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Background: Sepsis is a systemic inflammatory response syndrome (SIRS) with
heterogeneity of clinical symptoms. Studies further exploring the molecular subtypes of
sepsis and elucidating its probable mechanisms are urgently needed.

Methods: Microarray datasets of peripheral blood in sepsis were downloaded from the
Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs)
were identified. Weighted gene co-expression network analysis (WGCNA) analysis was
conducted to screen key module genes. Consensus clustering analysis was carried out to
identify distinct sepsis molecular subtypes. Subtype-specific pathways were explored
using gene set variation analysis (GSVA). Afterward, we intersected subtype-related,
dramatically expressed and module-specific genes to screen consensus DEGs (co-
DEGs). Enrichment analysis was carried out to identify key pathways. The least
absolute shrinkage and selection operator (LASSO) regression analysis was used for
screen potential diagnostic biomarkers.

Results: Patients with sepsis were classified into three clusters. GSVA showed these
DEGs among different clusters in sepsis were assigned to metabolism, oxidative
phosphorylation, autophagy regulation, and VEGF pathways, etc. In addition, we
identified 40 co-DEGs and several dysregulated pathways. A diagnostic model with
25-gene signature was proven to be of high value for the diagnosis of sepsis. Genes
in the diagnostic model with AUC values more than 0.95 in external datasets were
screened as key genes for the diagnosis of sepsis. Finally, ANKRD22, GPR84, GYG1,
BLOC1S1, CARD11, NOG, and LRG1 were recognized as critical genes associated with
sepsis molecular subtypes.

Conclusion: There are remarkable differences in and enriched pathways among different
molecular subgroups of sepsis, which may be the key factors leading to heterogeneity of
clinical symptoms and prognosis in patients with sepsis. Our current study provides novel
diagnostic and therapeutic biomarkers for sepsis molecular subtypes.
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INTRODUCTION

Sepsis, a systemic inflammatory response syndrome (SIRS)
caused by various infectious processes, is one of the common
diseases that leads to the death of hospitalized patients in the ICU
(Fleischmann et al., 2016; Novosad et al., 2016). At present, we
lack effective strategies for early diagnosis and treatment of sepsis
due to the heterogeneity of pathogenesis and clinical symptoms in
patients with sepsis (Davenport et al., 2016; Seymour et al., 2019).
In addition, with the progression of sepsis and the persistence of
systemic inflammation, patients with severe sepsis are commonly
accompanied bymultiple organ dysfunction syndromes (MODS),
hypoperfusion, or hypotension, which brings a great challenge to
sepsis treatment (Rello et al., 2017). Therefore, a thorough
understanding of the distinct molecular subtypes of sepsis is
needed to improve the prognosis of sepsis patients with different
subtypes.

The release of a large number of cytokines and inflammatory
mediators can result in dysregulated immune responses, which
may be the decisive factor affecting the prognosis of sepsis
patients (Markwart et al., 2015). In addition, the activation of
abnormal genes in sepsis patients may play a critical role in the
progression of the disease. In recent years, a variety of
biomarkers, including serum cytokine/chemokine, cellular
receptor, coagulation factors, vascular endothelial damage
factors, and acute inflammatory factors have been
implemented in the diagnosis and prognosis of sepsis
(Pierrakos and Vincent, 2010; Sandquist and Wong, 2014).
Nevertheless, because of the complexity of the pathogenesis of
sepsis, the specificity and sensitivity of these biomarkers in disease
diagnosis and prognosis are significantly lower than expected.
Further exploring more potent biomarkers for the early diagnosis
and treatment of sepsis has become urgent.

Bioinformatics analysis at the molecular biology level has been
extensively applied for clinical practice by screening and
predicting potential key pathways and biomarkers (Banwait
and Bastola, 2015; Cheng et al., 2021). Few studies to date
have explored the significance of identified molecular subtypes
in the early diagnosis and treatment of diseases including cancer,
respiratory diseases, and myocardial infarction (Hu et al., 2021; Li
et al., 2021; Rao et al., 2021; Shi et al., 2021). Zhang et al. classified
sepsis patients into three clusters based on m6A methylation
regulatory genes (Zhang et al., 2020). However, whether the
specific molecular subtypes could be determined based on
whole genome sequencing data of sepsis patients is not yet
thoroughly understood.

