{4 genes bPy

Article

MicroRNAs in Vitis vinifera cv. Chardonnay Are
Differentially Expressed in Response to
Diaporthe Species

Ales Eichmeier 1*(0), Tomas Kiss !, Eliska Penazova 1, Jakub Pecenka !, Akila Berraf-Tebbal 1,
Miroslav Baranek !, Robert Pokluda 1, Jana Cechova !, David Gramaje 2 and
Dariusz Grzebelus 13

1 Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334,

69144 Lednice, Czech Republic; tomas.kiss@mendelu.cz (T.K.); eliska.penazova@mendelu.cz (E.P.);
jakub.pecenka@mendelu.cz (J.P.); berraf.a@hotmail.fr (A.B.-T.); miroslav.baranek@mendelu.cz (M.B.);
robert.pokluda@mendelu.cz (R.P.); jana.cechova@mendelu.cz (J.C.); d.grzebelus@ogr.ur.krakow.pl (D.G.)
Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones
Cientificas—Universidad de la Rioja—Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logrofio, Spain;
david.gramaje@icvv.es

Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture,

University of Agriculture in Krakow, 31425 Krakow, Poland

*  Correspondence: ales.eichmeier@mendelu.cz; Tel.: +420-519367315

check for

Received: 11 October 2019; Accepted: 5 November 2019; Published: 7 November 2019 updates

Abstract: Diaporthe species are important pathogens, saprobes, and endophytes on grapevines.
Several species are known, either as agents of pre- or post-harvest infections, as causal agents
of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots,
wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding
endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional
gene regulation, during plant development and responses to biotic and abiotic stresses. In this
study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe
bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational
methods to predict putative miRNA targets in order to explore the involvement of possible pathogen
response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated
through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new
miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs
were revealed. Our results contribute to further understanding the role miRNAs play during plant
pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines
infected by D. eres and D. bohemiae.
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1. Introduction

The genus Diaporthe (Sordariomycetes, Diaporthales, Diaporthaceae) is an extremely diverse and
important group of fungi. It was proposed by Nitschke in 1870, with Diaporthe eres as the type species.
This genus includes species that are pathogens, endophytes, and saprobes on hundreds of host plants,
comprising agricultural crops, ornamental plants, and fruit and forest trees [1-4]. Diaporthe species are
considered causal agents of grapevine trunk diseases [5]. Several species are well-known pathogens
worldwide and are responsible for losses on a broad range of plants and economically important
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crops, including almond, apple, camellia, citrus, cucurbits, eggplant, grapevine, sunflower, peach, pear,
persea, plum, soybean, and cranberries [3,6-18].

Numerous species have been described as causal agents of pre- or post-harvest infections. They
are responsible for different disease symptoms, such as swelling arm, trunk cankers, leaf spots, rots,
wilts, and cane bleeding [3,19-23]. Interestingly, many Diaporthe species can occur at the same time on
diverse hosts or even on the same host or lesion [19,21,24,25].

Species in this genus are important pathogens of grapevine, causing cankers and other dieback
symptoms in all major viticulture regions worldwide [24,26]. Several studies reported D. ampelina
(=Phomopsis viticola) as the main species associated with Phomopsis cane and leaf spot all over the world.
However, other Diaporthe species also have the ability to produce severe symptoms on grapevine,
including D. eres, D. ambigua, D. foeniculina, D. amygdali, D. australafricana, D. baccae, D. celeris, D. eres,
D. foeniculina (as D. neotheicola), D. helianthi, D. hispaniae, D. hongkongensis, D. hungariae, D. kyushuensis,
D. perjuncta, D. phaseolorum, D. rudis, and D. sojae [4,24,26,27]. Their pathogenicity on grapevine has
been confirmed on detached shoots, with a high variability in virulence [4,19,27]. However, certain
environmental factors may accentuate or reduce the pathogenicity of the fungi. In addition, a high
diversity of Diaporthe species observed in diseased vines does not exclude the possibility of a synergistic
action of several species in causing disease. Moreover, this variability in virulence could be explained by
the fact that plants produce many secondary metabolites, some of which have antimicrobial properties
and may protect the plant against attacks [28]. For instance, grapevine develops various mechanisms
at a physiological and molecular level in order to cope with the difficulties with biotic and abiotic
factors in their environment [29]. Important progress has been made to understand plant-pathogen
interactions and the multiple gene regulatory systems that they use during plant defense responses.
Axenic cultivation of Diaporthe spp. allows direct in vivo investigation of molecular interactions
postulated to exist between Diaporthe spp. and their plant hosts [14]. Additionally, high-throughput
sequencing (HTS) of transcriptomes, as well as proteomics, has served as a valuable approach to gain
new insights into physiological, biochemical, and molecular mechanisms underlying Diaporthe spp.
disease symptom development in other plant species, such as asperge (Asparagus spp.) or rice [30-32].

