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Background: Hepatocellular carcinoma (HCC) is one of the highly heterogeneous
cancers that lacks an effective risk model for prognosis prediction. Therefore, we
searched for angiogenesis-related immune genes that affected the prognosis of HCC
to construct a risk model and studied the role of this model in HCC.

Methods: In this study, we collected the transcriptome data of HCC from The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database.
Pearson correlation analysiswas performed to identify the association between immune genes
and angiogenesis-related genes. Consensus clustering was applied to divide patients into
clusters A and B. Subsequently, we studied the differentially expressed angiogenesis-related
immune genes (DEari-genes) that affected the prognosis of HCC. Themost significant features
were identified by least absolute shrinkage and selection operator (LASSO) regression, and a
risk model was constructed. The reliability of the risk model was evaluated in the TCGA
discovery cohort and the ICGC validation cohort. In addition, we compared the novel risk
model to the previousmodels based on ROC analysis. ssGSEA analysis was used for function
evaluation, and pRRophetic was utilized to predict the sensitivity of administering
chemotherapeutic agents.

Results: Cluster A patients had favorable survival rates. A total of 23 DEari-genes were
correlated with the prognosis of HCC. A five-gene (including BIRC5, KITLG, PGF, SPP1, and
SHC1) signature-based riskmodel was constructed. After regrouping the HCCpatients by the
median score, we could effectively discriminate between them based on the adverse survival
outcome, the unique tumor immune microenvironment, and low chemosensitivity.

Conclusion: The five-gene signature-based risk score established by ari-genes showed a
promising clinical prediction value.
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INTRODUCTION

As a global health problem throughout the world, hepatocellular
carcinoma (HCC) is a highly heterogeneous disease and the third
leading cause of tumor-related deaths in cancers (Lafaro et al.,
2015). In developing countries, hepatitis B and hepatitis C viruses
account for 60 and 33% in the etiology of HCC, respectively,
compared with 23 and 20% in developed countries (Parkin,
2006). Besides, alcoholic cirrhosis (Medavaram and Zhang,
2018), non-alcoholic fatty liver disease (NAFLD) (Younossi
et al., 2016), and hereditary hemochromatosis (HH) (Cauza
et al., 2003) have also been regarded as the risk factors of
HCC. These complex factors make the treatment and
prognosis of HCC formidable tasks. In addition to surgical
procedures, targeted therapy with sorafenib and
chemoembolization are now the primary treatments for
advanced HCC (Li et al., 2021). With the rapid development
of medical technology, the systemic treatment strategy
contributed more to improve the prognosis of HCC patients
(Anwanwan et al., 2020). However, due to the later detection and
high recurrence rate of HCC, nearly 30% or less patients have the
opportunity of undergoing a comprehensive treatment leading to
worse prognosis (Dufour et al., 2013; Sberna et al., 2018). Some
survival prediction models have been constructed with clinical
baseline data and tumor biomarkers of HCC with poor accuracy
(AlSalloom, 2016). With the progress of genomics technology, the
exploration of prognostic gene signatures in HCC has shown
broad prospects. Accurate evaluation tools could not only
improve the prognosis of HCC patients but also maximize the
benefits of chemo- or immunotherapy. Therefore, the exploration
of clinical decision–making models is urgently needed.

Angiogenesis has been characterized as an essential process
in tumorigenesis because adequate metabolic supply and
nutrients are indispensable to promote tumor growth
(Folkman, 1972; Hanahan and Folkman, 1996; Morikawa
et al., 2002; Berger et al., 2005; Hanahan and Weinberg,
2011). Apart from angiogenesis-inducing agents, numerous
genes have also been proven to be modulators of angiogenesis,
such as the vascular endothelial growth factor family, hypoxia-
inducible factors, and fibroblast growth factors (Ferrara, 2009).
The VEGF family has been firstly determined as a set of core
molecules in angiogenesis. VEGF-A to -E bound to three
tyrosine kinase receptors (VEGFR-1 to -3) and resulted in
dimerization and activation of the downstream signaling
cascade. Besides, functional polymorphism in VEGF-A has
also shown significant correlation with risk of some cancers
(Qin et al., 2014). FGF-2, as the activators of angiogenesis,
could stimulate new vessels to generate and stabilize (Zhao and
Adjei, 2015). These factors contribute to the formation of neo-
vasculature in the tumor immune microenvironment (TIME),
and the characteristics of the immune contexture significantly
influence the outcome of prognosis and therapy (Zhang et al.,
2019). However, whether these angiogenesis-related immune
signatures could predict the outcome of prognosis and therapy
in HCC patients is still unknown.