In this study, we classified sepsis into three molecular subtypes
using unsupervised consensus clustering based on whole gene
expression. Moreover, we identified consensus differentially
expressed genes (co-DEGs) by intersecting the DEGs among
three subtypes with differential genes screened by DEGs and
WGCNA methods. Based on these results, we performed various
analyses, including Gene set variation analysis (GSVA), Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome enrichment analysis, Pearson correlation
analysis, and protein—protein interaction (PPI) analysis. In
addition, we constructed a 25-gene-based diagnosis model

using least absolute shrinkage and selection operator (LASSO)
regression analysis and validated their expression levels and
diagnostic values for sepsis. Eventually, we identified 7 distinct
hub genes among the three molecular subtypes.

MATERIALS

Data Acquisition
All GEO datasets were downloaded from Gene Expression
Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) (Barrett et al.,
2013). We selected 6 datasets (GSE154918, GSE54514,
GSE9960, GSE69063, GSE25504, and GSE13904) related to
sepsis for analysis. The whole gene expression profiles of
peripheral blood were extracted for further analysis. The GEO
datasets collected are exhibited in Table 1. The flowchart of the
study was elucidated in Figure 1.

The GSE154918 dataset (GPL20301 platform) is composed of
whole gene expression profiles of peripheral blood from
40 control and 24 sepsis samples, The GSE54514 dataset
(GPL6947 platform) was composed of whole gene expression
profiles of peripheral blood from 36 non-sepsis healthy control
subjects and 127 sepsis patients, The GSE9960 dataset
(GPL570 platform) was composed of whole gene expression
profiles of peripheral blood from 16 control and 54 sepsis
samples, The GSE69063 dataset (GPL20301 platform) was
composed of whole gene expression profiles of peripheral
blood from 33 control and 57 sepsis samples, The
GSE25504 dataset (GPL570 platform) was composed of whole
gene expression profiles of peripheral blood from 37 control and
26 sepsis samples, The GSE13904 dataset (GPL570 platform) was
composed of whole gene expression profiles of peripheral blood
from 18 control and 52 sepsis samples.

DEGs Analysis
R software’s “limma” package was applied for identifying the
DEGs between the sepsis and control samples in the
GSE154918 and GSE25504 datasets, respectively (Ritchie et al.,
2015). DEGs with |log2 fold change (FC)| > 0.5 and p < 0.05 were
defined as statistically significant. Volcano plots and heatmaps of
the identified DEGs were visualized using the “ggplot2” and
“heatmap” R packages.

Construction of the Co-Expression Network
by WGCNA
R software’s “WGCNA” package was used to construct the co-
expression network of the GSE154918 and GSE25504 datasets,
respectively (Langfelder and Horvath, 2008). In brief, we explored
the association among different pairs of genes and weighted them
based on the expression levels of related genes in control and
sepsis samples. Afterward, we transformed the adjacency matrix
into a topological overlapmatrix (TOM) to further verify the gene
connectivity in the network. Next, the hierarchical clustering
method was conducted to determine remarkably interconnected
clusters (modules) according to gene connectivity and covariance
coefficients. We selected the best power value and established the
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TABLE 1 | Information for selected microarray datasets.