A class of small non-coding endogenous RNAs known as microRNAs (miRNAs) plays a major
role in post-transcriptional gene regulation during plant development and plant responses to biotic and
abiotic stresses [33,34]. Mature miRNAs are typically 19 to 24 nt in length and originate from miRNA
(MIR) genes that are transcribed by RNA polymerase II. The transcripts, known as primary miRNAs
(pri-miRNA), form imperfect fold-back hairpins that are cleaved by RNase IlI-like Dicer 1 (DCL1) to
produce miRNA precursors (pre-miRNA). Each pre-miRNA contains one or more short intermediate
complementary miRNA/miRNA duplexes [35]. These duplexes are then cleaved by DCL1 from the
stem region and processed inside the nucleus to be exported to the cytoplasm, where the leading
miRNA is incorporated into the RN A-induced silencing complex (RISC). When associated with RISC,
guided binding of the miRNA to its complementary target mRNA(s) or non-coding trans-acting siRNA
(TAS) transcript(s) occurs [33]. This facilitates either translational inhibition or degradation of target
mRNA(s) or slicing of TAS transcripts that leads to generation of trans-acting siRNAs (tasiRNAs).
Target degradation occurs through endonucleolytic cleavage by the RISC core protein Argonaute
1 (AGO1) [36-38]. The mechanism of RNA silencing in plants is also used in advanced detection
techniques of viruses [39].

It has been suggested that the miRNA pathway contributes to pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI), which refers to a basal defense response upon recognition
of certain pathogenic elements. To date, the miRNA defense responses in Arabidopsis, rice, and a broad
plant host range infected by pathogenic fungus have been evaluated [40-42], but none of these studies
have been performed on the interaction of grapevine-trunk disease (GTD) pathogens.

The availability of two drafts of V. vinifera cv. Pinot Noir genome sequences obtained from
high-throughput data [43,44] has enabled rapid discovery of miRNAs that further supports the efforts
to explore small RNA (sRNA)-based regulatory networks in grapevine. Computational analyses of



Genes 2019, 10, 905 30f 19

high-throughput sequencing data, followed by experimental validation, have been used to identify
highly conserved miRNAs, some of which play important roles in grapevine development [45,46]. To
date, 186 mature grapevine miRNA sequences from 47 different miRNA families have been deposited
in miRbase: the microRNA database [47].

Here, we hypothesized that D. eres, as a well-known GTD pathogen, would trigger a strong
response of the miRNA machinery while D. bohemiae, described as non-pathogenic on grapevine,
would not markedly enhance the expression of miRNAs associated with disease symptoms. We used
computational resources for the in silico prediction and annotation of putative miRNA targets to explore
the involvement of possible pathogen response pathways. An understanding the sSRNA-mediated
gene regulation may be crucial to the understanding of gene regulatory pathways involved in a
range of stress-regulated physiological processes. Our results provide insight into miRNA-mediated
pathogenesis in V. vinifera and may uncover new disease control strategies for molecular breeding.

2. Materials and Methods

2.1. Plant Material

Cultivar Chardonnay clone CHAR PO-156/4 was used in this study. Shoots were sampled at the
end of the growing season in 2018 and buds with meristems were used for in vitro micropropagation.
In vitro cultures were established using nodal segments grown on the Murashige and Skoog medium
containing 1.33 pM 6-benzylaminopurine (BA) and 0.57 uM indole-3-acetic acid (IAA). The cultures
were maintained at 23 °C with a 16/8 h cycle of light and dark. The experimental plantlets were
transferred to a fresh medium after three weeks. Each plantlet was placed into a separate cultivation
vessel. Six-week-old cultures were rooted on the MS medium with 0.81 uM naphtalene acetic acid
(NAA) [48]. We used in vitro plants because we hypothesized that a less influenced environment
would be reached by using controlled abiotic and biotic factors compared to in vivo.

2.2. Fungal Isolates

Single-spore isolates of D. bohemiae strain CBS 143347 and D. eres strain CPC 28220 were used in
this study. These two species were isolated from grapevine showing GTD symptoms in the Czech
Republic [4]. The isolates were placed on potato dextrose agar (PDA) and cultivated for 10 days at
25 °C in the dark.

2.3. Plant Inoculation

Trials were conducted on six-week-old rooted vines. Leaves of plantlets were inoculated with a
3-mm plug of 10-day-old cultures of either D. bohemiae (DB) or D. eres (DE) using sterile plastic tips.
Leaves of control plants (C) were inoculated with uncolonized sterile PDA plugs. One leaf per plant
was inoculated and five plants per treatment were used. The experiment was repeated after two weeks.

2.4. RNA Extraction and Quality Control

RNAs were extracted from all inoculated and control plants 10 days after inoculation using
PureLink™ Plant RNA Reagent (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s instructions. The total RNA yield and quality were measured using a Bioanalyzer 2100
(Agilent Technologies, Palo Alto, CA, USA) using the Agilent RNA 6000 Nano Kit and Modulus™
Single Tube Multimode Reader (Turner Biosystems, Sunnyvale, CA, USA) using the Quant-iT™ RNA
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Samples with an RNA Integrity Number
(RIN) below 7 were excluded from further analysis. Only RNA concentrations higher than 5 ng pL~!
were used, and all samples at higher concentrations were diluted to 5 ng pL.~! based on fluorimetry.
After RNA quantification, samples were pooled in groups according to the variant of inoculation,
resulting in a total of five replicates per variant.
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2.5. Library Preparation and Sequencing

A small RNA library was constructed using the TruSeq small RNA library preparation kit (Illumina,
San Diego, CA, USA) and purification was done with the TailorCut Gel Extraction Tool Set (SeqMatic,
Fremont, CA, USA). The quality and quantity of the library were determined using the Agilent High
Sensitivity DNA Kit (Agilent, Santa Clara, CA, USA). The quantity of libraries was also determined
by a Modulus™ Single Tube Multimode Reader (Turner Biosystems, Sunnyvale, CA, USA) using
a Quant-iT™ dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and finally with a
MCNext™ SYBR® Fast gqPCR Library Quantification Kit (MCLAB, San Francisco, CA, USA) used
with Rotor-Gene 3000 (Corbett Research, Sydney, Australia). All the kits were used according to the
manufacturer’s instructions. The libraries were pooled according to fluorimetry as 2 nM, supposing
that the final small RNA fragments were ~150 bp.