In our study, we first constructed a multigene risk-score model
based on the TCGA cohort and validated it in the ICGC cohort.

Subsequently, KEGG enrichment analysis was performed to
explore the underlying mechanisms. In addition, tumor
immune infiltration was evaluated by single-sample gene set
enrichment analysis (ssGSEA). Finally, we further explored the
sensitivity of chemotherapeutic agents based on the R package
pRRophetic.

MATERIALS AND METHODS

Data Collection From TCGA-LIHC Cohort
and ICGC (LIRI-JP) Cohort
The transcriptome data and corresponding clinical data of 371 HCC
patients were downloaded from TCGA-LIHC as the discovery
cohort (https://portal.gdc.cancer.gov). Five samples with the
survival time of 0 were excluded. Similarly, the ICGC dataset
with another 231 HCC patients (https://dcc.icgc.org/projects/LIRI-
JP) was obtained as a validation cohort. A list of recognized
angiogenesis-related genes and immune-related genes was
downloaded from the MSigDB (http://software.broadinstitute.org/
gsea/msigdb) and ImmPort database (http://www.immport.org),
respectively. The flowchart is shown in Figure 1.

Cluster Analysis Based on
Angiogenesis-Related Immune Genes
The Pearson correlation coefficient was utilized to identify the
correlation between angiogenesis-related genes and immune-
related genes. In this analysis, the parameter r fluctuating from
0.4 to 0.6 had moderate correlation. p < 0.001 was statistically
significant. Therefore, the immune genes with correlation
coefficients more than 0.4 and p-value less than 0.001 were
considered angiogenesis-related immune genes (ari-genes).
Cluster analysis algorithms were utilized as a tool with the goal
of exploring hidden groupings in a large dataset and frequently used
in exploratory public data analysis in recent years. The principle of
these algorithms was to form several groupings in such a way that
data within a cluster have a highermeasure of similarity. Therefore, a
consensus clustering analysis was further performed based on the R
package ConsensusClusterPlus. To evaluate the prognostic
implication of ari-genes in the TCGA cohort, the Kaplan–Meier
survival curve was subsequently plotted to compare the OS of the
different subgroups.

Construction and Validation of Risk Model
Based on DEari-Genes Affecting Prognosis
In order to develop more powerful risk models, the R package
limma was utilized to identify the differentially expressed
angiogenesis-related immune genes (DEari-genes) with the
threshold of a false discovery rate (FDR) value < 0.05 in the
discovery cohort. Univariate Cox regression was performed to
screen OS-related DEari-genes. An interaction network for the
OS-related DEari-genes was generated by the STRING database
(https://string-db.org/). LASSO-penalized Cox regression could
improve the accuracy and efficacy of prediction on risk and be
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widely used in data mining recently (Tibshirani, 1997; Simon et al.,
2011). Those genes found to be statistically significant in the
univariate Cox regression were then used in the least absolute
shrinkage and selection operator (LASSO) algorithm for variable
selection and subsequently shrinkage with the R package glmnet. To
minimize the risk of overfitting, LASSO regression was performed
with tenfold cross validation and run for 1,000 cycles with a random
stimulation of 1,000 times to prevent overfitting effects of the model.
Next, the ari-genes with the frequency more than 100 times were
selected for Cox analysis to construct the benefit model. The risk
score of angiogenesis-related immune signatures for each patient
was calculated as follows:

f (x) � ∑
n

n�1
(expression level of genes p regression coefficient).

All patients were stratified into high-risk and low-risk groups
by the median risk score. Besides, PCA and t-SNE were

performed to explore the distribution of different groups using
R packages stats and Rtsne, respectively. Finally, the
Kaplan–Meier survival curve was plotted to compare the OS
of the two groups, and the one-, two-, and three-year ROC curves
of the risk model were drawn to evaluate the prognostic
performance of the gene signature.

Functional Enrichment Analysis
To elucidate the potential biological roles that were associated
with the established risk score, the DEGs between the high-risk
and low-risk groups were utilized to perform enrichment
analyses. We first identified the expression of differentially
expressed gene (DEG) sets between high–risk score and
low–risk score groups. The thresholds were set as |log2FC| >1.5
along with FDR <0.05. Kyoto Encyclopedia of Genes andGenomes
(KEGG) analysis was conducted by R software. The R package
clusterProfiler was utilized to explore the biological attributes of
these DEGs.

