricate network of
simultaneous or consecutive interactions to generate mature TLS which in
turn enhance immunotherapy and tumor destruction. Created with
BioRender.com.
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macrophage and DCs as initiators of cancer-associated TLS is
therefore warranted.
CONCLUSIONS

Although immunotherapy has shown unprecedented success in
some cancer patients and tumor types, the challenge ahead lies in
improving the outcome for non-responsive patients. TLS as
prognostic markers for improved patient outcomes have long
been recognized (7). However, only recently have mature TLS
been shown to predict ICB success in patients (70–72). It is
imperative to now develop strategies to increase TLS frequency
and/or maturation in cancers where they naturally occur. This may
be achieved by providing further innate immune stimulation as
demonstrated for instance with STING agonist treatment (110).
Induction of de novo TLS formation holds great therapeutic
potential to overcome intrinsic immune inhibitory mechanisms
within the TME and render non-responsive, immune “cold”
tumors susceptible for ICB. However, the orchestration of
mature immune-supportive TLS formation in cancer is complex
and involves multiple cellular compartments and cytokines/
chemokines; this process may also be tumor type-dependent.
Emerging mechanistic insight from mouse tumors demonstrate
potential LTi roles for anti-tumor effectors such as T and
surprisingly B cells which requires re-definition of the role of B
cells in TLS and cancer (4). Therapeutic vessel normalization which
enables lymphocyte infiltration into tumors may also promote
access of these LTi into the TME for more effective TLS priming (3,
Frontiers in Immunology | www.frontiersin.org 9
110). Furthermore, intratumoral stromal cell types such a
monocytes/macrophages and fibroblasts are strong candidates for
LTo cells which when reprogrammed in permissive tumor “niches”
can drive TLS formation (3, 4). In this context, TNFR in addition to
LTbR signaling may prove crucial for tumor-associated TLS
formation as opposed to primarily LTbR driven processes as
seen during peripheral LN development. Overall, improving
existing TLS function or priming de novo TLS formation in
cancer to maximize ICB efficacy holds the potential to induce
more durable anti-tumor immune responses in a higher percentage
of cancer patients and warrants urgent investigation.
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