For the sequencing run, a final pooled library of small RNAs consisted of three pooled
samples/variants per one run. Sample C was labelled with index RPI5 (ACAGTG), sample DB
with index RPI6 (GCCAAT), and sample DE with index RPI7 (CAGATC). The second run with
repetitions also consisted of three pooled samples. Sample C was labeled with index RPI12 (CTTGTA),
DB with index RPI10 (TAGCTT), and DE with index RPI11 (GGCTAC).

The libraries were sequenced with the MiniSeq instrument (Illumina, San Diego, CA, USA) using
the MiniSeq High Output Reagent Kit, 75-cycles (Illumina, San Diego, CA, USA) providing 36-nt
long reads.

2.6. Bioinformatics and Data Evaluation

The MiniSeq reads were demultiplexed using the Illumina bcl2fastq2 Conversion Software
v2.20.0.422 (llumina). The sequence quality was controlled by FastQC-0.10.1 [49]. Then, the reads
were transformed to the fasta format using fastq_to_fasta (fastx-0.0.14, http://hannonlab.cshl.edu/fastx_
toolkit/) and a Phred score was assigned a Q score of 30 (Q30); reads were trimmed using fastx_clipper
(fastx-0.0.14), and the unique reads were obtained using fastx_collapser (fastx-0.0.14). Datasets
corresponding to the same treatment were merged into one file. The total number of known miRNAs
was counted and annotated using the CLC Genomics Workbench 6.5.1 (CLC Bio, Aarhus, Denmark).

2.7. miRNA Target Prediction and Functional Annotation

The unique (non-redundant) 19 to 25 nt sequences, across all six libraries representing the
three treatments in two replicates, in total included the pool of five plants per treatment. Thus,
30 grapevine plants were used in this study. Datasets were submitted to the psRNATarget Analysis
server (http://plantgrn.noble.org/psRNATarget/) to predict miRNAs [50]. The pssRNAMiner web
server (http://bioinfo3.noble.org/pssRNAMiner/) [51] was used to identify both the clusters of phased
small RNAs as well as the potential phase initiator. The CLC Genomics Workbench 6.5.1 (CLC Bio,
Aarhus, Denmark) was used to calculate the abundance of unique miRNAs, and counting of the reads
was done using UNIX custom scripts. The pipeline is outlined in Figure 1.
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Figure 1. Flow chart of data processing.

2.8. Validation of miRNA Expression Profiles by Real-Time RT-gPCR

Small RNA sequencing on a MiniSeq system provided input data for the selection of sequences
based on their different expression levels and prediction of fold-back structures. Stem-loop reverse
transcription quantitative PCR (RT-qPCR) assays were performed according to the methods of
Chen et al. [52] to validate the small RNA sequencing results. High-quality total RNA was prepared as
described above. The total RNA of samples from each variant and replication were pooled equally
according to the volume. Replications of each variant were then pooled according to the RNA weight.
Finally, one pooled total RNA was prepared for each variant. For each miRNA, a 20-pL reverse
transcription reaction was prepared containing 100 U Superscript III reverse transcriptase (Invitrogen,
Carlsbad, CA, USA), 20 U RiboLock RNase inhibitor (Thermo Scientific, Waltham, MA, United States),
1x first-strand buffer, 5 mM DTT, 500 nM dNTPs, 1 uM miRNA-specific stem-loop RT primer, and 0.8 pg
pooled total RNA. Reverse transcription cycling conditions were as follows: 30 min at 16 °C, 60 min at
42 °C, and heat inactivation for 10 min at 75 °C. gPCR was performed using the Universal ProbeLibrary
(UPL) probe assay with UPL probe #21 (Roche Diagnostics, Basel, Switzerland). Each 10 pL of reaction
mixture was prepared in triplicate and contained 1 uL. cDNA, 1x Colorless GoTaq Reaction Buffer
(Promega, Madison, WI, USA), 2 mM MgCl, (Promega), 1 U GoTaq G2 DNA Polymerase (Promega),
0.5 uM miRNA-specific forward primer, 0.5 uM universal reverse primer, 0.2 uM UPL probe, and
nuclease-free water. The primer sequences are provided in Table S1. A control reaction, without
a cDNA template, was included for each miRNA. Based on results from the geNorm analysis [53]
(qBasePLUS v3.2, Biogazelle, Ghent, Belgium), miR166¢c was chosen as a reference to normalize miRNA
expression levels. The Pfaffl method [54] was used for normalization to the reference miRNA. PCR
amplification was performed in an ECO Real-Time PCR System (Illumina, San Diego, CA, USA), in
which the baseline and threshold cycles (Cq) were automatically determined with Eco Real-Time PCR
System Software. Cycling conditions were as follows: 95 °C for 2 min, 40 cycles at 95 °C for 15 s, and
60 °C for 1 min. Relative miRNA expression analysis was performed using qBasePLUS v3.2 software
(Biogazelle, Ghent, Belgium) [55].