FIGURE 1 | Flowchart of this study.
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FIGURE 2 | Two clusters based on the expression level of angiogenesis-related immune genes (ari-genes) in the TCGA cohort. (A) The sample distribution changed
with k valued 2 to 9. (B) Relative change in area under the CDF curve with k � 2. (C) Consensus clustering cumulative distribution function (CDF) with k valued 2 to 9. (D)
Consensus clustering matrix for k � 2. (E) Heatmap of ari-genes between two clusters in the TCGA cohort. (F) Kaplan–Meier survival curves for clusters A and B of the
TCGA dataset (p < 0.001). A and B represent different immune statuses.
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Evaluation of Tumor-Infiltrating Immune
Cells
To analyze the immune-cell characteristics between the different
risk groups, we used single-sample gene set enrichment analysis
(ssGSEA) based on the R package gsva. The immune infiltration
statuses and relevant immune-related pathways were calculated
among the samples from the TCGA-LIHC and LIRI-JP datasets.

Exploration of the Sensitivity of
Chemotherapeutic Agents
To predict the sensitivity of chemotherapeutic agents, the R
package pRRophetic was utilized to measure the half-maximal
inhibitory concentration (IC50) of samples in different groups by
ridge regression. According to AJCC guidelines, antitumor drugs
such as cisplatin, doxorubicin, mitomycin, and sorafenib were
selected as candidate agents. The IC50 in different groups was
compared by the Wilcoxon signed-rank test subsequently.

Statistical Analysis
All statistical analysis was conducted in R software 3.6.3. The
p-value < 0.05 and p-value < 0.001 were considered statistically
significant and highly significant. FDR <0.05 was considered
statistically significant.

RESULTS

Cluster Analysis Based on
Angiogenesis-Related Immune Genes
In order to identify ari-genes, Pearson correlation coefficient
analysis was conducted. This analysis screened out 371 ari-
genes in the TCGA-LIHC cohort (cor >0.4; Supplementary
Table S1). These ari-genes were further utilized for cluster
analysis. Most of the samples in this study are concentrated
on three different positions (far left, middle, and far right).
The density is too high to present every single HCC sample.
Therefore, these patients from the discovery group were clustered
into two subgroups. As shown in Figures 2A–D, k � 2 was
considered the excellent cluster number due to its optimal
clustering stability in the TCGA cohort. Subsequently, the
heatmap of individual clusters was drawn to show the trend of
candidate gene expression (Figure 2E). Finally, the survival
analysis was performed and showed the better result. Our
result showed that cluster A patients had more favorable
overall survival (OS) rates than patients of cluster B (p <
0.001; Figure 2F).

Identification of Ari-Genes With Prognostic
Value and Establishment of Prognostic
Models
In order to establish powerful predictive models, 56 genes with
significantly differential expression were identified as DEari-
genes, and univariate Cox regression analysis was conducted
to identify OS-related gene sets (Figures 3A,B,

Supplementary Table S2). 23 genes were found to have
correlation with OS and evaluated between tumor and normal
tissues by heatmap (Figures 3C,D). An interaction network for
these genes was generated by the STRING database and showed
regulation positively with each other (Figures 3E,F). LASSO-
penalized Cox regression was performed to further analyze these
23 genes. Five candidate genes were determined and shown in
different clusters (Supplementary Figure S1). The risk score
formula reads as follows: risk score � 0.165047964281723*
mRNA expression level of BIRC5 + 0.135792073795595*
mRNA expression level of KITLG + 0.0483865964062503*
mRNA expression level of PGF + 0.067693493533674* mRNA
expression level of SPP1 + 0.0407522078712915 * mRNA
expression level of SHC1. Based on their risk scores, HCC
patients in the training set were divided into high- and low-
risk groups (Figures 4A,B). Kaplan–Meier survival analysis was
performed, and patients in the high-risk group showed
significantly shorter OS than those in the low-risk group (p <
0.001) (Figure 4E). Then, the ROC curves were plotted, and the
AUC values calculated from TCGA for 1, 2, and 3 years were
0.774, 0.715, and 0.677, respectively (Figure 4F). PCA and t-SNE
were further applied to demonstrate the distribution in discrete
directions (Figures 4C,D).