GO accession Platform Samples Sample source Age Sex (male/female)

Control sepsis Control sepsis Control sepsis

GSE154918 GPL20301 40 24 Peripheral blood -- -- 17/23 10/14
GSE54514 GPL6947 36 127 Whole blood 42.94 ± 15.79 59.1 ± 16.0 12/24 52/75
GSE9960 GPL570 16 54 Peripheral blood -- -- -- --
GSE69063 GPL20301 33 57 Peripheral blood -- -- -- --
GSE25504 GPL570 37 26 Peripheral blood -- -- 23/14 14/12
GSE13904 GPL570 18 52 Peripheral blood -- -- -- --

FIGURE 1 | Flowchart for bioinformatics analysis in this study. The following datasets were used for screening potential diagnostic genes and mechanisms
associated with the progress of sepsis (GSE154918 and GSE25504 datasets) and the sepsis molecular subtypes (GSE54514 and GSE9960, and GSE13904 datasets).
Abbreviations: GEO, Gene Expression Omnibus; DEG, differentially expressed genes; WGCNA, Weighted gene co-expression network analysis; GSVA, gene set
variation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; AUC, area under the curve; LASSO, The least absolute shrinkage and
selection operator; ROC, Receiver operator characteristic curve.

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 8847623

Lai et al. Molecular Subtypes, Sepsis, Microarray Analysis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


correlated modules. Finally, we performed Pearson correlation
analysis and defined the highest three gene modules as
statistically significant based on the correlation coefficient.

Unsupervised Consensus Clustering
Analysis
The GSE9960, GSE13904, and GSE54514 datasets were
log2 transformed. The robust multi-chip average (RMA)
method was utilized to normalize gene expression, and the
batch effect between different platforms was eliminated using
the ComBat method based on the “sva” R package. Principal
component analysis (PCA) was applied for evaluating the
aggregation between different samples. Afterward, R software’s
“ConsensusClusterPlus” package was carried out to perform
unsupervised consensus analysis (Wilkerson and Hayes, 2010)
among the 233 standardized sepsis patients. The number of re-
samplings settled at 1,000, with each re-sampling containing 80%
of the samples. The maximum number of clusters was set to 10,
and the optimal k value was determined by the cumulative
distribution function (CDF) index and the consensus matrix.
Finally, t-SNE was carried out to validate the subtype assignments
based on the gene expression profiles of the above sepsis patients.

The dataset was normalized and summarized using robust
multi-chip average (RMA) implemented in the R package affy,
and batch effects were corrected.

GSVA Analysis in Different Molecular
Subtypes of Sepsis
R software’s “GSVA” and “GSEABase” packages were utilized to
validate the performance of gene sets (c2. cp.kegg.v7.4. symbols)
among sepsis patients with different molecular subtypes, thus
identifying the enriched pathways in each subtype. Gene sets with
adjusted p-value < 0.05 were defined as significantly enriched
gene sets.

Identification and Correlation Analysis of
Co-DEGs
The DEGs were screened using DEGs analysis and the WGCNA
method in GSE154918 and GSE25504 datasets, and the specific
genes were also identified in sepsis patients with distinct
molecular subtypes. Eventually, a total of 48 core genes were
identified by intersecting all the results. The “ggVennDiagram”
package was used in generating the Venn diagrams of co-DEGs.

Spearman correlation analysis was performed to determine the
correlation between core genes based on the gene expression
profiles. The heatmap of the correlation coefficient among these
hub genes was visualized using the “corrplot” R package, and the
gene relationship network diagram with a correlation
coefficient >0.9 was constructed using the “igraph” R package.

Enrichment Analysis
The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/summary.jsp), an
online tool, was utilized to perform the GO enrichment

analysis of co-DEGs (Huang da et al., 2009). Statistically
significant GO terms (BP) with FDR <0.05 were screened and
the results were visualized using the “GOplot” R package.

KEGG and Reactome enrichment analysis of these co-DEGs
were conducted using the “clusterProfile” and “org.Hs.eg.db” R
packages (Yu et al., 2012). The statistically significant enrichment
pathways with adjusted p-value < 0.05 were defined and
visualized using a bubble plot.

PPI Network Analysis
The STRING database (https://strin g-db.org/) was applied for
constructing the PPI network of co-DEGs, and the core genes
with a combined score of more than 0.4 were screened
(Szklarczyk et al., 2015). The protein–protein interaction
information was visualized utilizing the Cytoscape software
(version 3.8.2).