3. Results

3.1. Plant Inoculation

Plants inoculated with D. eres did not show any symptoms on the first, third, and sixth day after
inoculation (dai). However, small lesions on the leaves appeared on 10 dai (Figure 2). In contrast, plants
inoculated with D. bohemiae showed visible symptoms on the leaves only 3 dai (Figure 2). Subsequently,



Genes 2019, 10, 905

60of 19

brown necrosis occurred on the leaves within 6 dai. From the 10th day, more than half of the plants
died. The control plants did not develop any symptoms (Figure 2).

1 dai’ 3 dai 6 dai 10 dai

Figure 2. Treatments used in the study. * days after inoculation.

3.2. The Abundance of sSRNAs in Grapevines in Vitro

In the present study, libraries representative of sSRNA populations extracted from grapevine
treatments DE, DB, and C, and sequenced by Illumina SBS technology, contained DE = 8.3 x 10°,
DB = 5.8 x 10%, and C = 4.6 X 10° reads at Q30. After clipping, collapsing, and normalization per
10° reads, DE, DB, and C contained 2,178,138; 3,399,118; and 1,855,572 reads, respectively. The most
abundant sSRNAs were the 20- (DB) and 21-nt class (DE, C) (Figure 3). The lowest abundancy was
recorded in 25-nt SRNAs through all the treatments. The most plant-decaying treatment, DB, had a
similar 22- and 23-nt class profile as the DE treatment and C. A balanced sSRNAs read distribution was
recorded regarding the 22- and 23-nt sSRNAs between all three treatments (Table 1).

Figure 3. Bar plot depicting the size distribution of unique reads, psRNATarget.
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Table 1. Numbers of size distributions of unique reads normalized per 1,000,000.

Blue—DE,

19 20 21 22 23 24 25 Total
DE 287,897 436,557 518,754 330,042 331,108 159,806 113,975 2,178,138
DB 563,942 801,579 656,600 556,699 467,013 211,409 141,876 3,399,118
C 104,300 362,066 540,728 320,848 236,014 202,736 88,881

1,855,572
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3.3. New and Conserved miRNAs Identified in Grapevine cv. Chardonnay in Vitro

Sequence analysis coupled with the fold-back structure predictions for potential novel miRNAs
led us to identify 41 new candidate miRNAs from grapevine (Table 2). Regarding the different
expression levels, which are highlighted on the Figure 4, it is supposed that two miRNAs, 32
(CCCAGUCCCGAACCCGUCGQG) and 41 (CCGGCGAUGCGCUCCUGGCC), are linked with the
pathogenicity of DB. A gene encoding a Golgi protein [56] involved in several signaling events could
be a putative target of miRNA 32. miRNA 41 is probably associated with the expression of RPP13-like
protein 1, a potential disease resistance protein. Representation of the newly identified miRNAs within
the treatments is presented in Table 54.

—t

0
C

Figure 4. Stacked chart of normalized read counts per treatments DE, DB, and C. The plot was generated
based on CLC Genomics Workbench normalized reads, generating novel small matured RNAs, and
depicted using PAST version 3.25. The numbers on axis X correspond to Table 2, column miRNA name.
Percentages are depicted on axis Y.

A total of 136 conserved miRNAs were identified in grapevine cv. Chardonnay in vitro (Table S2).
Among them, eight differentially expressed known grapevine miRNAs were revealed (Figure 5).
Representation of the known miRNAs within the treatments is depicted in Figure 6, Table S3. The
most abundant miRNAs were identified in the control, a more than 80% abundance in the case of
Vvi-miR166¢, Vvi-miR166a, Vvi-miR403a, and Vvi-miR156b,c,d. Distinctly, in the most affected DB
treatment, Vvi-miR166a was the most abundant.
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Table 2. Putative miRNAs identified using CLC Genomics WB 6.5.1, putative targets determined by blastN/NCBI and by psRNATarget with the possible type

of inhibition.
. . . o . Target Acc. Based on the Highest Expectations e

miRNA Name miRNA Sequence Putative Target Identified Using NCBI (E), psRNA Target Inhibition
similar to aspartate aminotransferase; similar to

2 CCCAGUCCCGAACCCGUCGGC Aspartate aminotransferase 2, transcript variant chr11.gff3_ MRNA_VIT_11s0149g00200.t01 Cleavage
X9, misc_RNA, importin « isoform 9

3 AGUUACUAAUUCAUGAUCUGGC importin o isoform 9 chr2.gff3 MRNA_VIT_02s0033g00980.t01 Cleavage

5 CCAGUCCCGAACCCGUCGGC Vitis vinifera contig VV78X128415.10, whole chr7_random.gff3_MRNA_VIT_0750151g00980.t01 ~ Cleavage
genome shotgun sequence
Vitis vinifera microRNA MIR166a (MIR166A),

6 UCUCGGACCAGGCUUCAUUCC microRNA, http://www.mirbase.org/cgi-bin/ chr18.gff3_ MRNA_VIT_18s0075g00480.t01 Translocation
mature.pl?mature_acc=MIMAT0020658

8 GGUGGCUGUAGUUUAGUGGU Vitis vinifera contig VV78X038801.3, whole chrl8.gff3 MRNA_VIT_1850001g12770.t01 Cleavage
genome shotgun sequence

9 CGGUGGACUGCUCGAGCUGC Vitis vinifera contig VV78X196950.19, whole chr15.gf3_MRNA_VIT_1550048g02810.t01 Translocation
genome shotgun sequence