Validation of Prognostic
Angiogenesis-Related Immune Signatures
With External Dataset
To evaluate the predictive value of the identified angiogenesis-
related immune signatures from the discovery set, the ICGC
dataset was introduced as the validation group. The same formula
as that from the TCGA cohort was used to calculate the risk score
of each patient in the validation group (Figures 5A,B). As shown
in Figure 5E, the patients in the high–risk score group had a
reduced survival time compared to those in the low–risk score
group. Besides, the validation results showed that the AUC of the
angiogenesis-related immune signatures was 0.734 in 1 year,
0.725 in 2 years, and 0.738 in 3 years (Figure 5F). Similarly,
PCA and t-SNE analysis showed the same results as those in the
TCGA cohort (Figures 5C,D).

Comparison of the Five-Gene Risk Model
and Other Models
Next, we compared the performance of our established risk model
with those of four other prognostic models: the seven immune-
related–gene signature (Liu et al., 2020), the twelve-gene
signature (Ouyang et al., 2020), the HCC prognostic
evaluation model (Zhang et al., 2020), and another HCC
immune signature (Pan et al., 2020) published in recent years
(Table 1).

Independent Prognostic Value of the
Five-Gene Signature
In order to evaluate the independent prognostic predictor for OS,
univariate and multivariate Cox regression analyses were carried
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FIGURE 3 | Identification of the candidate angiogenesis-related immune genes in the TCGA discovery cohort. (A) Heatmap of DEari-genes between tumor and
normal tissues. Red color represents up-regulation of genes, and green color represents down-regulation of genes. (B) Volcano plot of DEari-genes between tumor and
normal tissues. (C) Forest plots showing OS-related ari-genes via univariate Cox regression. (D) Heatmap of OS-related ari-genes. (E) PPI network indicating the
interactions among these candidate genes. (F) Network showing the correlation of candidate genes.
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out successively. We demonstrated that the stage (p < 0.001,
HR � 2.500, 95% CI [1.721–3.632]) and risk score (p < 0.001,
HR � 4.329, 95% CI [2.700–6.941]) were significantly
associated with OS in the TCGA cohort (Figure 6A). After

correction for other confounding factors, the stage (p � 0.003,
HR � 2.492, 95% CI [1.351–4.599]) and risk score (p < 0.001,
HR � 5.999, 95% CI [2.832–12.708]) still showed statistical
differences by multivariate Cox regression analysis

FIGURE 4 | Prognostic value of the five-gene risk model in the TCGA cohort. (A) The median value of risk scores with survival and statuses of HCC patients
depends on the five-gene risk model in the TCGA cohort. (B) The distribution of risk scores with survival and statuses of HCC patients depends on the five-gene risk
model in the TCGA cohort. (C) Principal component analysis of HCC patients in the TCGA cohort. (D) t-SNE analysis of HCC patients in the TCGA cohort. (E) Survival
analysis of patients in the high-risk group and low-risk group based on the prediction risk score formula. (F) One-, two-, and three-year ROC curves of the benefit
model for assessing the prognostic performance of the gene signature in the TCGA cohort.
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FIGURE 5 | Validation of the risk model in the ICGC cohort. (A) Themedian value of risk scores with survival and statuses of HCC patients depends on the five-gene
risk model in the ICGC cohort. (B) The distribution of risk scores with survival and statuses of HCC patients depends on the five-gene risk model in the ICGC cohort. (C)
Principal component analysis of HCC patients in the ICGC cohort. (D) t-SNE analysis of HCC patients in the ICGC cohort. (E) Survival analysis of patients in the high-risk
group and low-risk group based on the prediction risk score formula. (F) One-, two-, and three-year ROC curves of the benefit model for assessing the prognostic
performance of the gene signature in the ICGC cohort.
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(Figure 6C). Therefore, the stage and risk score are presented
as independent prognostic predictors. The results were verified
in the ICGC cohort (Figures 6B,D).