LASSO Regression Analysis
LASSO is a regularization method with strong predictability, that
is better than regression analysis when examining high-
dimensional data (Bader and Hogue, 2003). A total of
303 samples including 70 health and 233 sepsis patients from
GSE9960, GSE13904, and GSE54514 datasets were applied for
LASSO regression analysis. As a training set, 70% of samples (N =
217, 58 controls, and 169 sepsis samples) were randomly selected.
As a validation set, 30% of samples (N = 86, 22 controls, and
54 sepsis samples) were selected. The LASSO regression analysis
was performed based on the expression profiles of co-DEGs using
the “glmnet” R package. The predictive model constructed in the
training set was verified in the testing set. In addition, receiver
operating characteristic (ROC) curves were drawn in the
validation set and train set using the “pROC” R package to
assess the performance of the constructive model. AUC more
than 0.75 was defined as a model with a high diagnostic value.

Validation of Hub Genes
GSE154918 and GSE69063 datasets were selected as the
validation set to verify the diagnostic value of these genes
identified by LASSO in sepsis. Genes with AUC >0.9 in both
the GSE154918 and GSE69063 were defined as the ultimate hub
genes. Subsequently, we verified the expression of these hub genes
in GSE154918 and GSE69063 datasets and in distinct molecular
subtypes of sepsis.

RESULTS

Identification of DEGs and Construction of
Co-Expression Network
The flowchart of our study is shown in Figure 1. To identify
sepsis-related genes, we firstly analyzed the DEGs between sepsis
and control samples in the GSE154918 dataset. A total of
1,671 up-regulated and 1,623 down-regulated genes were
determined using the DEGs method (Figures 2A,B,
Supplementary Figure S1A). Subsequently, we applied the
WGCNA method to study the co-expression network in the
GSE154918 dataset. When the best soft threshold power
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settled at 6, the mean connectivity was more effective (Figures
2C,D). A total of 13 co-expressed gene modules were created.
among which the blue (4,036 genes, R = 0.87, p < 0.05), turquoise
(4,618 genes, R = 0.83, p < 0.05), and yellow modules (1719 genes,
R = 0.8, p < 0.05) had the most correlation with sepsis patients
(Figure 2E, Supplementary Figure S1B). In addition, the blue
(R = 0.85, p < 0.05), turquoise (R = 0.95, p < 0.05), and yellow (R =
0.92, p < 0.05) modules were significantly correlated with
module-related genes (Supplementary Figures S1C–H).
Meanwhile, we identified 945 up-regulated and 793 down-
regulated genes using the DEGs method in the
GSE25504 dataset (Figures 3A,B, Supplementary Figure
S2A). Based on the WGCNA method, a relatively high mean
connectively was maintained by setting the best soft threshold
power to 8 (Figures 3C,D). We clustered a total of 14 co-
expressed gene modules, among which the blue (2,174 genes,
R = 0.79, p < 0.05), brown (1717 genes, R = -0.83, p < 0.05), and
turquoise (2,478 genes, R = 0.8, p < 0.05) modules were closely
correlated with sepsis patients (Figure 3E, Supplementary
Figure S2B). Moreover, blue (R = 0.88 p < 0.05), brown (R =
0.93, p < 0.05), and turquoise (R = 0.9, p < 0.05) modules were

also remarkably correlated with module-related genes
(Supplementary Figures S2C–H).

Consensus Clustering Analysis for Sepsis
The GSE9960, GSE13904, and GSE54514 datasets were mixed
into a combined dataset containing a total of 233 sepsis
samples. These three datasets exhibited obvious separation
before batch correction (Figure 4A). While the batch effect
among these datasets from different platforms had been
successfully eradicated after batch correction (Figure 4B).
Then, we performed molecular subtypes analysis in a
combined dataset based on the expression of genes via the
“ConsensusClusterPlus” R package. Clustering results
suggested that the classification was most reliable and stable
when k = 3 (Figures 4C–E, Supplementary Figure S3).
Consistently, the t-SNE confirmed that only cluster1,
cluster3, and cluster4 could be significantly separated
(Figure 4F). In total, 233 sepsis patients were classified into
three subtypes, including cluster1 (n = 144), cluster 3 (n = 26),
and cluster4 (n = 39) based on gene expression levels, which
were chosen for subsequent analysis.