10 CUAACAGACCGGUAGACUUGAAC Vitis vinifera contig VV78X130314.7, whole chr15.gff3_MRNA_VIT_155004802810.t01 Translation
genome shotgun sequence

12 CCCAGUCCCGAACCCGUCGGCU Vitis vinifera contig VV78X156561.10, whole chrl1.gf3_MRNA_VIT_1150149500200.t01 Cleavage
genome shotgun sequence

13 GCGCCUGUAGCUCAGUGGA Vitis vinifera contig VV78X046944.3, whole chr8.gff3_MRNA_VIT_085000707620.t01 Cleavage
genome shotgun sequence

14 UUCAUGGACGUUGAUAAGAUCCU Vitis vinifera subsp. sylvestris chloroplast DNA, -} 7 o3 MRNA_VIT_0750005¢00750.101 Cleavage
complete genome
PREDICTED: Vitis vinifera pentatricopeptide

15 UAACAGACCGGUAGACUUGAAC repeat-containing protein At5g50990 chr18.gff3_ MRNA_VIT_18s0001g09480.t01 Cleavage
(LOC100247459)
Vitis vinifera microRNA MIR408 gene, complete

16 UGCACUGCCUCUUCCCUGGCU sequence, http://www.mirbase.org/cgi-bin/mirna_  chrl18.gff3 MRNA_VIT_18s0001g15240.t01 Cleavage
entry.pl?acc=MI0005917
PREDICTED: Vitis vinifera ATP synthase subunit

17 CCUAACAGACCGGUAGACUUGAAC «, chloroplastic-like (LOC109124299), mRNA chr18.gff3_ MRNA_VIT_18s0001g11300.t01 Cleavage

18 UCCUAACAGACCGGUAGACUUGAAC Vs vinifera subsp. sylvestris chloroplast DNA, ) 1 o3 MRNA_VIT_1850001g11300.t01 Cleavage

complete genome
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Table 2. Cont.
miRNA Name miRNA Sequence Putative Target Identified Using NCBI Target Acc. Based on the Highest Expectations Inhibition
(E), psRNA Target

19 UCCUAACAGACCGGUAGACUUGAAC Vs vinifera subsp. sylvestris chloroplast DNA, ) 1 o3 MRNA_VIT_1850001g11300.t01 Cleavage
complete genome
Vitis vinifera ankyrin repeat-containing protein

20 UUAGAUGAUCAUCAACAAACU NPR4-like (LOC100260982), transcript variant X10, chr7.gff3_MRNA_VIT_07s0005g02430.t01 Cleavage
mRNA
PREDICTED: Vitis vinifera ATP synthase subunit

21 CAGACCGGUAGACUUGAAC «, chloroplastic-like (LOC109124299), mRNA chr19.gff3_ MRNA_VIT_19s50090g01480.t01 Cleavage
PREDICTED: Vitis vinifera ATP synthase subunit

23 ACAGACCGGUAGACUUGAAC , chloroplastic-like (LOC109124299), mRNA chr18.gff3_ MRNA_VIT_18s0001g09480.t01 Cleavage

24 UUCCACAGCUUUCUUGAACUU Vitis vinifera microRNA MIR3%6D (MIR396B), chr15.gff3_MRNA_VIT_1550021g02580.t01 Cleavage
PREDICTED: Vitis vinifera ATP synthase subunit

25 AACAGACCGGUAGACUUGAAC &, chloroplastic-like (LOC109124299), mRNA chr18.gff3_ MRNA_VIT_1850001g09480.t01 Cleavage

2 CCGGCGAUGCGCUCCUGGCC Vitls vinifera contig VV78X197078.6, whole chr12.gf3_MRNA_VIT_1250034g02480.t01 Cleavage
genome shotgun sequence

27 CAGUCCCGAACCCGUCGGC Vitis vinifera contig VV78X156561.10, whole chrl1.gff3_MRNA_VIT_11s0149g00200.t01 Cleavage
genome shotgun sequence
PREDICTED: Vitis vinifera kinase-interacting

28 UGUUGAGCUCACCUUGUACCC family protein (LOC100246194), transcript variant  chr9.gff3_ MRNA_VIT_09s0002g03120.t01 Translation
X1, mRNA

30 CGGUGGACUGCUCGAGCUGCU Vitis vinifera contig VV78X156561.10, whole chrl5.gff3 MRNA_VIT_15s50048g02810.t01 Translation
genome shotgun sequence
PREDICTED: Vitis vinifera kinase-interacting

31 GUUGAGCUCACCUUGUACCCA family protein (LOC100246194), transcript variant  chr9.gff3_ MRNA_VIT_09s0002g03120.t01 Translation
X1, mRNA
Vitis vinifera contig VV78X128415.10, whole
genome shotgun sequence, mRNA sequence acyl

32 CCCAGUCCCGAACCCGUCGG CoA binding protein domain containing protein 3  chr6.gff3_MRNA_VIT_06s0004g04740.t01 Cleavage
which is a Golgi protein involved in several
signalling events

33 UGAAGGUCCAAGGCCGAGGCU PREDICTED: Vitis vinifera uncharacterized chrl4.gff3_MRNA_VIT_14s0006g03100.t01 Cleavage

LOC100855078 (LOC100855078), ncRNA




Genes 2019, 10, 905

Table 2. Cont.