Functional Analysis of the
Angiogenesis-Related Immune Signatures
To elucidate the potential influence of the classifier that was
associated with the risk score, we firstly screened DEGs between
the high-risk group and the low-risk group. KEGG pathway analyses
were further performed to compare the high- and low-risk groups.
As expected, KEGG pathway analyses showed that DEGs from
TCGA cohorts were mainly involved in several immune-related
pathways, such as cell cycle, ECM−receptor interaction, bile

secretion, IL−17 signaling pathway, pancreatic secretion, and
protein digestion and absorption (Figure 7A). Four pathways
were validated by the ICGC cohort, including ECM−receptor
interaction, bile secretion, IL−17 signaling pathway, and protein
digestion and absorption (Figure 7B). Interestingly, the TIME-
associated ECM–receptor interaction was enriched in both
cohorts (adjusted p < 0.05, Figure 7).

Evaluation of Tumor Immune Infiltration
To further explore the potential correlation between the risk score
and the TIME, we consequently evaluated immune infiltration
status among different samples. We revealed that several tumor-
infiltrating immune cells were abundant in the high-risk group. In
both cohorts, tumor-infiltrating immune cells, including aDCs,

TABLE 1 | Comparison of the risk model and other models.

Study Signature AUCs in the training set AUCs in the validation set

Our study 5-Gene 0.774, 0.715, and 0.677 (TCGA N � 365) 0.734, 0.725, and 0.738 (ICGC N � 231)
Liu et al. (2020) 7-Gene 0.778, 0.754, and 0.742 (TCGA N � 365) 0.717, 0.636, and 0.616 (ICGC N � 231)
Ouyang et al. (2020) 12-Gene 0.77, 0.73, and 0.72 (TCGA N � 365) 0.630, 0.680, and 0.660 (GEO N � 233)
Zhang et al. (2020) 9-Gene 0.805 (TCGA N � 365) 0.582 (ICGC N � 231)
Pan et al. (2020) 4-Gene 0.700, 0.652, and 0.630 (TCGA N � 365) No external validation

FIGURE 6 | Forest map of univariate and multivariate regression analyses in the TCGA discovery cohort (A, C) and the ICGC validation cohort (B, D).
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DCs, iDCs, Th2 cells, and Treg cells, showed more positive
correlation with a higher risk score, implying significant roles of
these infiltrating cells in pathogenesis or progression of HCC (all
adjusted p < 0.05, Figures 8A,C). Interestingly, we could more
effectively differentiate between two risk groups in both cohorts
based on contents of the antigen presentation process, including
aDCs, DCs, iDCs, APC_co_inhibition, APC_co_stimulation, HLA,
and MHC_class_I. After reanalysis of the KEGG pathway, we
found the ECM−receptor interaction had a relatively higher score
in the high-risk group of the TCGA and ICGC cohorts (adjusted
p < 0.05, Figure 7). Moreover, the scores of APC_co_inhibition,
APC_co_stimulation, CCR, Check−point, HLA, MHC_class_I,
and T_cell_co_stimulation were higher in the high-risk group,
while the activity of type II IFN response was just the opposite
(adjusted p < 0.05, Figures 8B,D). The result was consistent with
the findings of the KEGG analysis.

Analysis of the Correlation Between the
Constructed Risk Model and Common
Chemotherapeutics
To evaluate the risk model in the clinic for HCC treatment, we
attempted to explore associations between risk scores and the efficacy
of administering common chemotherapeutics.Our study revealed that
a lower risk score was related to higher IC50 among antitumor drugs,
such as cisplatin, doxorubicin, etoposide, andmitomycin C, whereas it
was associated with a higher chemosensitivity in sorafenib (p � 0.045)
(Figure 9). Our results indicated that the established model had a
potential predictive value for chemosensitivity.

DISCUSSION

Previous studies have reported expression levels of BIRC5 (Jin
et al., 2015), KITLG (Hu et al., 2021), SPP1 (Long et al., 2018),
and SHC1 (He et al., 2019) could serve as biomarkers for
predicting prognosis in HCC. BIRC5 is essential for cell