FIGURE 2 | GSE154918 datasets analyzed by DEGs and WGCNA methods, respectively. (A) Representative volcano plot in GSE154918 dataset. (B)
Representative heat map of DEGs between normal subjects and sepsis patients. (C,D) Soft threshold selection process. (E) Correlation of modules with clinical
characteristics. Each row represents a distinct module; each column represents a distinct clinical phenotype. Red rectangle indicates positive correlation; blue rectangle
indicates negative correlation.
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Identification of the DEGs Between
Different Clusters in Sepsis
The DEGs among different molecular subtypes of sepsis patients
were identified based on whole genome expression profiles. Eight
hundred and sixty-seven (473 up-regulated and 394 down-
regulated) DEGs were identified between cluster 1 and cluster
3 samples (Supplementary Figures S4A,B). The top
10 overexpressed and suppressed DEGs between cluster 1 and
cluster 3 were exhibited in Table 2. In addition, a total of 420
(237 up-regulated and 183 down-regulated) DEGs were screened
after comparing cluster 1 with cluster 4 samples (Supplementary
Figures S4C,D). The top 10 overexpressed and suppressed DEGs
between cluster 1 and cluster 4 were exhibited in Table 3. Moreover,
one thousand four hundred and forty-five (696 up-regulated and
749 down-regulated) DEGs were acquired after comparing cluster
3 with cluster 4 samples (Supplementary Figures S4E,F). The top
10 overexpressed and suppressed DEGs between cluster 3 and
cluster 4 were exhibited in Table 4. Overall, we identified
1803 specific genes among three subgroups.

GSVA Analysis in Different Molecular
Subtypes of Sepsis
GSVA analysis was performed among distinct molecular
subtypes of sepsis patients based on the expression profiles
of DEGs. In total, 103 differentially enriched gene pathways,
comprising 59 pathways with activation and 44 pathways with
suppression were screened when comparing cluster1 with
cluster3 samples (Supplementary Table S1). The top
20 differentially enriched gene pathways between
cluster1 and cluster3 are exhibited in a heatmap
(Figure 5A). A total of 90 differentially enriched gene
pathways, consisting of 42 pathways with activation and
48 pathways with suppression, were obtained when
comparing cluster1 with cluster4 samples (Supplementary
Table S2). The top 20 differentially enriched gene pathways
between cluster1 and cluster4 are exhibited in a heatmap
(Figure 5B). A total of 110 differentially enriched gene
pathways were obtained, including 56 pathways with
activation and 54 pathways with suppression after

FIGURE 3 |GSE25504 datasets analyzed by DEGs andWGCNAmethods, respectively. (A)Representative volcano plot in GSE25504 dataset. (B)Representative
heat map of DEGs between normal subjects and sepsis patients. (C,D) Soft threshold selection process. (E) Correlation of modules with clinical characteristics. Each
row represents a distinct module; each column represents a distinct clinical phenotype. Red rectangle indicates positive correlation; blue rectangle indicates negative
correlation.
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FIGURE 4 | The consensus clustering analysis of sepsis patients. (A) Representative PCA clustering diagram of GSE13904, GSE54514, and GSE9960 datasets
before batch correction. (B) Representative PCA clustering diagram of GSE13904, GSE54514, and GSE9960 datasets after batch correction. (C) Cumulative
distribution function (CDF) curves of clustering (k, 2–10). (D) The CDF Delta area curve of all sepsis samples when k = 2–10. (E)Consistency matrix of the sample with k =
3. (F) t-SNE confirmed the classification of three clusters: Cluster1, Cluster3, and Cluster4.

TABLE 2 | The top 10 upregulated and downregulated DEGs between cluster
1 and cluster 3.