10 of 19

Target Acc. Based on the Highest Expectations

miRNA Name miRNA Sequence Putative Target Identified Using NCBI (E), psRNA Target Inhibition

34 GGGAUGGGUCGACCGGUCC Vitis vinifera contig VV78X071755.8, whole chr12.gff3 MRNA_VIT_1250034g01520.t01 Cleavage
genome shotgun sequence
PREDICTED: Vitis vinifera uncharacterized

35 UCGGAUAAAGGGUUAUACAUC LOC100853315 (LOC100853315), transcript variant  chr6.gff3_ MRNA_VIT_06s0009g03800.t01 Cleavage
X1, ncRNA

36 UGCACUGCCUCUUCCCUGGC Xlﬁg’&fzm microRNA MIR408 (MIR408), chr18.gff3 MRNA_VIT_1850001g15240.t01 Cleavage
PREDICTED: Vitis vinifera lysosomal Pro-X

37 CUGGAUUAUGACUGAACGCCU carboxypeptidase (LOC100244772), transcript chr4.gff3_MRNA_VIT_0450210g00160.t01 Cleavage
variant X2, mRNA

38 UUCCACAGCUUUCUUGAACU Xlﬁg’&iim microRNA MIR396¢ (MIR396C), chr15.gff3 MRNA_VIT_15s50021g02580.t01 Cleavage
PREDICTED: Vitis vinifera scopoletin

40 AGUUACUAAUUCAUGAUCUGGCC glucosyltransferase (LOC100260498), mRNA chr2.gff3_MRNA_VIT_02s0033g00980.t01 Cleavage

4 CCGGCGAUGCGCUCCUGGCC mRNA sequence with expression of RPP13-like 115 g3 MRNA_VIT 1250034502480.01 Cleavage
protein 1, potential disease resistance protein
PREDICTED: Vitis vinifera putative disease

42 CCGGCGAUGCGCUCCUGGCCU resistance RPP13-like protein 1 (LOC100258269),  chr12.gff3_MRNA_VIT_1250034g02480.t01 Cleavage
transcript variant X4, mRNA
PREDICTED: Vitis vinifera auxin efflux carrier

43 ACCGGCGAUGCGCUCCUGGCCU component 3 (LOC100268124), mRNA chrl.gff3 MRNA_VIT_01s0011g01820.t01 Cleavage
PREDICTED: Vitis vinifera oxalate-CoA ligase

44 GCCCGUGGAGACGUCGUCGCCUCG (LOC100256632), mRNA chrl.gff3_ MRNA_VIT_01s0011g00770.t01 Cleavage
PREDICTED: Vitis vinifera uncharacterized

45 CGCCGUCCGAAUUGUAGUCUGGA LOC109123385 (LOC109123385), mRNA chr12.gff3 MRNA_VIT_12s0134g00450.t01 Cleavage
PREDICTED: Vitis vinifera AUGMIN subunit 7

46 UCGGGUUAACAUUCCUGAACCGGGA (LOC100243653), transcript variant X1, mRNA chrl.gff3_MRNA_VIT_01s0011g01130.t01 Cleavage
PREDICTED: Vitis vinifera non-specific

47 CGGUGGACUGCUCGAGCUGCU lipid-transfer protein-like protein At5g64080 chr15.gff3_ MRNA_VIT_15s0048g02810.t01 Translation
(LOC100247017), mRNA
PREDICTED: Vitis vinifera acyl-CoA-binding

48 CCAGUCCCGAACCCGUCGGC domain-containing protein 3 (LOC100268114), chr7_random.gff3_ MRNA_VIT_0750151g00980.t01  Cleavage

transcript variant X6, mRNA
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Figure 5. Bar plot depicting the proportions of treatments across known detected grapevine matured
miRNAs, CLC Genomics Workbench, miRBase Release 22.1. Proportions were calculated based on
normalized total reads.

Figure 6. Venn diagram showing the representation of 136 known miRNAs.
3.4. miRNA Expression Profiles by Real-Time RT-gPCR

Real-time RT-qPCR revealed the expression profiles of nine miRNAs, two novel and seven known,
for grapevine (Figure S1). Both novel miRNAs, 32 and 41, were overexpressed in DB-inoculated plants
and less expressed in DE and C. Their overexpression in DB was confirmed by RT-qPCR, while it also
revealed a higher expression of miRNA 32 and 41 in the C than the DE treatment, which was not
observed in the small RNA sequencing results (Figure 4).

Known grapevine miRNAs Vvi-miR156b,c,d, Vvi-miR166a, Vvi-miR166c, Vvi-miR3634-3p,
Vvi-miR398b, Vvi-miR403a, and Vvi-miR408 were also quantified by RT-qPCR. Both miRNAs of
the 166 family were highly expressed in all treatments, with a higher abundance in C and DB,
as compared to DE. A high overexpression in C was revealed for miRNAs Vvi-miR156b,c,d and
Vvi-miR398b, in agreement with the small RNA sequencing results. The RT-qPCR results also revealed
an overexpression of miRNA Vvi-miR408 in DB, but according to small RNA sequencing, it was
upregulated in C (Figures 4 and 5). Similarly, Vvi-miR403a, which was most abundant in DE according
to RT-qPCR, showed over a 90% abundance in C as revealed by small RNA sequencing. Vvi-miR166¢
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and Vvi-miR3634-3p showed a relatively similar expression in all treatments in small RNA sequencing,
which was further confirmed by RT-qPCR.