division and death and promotes the progression of HCC
(Wheatley and Altieri, 2019). A previous study has also
confirmed that OCT4 could enhance the expression of
BIRC5 via the inhibition of cell arrest in HCC. This promoted
the proliferation of cancer cells and reduced their susceptibility to
chemo- and radiotherapy (Su, 2016). KITLG is a ligand of the
c-kit tyrosine kinase receptor and found with multiple biological
functions in recent years. Aggressive expression of KITLG
mediated by the autocrine/paracrine stimulation-loop
mechanism has been identified in multiple cancer types such
as uveal melanoma (Lefevre et al., 2004), glioma (Sun et al., 2006),
breast cancer (Han et al., 2008), and non-small-cell lung cancer
(Théou-Anton et al., 2006; Martinho et al., 2008; Levina et al.,
2010). However, the roles of KITLG deserve further study in
HCC. Secreted phosphoprotein 1 (SPP1) plays a pivotal role in
the growth, proliferation, migration, and apoptosis of cancer cells.
Interestingly, SPP1 could promote stem-like phenotype in
tumorigenesis and further result in chemo-resistance (Liu
et al., 2016). Many studies have implicated SHC1 involvement
in signaling by epidermal growth factor receptor-2 (HER-2),
RAS/MAPK, and PI3K, all of which have a positive effect on
tumorigenesis (Das and Vonderhaar, 1996; Fox et al., 2009;
Hudson et al., 2014). In recent years, some researchers have
proposed that dysregulation of SHC1 might result from extensive
epigenetic reprogramming that interferes with normal
interactions and solid matrix, mediating metastasis (Terada,
2019). However, the prognosis and roles of PGF have not
been reported. These factors were screened out in the
univariate Cox regression analysis and found correlated with
OS in this study. These results significantly indicated the
possibility of constructing a risk model with these ari-genes.

In this study, a risk model based on angiogenesis-related
immune signatures was constructed to evaluate the prognosis
of HCC patients, immune infiltration status, and drug
chemosensitivity to HCC. First, we retrieved raw data of
mRNA from the TCGA-LIHC cohort, and the samples with
incomplete clinical information were eliminated. Co-expression

FIGURE 7 | The significant KEGG pathways in the TCGA cohort (A) and ICGC cohort (B) are displayed.
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analysis was performed to classify ari-genes, and the survival curve
based on individual clusters showed significant difference. However,
the survival curve is crossed, and a great deal of genes limit its clinical
application. Therefore, it is necessary to construct an easy-to-use and
powerful model. Second, we performed univariate analysis to screen
OS-related DEari-genes. These genes were introduced to a modified
Lasso penalized regression to determine candidate genes. Third, we
calculated each AUC value of ROC at the time of 1, 2, and 3 years to
differentiate the high- and low-risk groups among patients with HCC
and eventually get the optimal model. The risk model integrating the
five-gene signature was further validated in the ICGC cohort.
Compared with some previous models, our five-gene risk model
showed better performance in the evaluation of prognosis value,
with the AUC value of 0.774. Besides, the stage and risk score are
presented as independent prognostic predictors. The results were
verified in the ICGC cohort. Fourth, we evaluated this novel model
under tumor-infiltrating immune cells and chemotherapy. Ourmodel

proved to be significant in differentiating between high and low
chemosensitivity to HCC. Thus, the present study provides a more
precise tool in clinical decision-making.

The tumor immunemicroenvironment (TIME) has been proven
to exert important effects on the treatment response (Teng et al.,
2015; Li et al., 2020). Various immune cells might function as a
tumor inhibitor or promoter and play a potential role in the
regulation of HCC (Lei et al., 2020). Mounting data suggest that
angiogenesis is involved in the interactions among tumor cells,
various tumor-related stromal cells, and their bioactive products,
which revealed that pathological angiogenesis was regulated in a
variety of ways (Balkwill et al., 2012; De Palma et al., 2017). Tumor-
associated macrophages (TAMs) have been proven to mediate
angiogenesis by secreting growth factors and inflammatory
factors, thereby activating vascular cell proliferation (De Palma
et al., 2017). Regarding the regulatory function of lymphocytes,
some evidence showed that T cell subsets (Th1, Treg (Motz and

FIGURE 8 | Comparison of the immune status between the high-risk group and the low-risk group in the TCGA cohort (A, B) and ICGC cohort (C, D). The
difference of 16 immune cells (A, C) and 13 immune-related functions (B, D) is based on ssGSEA scores. *p < 0.05; **p < 0.01; ***p < 0.001.
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Coukos, 2011) andCD4+ Th2 cells (DeNardo et al., 2009)) could also
play pro-angiogenesis roles through different mechanisms. Previous
studies showed that poor prognosis of cancer patients is greatly
correlated with the proportion of M2-like TAMs (Ni et al., 2019;
Yan et al., 2020; Wang et al., 2021; Ye et al., 2021). Therefore,
whether high risk score is positively correlated with M2-like

macrophages needs to be further confirmed. Besides, NK cells
(Bruno et al., 2014) and DC cells modulated vascularization
directly or indirectly. Interestingly, we could more effectively
differentiate between two risk groups in both cohorts based on
contents of the antigen presentation process. Some studies
indicated that DCs could stimulate some specific T cell