Gene logFC AveExpr P.Value adj.P.Val

LOR 2.232911 7.365389 2.44E-17 6.25E-15
MATN3 2.116437 7.342705 1.27E-33 1.73E-29
ACER1 1.917453 7.134010 1.00E-10 2.89E-09
EIF3M 1.915094 9.821831 3.91E-21 4.70E-18
EGR1 1.885098 7.298329 7.11E-14 5.97E-12
FCGR2B 1.867446 9.233309 1.33E-10 3.76E-09
ADGRL2 1.825619 7.841062 4.86E-20 2.64E-17
MMS19 1.810922 8.032800 2.60E-17 6.56E-15
HSP90B1 1.781601 7.969837 8.66E-20 4.53E-17
CYB561D1 1.723145 8.652701 1.58E-15 2.26E-13
PDE7B −2.184322 6.682677 1.19E-15 1.82E-13
ICOSLG −2.128255 6.694072 6.11E-08 8.27E-07
COX8C −1.786688 6.581754 7.79E-12 3.06E-10
LRG1 −1.708443 7.463786 3.90E-19 1.66E-16
BATF2 −1.655835 6.366884 1.05E-08 1.75E-07
CDSN −1.411182 7.786637 2.14E-05 0.000139
N4BP2L2-IT2 −1.329963 6.741250 6.64E-12 2.71E-10
EGLN1 −1.318017 8.282652 1.35E-13 1.04E-11
GSX1 −1.303214 7.582201 4.58E-21 4.80E-18

−1.205521 6.025581 1.41E-14 1.47E-12

TABLE 3 | The top 10 upregulated and downregulated DEGs between cluster
1 and cluster 4.

Gene logFC AveExpr P.Value adj.P.Val

BDNF 1.313856221 7.02288789 8.53E-11 3.09E-09
LOC414300 1.259871113 6.136214095 2.16E-27 2.94E-23
MMS19 1.201391888 8.032799817 8.06E-12 4.44E-10
LOC389895 1.192141492 6.291234077 9.92E-18 8.43E-15
HEPACAM2 1.142216053 8.393840633 1.20E-11 6.18E-10
CELF3 1.127665021 7.986695369 6.40E-12 3.71E-10
PCDHGA1 1.109262127 6.187973661 1.40E-12 1.03E-10
MGAT4EP 1.100499218 7.157119305 9.50E-11 3.37E-09
LOR 1.095497243 7.365389255 2.13E-07 2.37E-06
LRFN1 1.085804828 6.963573766 7.25E-14 1.02E-11
CDC23 −1.19332674 6.623615158 1.49E-10 4.86E-09
COQ10A −1.169422871 7.020004172 5.69E-09 1.06E-07
CFAP44 −1.16466466 6.534720358 1.05E-09 2.49E-08
GPC6 −1.161193892 6.730830401 4.04E-10 1.11E-08
DSCAML1 −1.121255594 5.706122812 6.82E-11 2.56E-09
LINC01127 −1.060769752 6.398435749 1.19E-16 5.61E-14
AMPD2 −1.04287083 6.47352482 2.51E-09 5.23E-08
DDAH2 −0.964605107 7.06749405 1.09E-12 8.73E-11
ARL13B −0.955187663 6.191602504 6.72E-11 2.54E-09
HTR2A −0.947381679 5.887182929 2.34E-11 1.07E-09
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comparing cluster3 with cluster4 samples (Supplementary
Table S3). The top 20 differentially enriched gene pathways
between cluster3 and cluster4 are exhibited in a heatmap
(Figure 5C). Finally, a total of 34 enriched gene pathways
among clusters were identified and presented in a heatmap
(Figure 5D).