4. Discussion

This is the first attempt to use small RNA high-throughput sequencing data to identify miRNAs
differentially expressed in V. vinifera cv. Chardonnay in response to D. eres and D. bohemiae isolated
from grapevine in the Czech Republic. The experimental strategy applied in this study was designed
to investigate the profile of grapevine miRNAs in response to fungal infection in vitro because there
are no unpredictable abiotic factors. Plant-pathogen interactions were entirely dissociated from the
environment, which is usually used in the sSRNAs profiling of stressed plants [57,58]. Ma et al. [58] also
found that the fungal sSRNA enrichment was lower in planta than during in vitro growth. In this study,
we used the cultivar Chardonnay since it is a popular grapevine cultivar all around the world [59], and
in previous research, it showed a high level of tolerance against natural infections of GTD pathogens in
Italy [60,61].

In this study, we revealed that the most abundant sSRNAs were the 20- (DB) and 21-nt class (DE, C),
corresponding with the results of Pantaleo et al. [45]. Previous studies showed that 24-nt SRNAs were
more abundant in plants than the 21-nt class [62—-64]. This is possibly because of the concerted activity
of plant-specific DNA-dependent RNA polymerases, PollVa and PollVb, with the accumulation of 24-nt
heterochromatic siRNAs via RDR2-mediated dsRNA formation and DCL3-mediated processing [65,66].
Many known grapevine miRNAs [45] were found in our datasets from whole grapevine plants
cultivated in vitro (Table S2). In addition, 41 novel miRNA candidates were identified. In general, the
selected miRNA profiles measured by qRT-PCR confirmed the sequencing data. A few discrepancies
observed were within the range of those reported by Pantaleo et al. [67]. Similar inconsistencies were
also previously reported for some miRNAs when high-throughput sequencing and northern blot
analyses were compared, for example, for miR3633 and some other conserved and grapevine-specific
miRNAs [45]. Small RNA high-throughput sequencing is reported to produce bias. Further, the use of
different adapters and barcodes during ligation as well as complex RNA structures and modifications
affect cDNA synthesis efficacies and exemplify sources of bias in deep sequencing [68]. We also
observed some discrepancies in the detection of novel miRNA candidates, miRNA names 6 [69], 16 [70],
24, 36, and 38 [43] in Table 2, suggesting that these miRNAs are already known.

The miRNA candidates 32 and 41 have not been previously reported. We were able
to amplify them by RT-qPCR, thus identifying their targets. For the miRNA 32 targets
chr6.gff3 MRNA_VIT_06s0004g04740.t01 (Except 3.0, Inhibition-Cleavage), we found that it targets
the mRNA sequence acyl-CoA-binding protein domain containing protein 3, which is a Golgi protein
involved in several signaling events [56]. This could be linked with the higher in vitro virulence
of D. bohemiae compared to D. eres. Golgi body-mediated signaling is linked to its fragmentation
and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins
are released to the cytosol and interact with other signaling molecules to regulate various cellular
processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved
in several signaling events. ACBD3 protein was previously known as a peripheral-type benzodiazepine
receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated
protein of 60 kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein
1 (GOLPH1) [56]. If the regeneration process during the mitotic cycle of the cell is influenced by an
abundancy of miRNA 32, it would be associated with a higher virulence of D. bohemiae.

Regarding miRNA 41 targets chrl2.gff3 MRNA_VIT_12s0034g02480.t01 (Except 3.0,
Inhibition-Cleavage), the miRNA 41 is focused on the mRNA sequence with an expression of
RPP13-like protein 1, which is potentially a disease resistance protein. This phenomenon was described
by [71], proving that RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy
mildew resistance to different avirulence determinants in Peronospora parasitica. It could be the case in
our study that the miRNA 41 regulates the pathogenicity of the fungus Diaporthe on the grapevines
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in vitro. It could be the case that miRNA 41 and RPP13 are elements of the resistance mechanism [71],
as RPP13 are well-known plant R genes governing hypersensitivity (HR)-based resistance [72], which
may result in the phenotypic effect observed upon massive inoculation by DB in vitro, while the
pathogen is effectively eliminated by grapevine in regular (field) conditions.

The results suggest some hypothetical interactions between miRNAs and the physiological changes
induced in grapevine by Diaporthe in vitro (miR3634, miR408, miR403) similar to those described by
Pantaleo et al. [67] that linked miRNAs, physiological changes, and Grapevine rupestris stem-pitting
associated virus infection with miR156, miR164, miR319, miR394, and miR396.

Vvi-miR166c and Vvi-miR166a are thought to target mRNA coding for HD-Zip transcription
factors, including Phabulosa (PHB) and Phavoluta (PHV), that regulate axillary meristem initiation
and leaf development [73]. MicroRNAs 165 and 166 are able to cleave their target mRNAs of
HD-ZIP 1II genes, thus regulating the functions of these genes [74]. Du et al. [75] indicated that
class IIl homeodomain leucine zipper transcription factors (HD-ZIP III TFs) and microRNA 165/166
(miR165/166) may play important roles in secondary cell wall formation. The HD-ZIP III TFs regulate a
number of developmental processes, such as embryo patterning, meristem initiation and homeostasis,
lateral organ polarity, and vascular development, in Arabidopsis [76].

The miR166 overexpresssors exhibit an enlargement of the shoot apical meristem (SAM) and an
enhancement of vascular development of Arabidopsis [77]. The expression level of miRNAs 166 was
not linked with Diaporthe infection on grapevines in this study. Based on HTS analysis, Vvi-miR166¢
was mostly expressed in the C treatment, which corresponds to previously published research by
Jung et al. [78]. This finding indicated that SAM machinery works properly in a balanced expression of
miR165 and miR166; however, no differences between treatments were found by RT-qPCR [78].