FIGURE 9 | Evaluation of chemosensitivity by the risk model. Themodel showed high risk scores were associated with a lower IC50 for chemotherapeutics such as
(A) cisplatin, (B) doxorubicin, (C) etoposide, and (E) mitomycin C, whereas they were related to a higher IC50 for (D) sorafenib.
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responses and further kill a bit more cancer cells via the antigen
presentation process (Zhou et al., 2019). In this study, we found
several tumor-infiltrating immune cells, including aDCs, DCs,
iDCs, Th2 cells, and Treg cells, showed more positive
correlation with a higher risk score. DCs and T cell subsets
were mainly enriched in the high-risk group, which is
consistent with that reported in the previous studies. Dendritic
cells (DCs) are the main regulators of immune tolerance or
response and could enhance the efficacy of immune check-point
inhibitors in DC-dependent ways (Martinek et al., 2019). Besides,
DCs and macrophages are responsible for capturing antigens on
MHC-I for activating CD8+ T cells and initiating immune
responses, thereby overcoming resistance to immunotherapies
(Banchereau and Steinman, 1998; Guerriero, 2019). However, in
this study, the increased infiltration of DCs was not associated with
higher proportions of CD8+ T cells in the high-risk group,
implicating a compromised antigen presentation function in the
high-risk group. Besides, the previous study indicated that the
increased infiltration of Treg cells correlates with CD8+ T cell
impairment and adverse survival in HCC patients, which is
consistent with present results (Fu et al., 2007). Therefore,
despite the antigen presentation correlation with increased co-
stimulator and MHC class I expression in the high-risk group, our
results indicate that tumor-infiltrating immune cells, including
aDCs, DCs, iDCs, Th2 cells, and Treg cells, showed more positive
correlation with a higher risk score, implying significant roles of
these infiltrating cells in pathogenesis or progression of HCC.

Although the underlying mechanisms of tumor immunity have
been studied in the past few years, the potential modulation between
tumor immunity and angiogenesis remains elusive (McKelvey et al.,
2018). KEGGpathway analysis linked ECM–receptor interactionwith
immune response. The ECM–receptor interaction signal pathway was
involved in progression of various cancers (Andersen et al., 2018; Yan
et al., 2018; Bao et al., 2019). As is known to all, the extracellularmatrix
(ECM) not only forms the skeleton of tissue but also promotes
malignant phenotypes, such as maintaining proliferation signals,
promoting cell survival, migration, differentiation, and angiogenesis,
and regulating immune function (Pickup et al., 2014). The
transformation of normal cells of epithelial cells into malignant
cells could promote metastasis and mediate poor prognosis, which
might be the result of the stiffness of ECM (Grasset et al., 2018; Katara
et al., 2018). Interestingly, ECM modification, especially stiffness, was
also associated with resistance of chemotherapeutic drugs. ECM
stiffness serves as a barrier and impedes the effective uptake and
delivery of drugs in the local environment of the tumor (Najafi et al.,
2019), which further demonstrates the causes of the resistance of
chemotherapies.Meanwhile, our riskmodel revealed that the high risk
was associated with high sensitivity of chemotherapy drugs, such as
cisplatin, doxorubicin, etoposide, gemcitabine, and mitomycin C,
except for sorafenib and vinblastine. These results could guide
chemotherapeutic agents’ decision-making in clinical practice.

To the best of our knowledge, this is the first study identifying
prognosis-related ari-genes and developing the risk model of
prognosis and chemosensitivity in patients with HCC. However,
limitations of this study should be mentioned. First, our risk
model had a certain predicative value, but it was constructed
and validated with retrospective data from TCGA and ICGC

public databases. Some prospective studies are needed to verify
its clinical utility. Nevertheless, these public databases are well
characterized owing to containing the largest sample size up to
now. Second, the relationship between the risk score and
immune activity should be experimentally addressed in the
future. Furthermore, subsequent studies should focus on the
mechanism of drug response and acquired resistance to
chemotherapy.

CONCLUSION

In summary, we constructed a risk model based on ari-genes to
assess prognosis, immune infiltration status, and chemotherapy
sensitivity in HCC. This model would support clinical decision-
making in evaluation of prognosis and drug treatment.
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