Identification and Enrichment Analysis of
Co-DEGs
The DEGs identified by the DEGs and WGCNA methods in
GSE154918 and GSE54514 datasets were intersected with the
specific genes among different molecular subtypes of sepsis
patients. Eventually, a total of 40 co-DEGs were screened
(Figure 6A). Spearman’s correlation analysis was performed to
illuminate the correlation patterns among these 40 co-DEGs, and
the area of the pie chart represents the exact value of correlation
coefficients. We found a significant correlation among these co-
DEGs. For example, GPR84 show strong antagonistic effects with
GYG1 (coefficient = 0.968), FCGR1B (coefficient = 0.968), and
ANKRD22 (coefficient = 0.912). Simultaneously, CARD11 could
also present synergistic effects with GYG1 (coefficient = -0.908),
GPR84 (coefficient = -0.91), and BLOC1S1 (coefficient = -0.918)
(Figure 6B). These results suggested the regulatory balance among
these co-DEGs. In addition, the gene relationship network indicated
that genes with a correlation coefficient of more than 0.9 were as
follows: IRAK3, IL18R1, ATP6V1CA, GYG1, ATP9A, NMT2, ITK,
EIF4B, CCND2, CARD11, FBXO21, BLOC1S1, GPR84, LRG1,
ANKRD22, FCGR1B (Figure 6C), indicating that the molecular
subtypes of sepsis may be the results of multi-gene interactions.
Subsequently, we assessed the enrichment pathways in which these
co-DEGs involve. The GO enrichment analysis suggested that these
co-DEGs were primarily enriched in immune-related biological
functions and pathways, such as immune response, T cell
receptor signaling pathway, T cell costimulation, positive
regulation of NF-kappaB transcription factor activity 4, positive

TABLE 4 | The top 10 upregulated and downregulated DEGs between cluster
3 and cluster 4.

Gene logFC AveExpr P.Value adj.P.Val

PDE7B 2.37419879 6.682677353 1.28E-13 5.62E-12
N4BP2L2-IT2 2.225680688 6.741249953 3.00E-20 1.46E-17
COX8C 2.026111637 6.581753606 5.35E-11 1.09E-09
BATF2 1.728054759 6.366884467 3.99E-07 3.05E-06
HPGD 1.702575221 6.547997156 1.43E-11 3.42E-10
BOD1L1 1.687934805 8.282667200 1.98E-16 1.93E-14
LRG1 1.66910917 7.463785788 3.90E-14 1.97E-12
ICOSLG 1.633042894 6.694071983 0.000358736 0.001382
CCL22 1.625598883 6.434988283 1.54E-07 1.31E-06
GPI 1.60184548 8.380121891 2.24E-20 1.17E-17
ACER1 −2.257612424 7.134010446 1.42E-10 2.61E-09
C12orf66 −1.93072651 7.424147774 3.03E-22 5.90E-19
DSCAML1 −1.889688676 5.706122812 1.58E-14 8.82E-13
FAHD2CP −1.87195289 6.777812514 7.42E-08 6.85E-07
CFAP44 −1.648897199 6.534720358 7.51E-10 1.12E-08
GPC6 −1.576279685 6.730830401 1.29E-09 1.81E-08
COQ10A −1.540559836 7.020004172 3.87E-08 3.79E-07
LINC01127 −1.517861613 6.398435749 3.59E-17 4.44E-15
C1QC −1.51682708 6.781529523 7.06E-10 1.06E-08
PCDHA2 −1.48841099 5.776736054 8.34E-13 2.80E-11

FIGURE 5 | GSVA analysis in different molecular subtypes of sepsis. (A) Representative heat map of the top 20 differentially enriched gene pathways between
Cluster1 and Cluster3. (B) Representative heat map of the top 20 differentially enriched gene pathways between Cluster1 and Cluster4. (C) Representative heat map of
the top 20 differentially enriched gene pathways between Cluster3 and Cluster4. (D)Representative heat map of the differentially enriched gene pathways among distinct
clusters.
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regulation of T cell proliferation (Table 5 and Figures 6D,E). KEGG
pathway enrichment analysis indicated that co-DEGs chiefly
participated in autoimmune and inflammation-related diseases
including Graft−versus−host disease, Inflammatory bowel disease,
and Rheumatoid arthritis. Additionally, Immune responses and
hematopoietic-related signaling pathways such as T cell receptor
signaling pathway and Hematopoietic cell lineage were also closely
associated with these co-DEGs (Figure 6F). Consistently, Reactome
enrichment analysis also revealed that these co-DEGs were mainly
implicated in immunomodulation and signal transduction such as
Translocation of ZAP-70 to immunological synapse, Generation of
second messenger molecules, Costimulation by the CD28 family,
TCR signaling, and Downstream TCR signaling (Figure 6G).