In our study, the analyses of miR166a did not show clear conclusions. According to RT-qPCR,
the lowest expression level was in DE and was almost similar in DB and C. On the other hand,
Kim et al. [79] reported that the menl mutant of Arabidopsis overexpressing the MIR166a gene exhibited
pleiotropic phenotypes, such as stunted growth, disrupted floral structure, fasciated inflorescence stem,
and enlarged SAM. Our HTS analysis showed the lowest expression level in DE and the highest in DB.

We analyzed these miR398 mostly overexpressed miRNAs in C by both methods. The Vvi-miR398b
sequence belongs to the miR398 family of miRNAs, which are predicted to target mRNAs coding for
copper superoxide dismutases an cytochrome C oxidase subunit V [80].

Our study provided data that described a similar representation of Vvi-miR3634-3p in DE, DB,
and C. Chitarra et al. [81] reported a similar representation of Vvi-miR3634-3p. Vvi-miR3634-3p were
identified by [45] as being up-regulated in Grapevine rupestris stem-pitting associated virus-infected
grapevines. Vvi-miR3634-3p were also the most expressed in “Barbera” grapevine leaf midribs that
were infected with Flavescence dorée [81].

Mica et al. [46] indicated that miRNAs Vvi-miR408 were extremely highly expressed in root tissues,
targeting various copper proteins: Plantacyanin, laccases, and a superoxide dismutase, all putatively
involved in stress responses and lignification. These miRNAs have also been shown to be coexpressed
in Arabidopsis under conditions of copper deprivation [82]. Our results agree with their findings because
the in vitro media had low contents of copper. Diaporthe infection probably influenced the Vvi-miR408
expression. HTS revealed that Diaporthe-infected grapevines were Vvi-miR408 downregulated but
RT-qPCR showed the highest expression of these miRNAs in DB, thus there could also be a link with
the biotic stress caused by fungal infection.

Vvi-miR403a encodes a miRNA that targets AGO2 and AGO3 [83]. Regarding the results of
this study, Vvi-miR403a were mostly expressed in the control treatment according to HTS, but DE
showed the highest expression of Vvi-miR403a according to RT-qPCR. Vvi-miR156b,c,d are predicted
to target mRNAs coding for squamosa-promoter binding protein (SBP)-like transcription factors and
our HTS and RT-qPCR results confirmed the highest expression in C. These genes encode a family of
plant-specific transcription factors that play vital roles in plant growth and development [84].
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Vvi-miR159c¢ is usual plant miRNA and is thought to target mRNAs coding for MYB proteins
that are known to bind to the promoter of the floral meristem identity gene LEAFY [73]. Flowering
plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals [85].
According to our results, these miRNAs were also mostly expressed in the C treatment.

In general, D. bohemiae was more pathogenic to grapevine than D. eres, unlike the results of
Guarnaccia et al. [4]. This can be explained by the fact that Guarnaccia et al. [4] used a different
inoculation method for Diaporthe [19,27], using green shoots cut from healthy mature grapevine cv.
Riesling, and the shoots were artificially inoculated with a 1-week-old 6-mm agar plug to determine the
pathogenicity. Here, we used a 1-week-old 3-mm plug for the inoculation of a single leave of grapevine
cv. Chardonnay in vitro; this was repeated two times, and the pathogenicity to the grapevine was
confirmed in vitro. Additionally, the life cycle of Diaporthe on grapevines starts on green parts and
more intensively on the leaves [86]. The pathogenicity of D. bohemine CBS 143347 should be further
studied with different methods of inoculation.

5. Conclusions

The outcomes of this study provide novel insights into D. eres and D. bohemiae pathogenicity and
the V. vinifera cv. Chardonnay defense mechanism in vitro. The results revealed that D. eres has the
ability to be phytopathogenic and that it triggers some specific miRINAs expression. Surprisingly,
D. bohemiae was previously published as non-phytopathogenic fungus, but in our study, it was found to
be more virulent than D. eres. In addition, some selected miRNAs were expressed more in D. bohemiae
than in both the D. eres and control treatments. We also identified two novel miRNAs, named 32 and
41, which appear to be linked with the pathogenicity of D. bohemiae in vitro. Further studies focusing
on the mechanism of RNA silencing, used as a strategy against grapevine trunk disease pathogens, are
necessary to understand the mechanism of fast, strong, and effective defense responses to grapevine
trunk fungal pathogens.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/11/905/s1.
Figure S1: Relative quantification based on stem-loop RT-qPCR of differently expressed miRNAs in different
variants. miRNA Vvi-miR 166c¢ is the reference miRNA and the bars represent fold expressions compared to the
reference miRNA. DE is the Diaporthe eres treated, DB is Diaporthe bohemiae treated and C is control. Relative
miRNA quantification was analysed in qBasePLUS v3.2 software (Biogazelle, Ghent, Belgium), Table S1: List of
primer sequences used in the real-time RT-qPCR assay for relative quantification of target miRNAs. Table S2:
Identification of total known grapevine miRNAs. Data were generated by CLC Genomics WB 6.5.1, the reads were
analyzed using extraction and counting of the reads. Annotation and merging of the counts were used. Table S3:
Representation of known miRNAs in the treatments DE, DB and C. Table S4: Representation of new miRNAs in
the treatments DE, DB and C.
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