Combining these results, it can be inferred that abnormal
immune function may be the critical pathogenesis of sepsis. In
addition, the PPI network of 40 co-DEGs, including 22 nodes and
27 edges, was analyzed by the STRINGwebsite and visualized by the
Cytoscape software (Supplementary Figure S5).

Identification of Potential Biomarkers
Associated With Sepsis Using LASSO
Regression
To further screen out potential biomarkers for sepsis, we
performed the LASSO regression analysis based on the
expression profile of co-DEGs. We separated a total of

FIGURE 6 | Identification of co-DEGs and screening enriched pathways related to co-DEGs. (A) Representative Venn diagram of intersection genes. (B)
Representative correlation coefficient heat map of 40 co-DEGs. (C) Representative diagram of gene relationship network with a correlation coefficient of more than 0.9.
(D) The first 5 GO enrichment analysis (BP) results of the 40 co-DEGs. (E) Representative chord plot of the first 5 GO enrichment analysis (BP) results of the 40 co-DEGs.
(F,G) The top 5 KEGG (F) and Reactome (G) enrichment analysis results of the 40 co-DEGs.

TABLE 5 | Top 5 GO terms (BP) of the 40 co-DEGs with the DAVID analysis.

ID Term Count Genes Fold FDR

Enrichment

GO:
0006955

immune response 9 CCR1, CD79B, HLA-DMB, IL1B, PGLYRP1, ICOS, FCGR1B,
IL18R1, HLA-DQA1

9.2045 3.69E-
06

GO:
0050852

T cell receptor signaling pathway 5 ITK, CD3G, CARD11,MALT1, HLA-DQA1 14.5461 3.39E-
04

GO:
0031295

T cell costimulation 4 CD3G, ICOS, CARD11, HLA-DQA1 22.0802 7.24E-
04

GO:
0051092

positive regulation of NF-kappaB transcription
factor activity

4 IL1B, IRAK3, CARD11, MALT1 12.9493 3.35E-
03

GO:
0042102

positive regulation of T cell proliferation 3 HLA-DMB, IL1B, CARD11 21,5282 8.13E-
03
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303 samples in the combined dataset (GSE9960, GSE13904, and
GSE54514 datasets, 233 sepsis and 70 control samples) into a
training set (70%) and a validation set (30%). Eventually, a total of
25 potential biomarkers with a non-zero coefficient were obtained
(Figures 7A,B). The AUC of the 25-gene signature was 0.9051 in
the training set and 0.7955 in the validation set (Figure 7C),
which suggests that the 25-gene-based model may be able to
correctly diagnose sepsis. Subsequently, we also utilized external
datasets to ascertain the diagnostic value of these potential
biomarkers. The value of the AUC of these potential
biomarkers in the GSE154918 and GSE69063 datasets were
exhibited in a scatter plot (Figure 7D). Genes with
AUC >0.95 in both the GSE154918 and GSE69063 datasets
were as follows: ANKRD22, GPR84, GYG1, BLOC1S1,
CARD11, NOG, and LRG1 (Figure 7E). These results reveal
that the 7 core genes identified have the most ability to
differentiate sepsis from healthy controls.

Verification of the Hub Genes Expression
To further demonstrate whether these 7 hub genes were worth
using in clinical practice, we validated the expression of these core
genes in different datasets. In GSE154918 and GSE69063 datasets,
ANKRD22, GPR84, GYG1, BLOC1S1, and LRG1 were all highly
expressed in sepsis patients, whereas NOG and CARD11 were
dramatically decreased in sepsis patients (Figures 8A,B).

Meanwhile, these 7 core genes were also subtype-specific
biomarkers. Therefore, we speculated that these 7 hub genes
have a high diagnostic ability in sepsis patients and are closely
related to different subtypes of sepsis.

DISCUSSION

Sepsis is a life-threatening inflammatory response syndrome
caused by an unbalanced response of the host to various
infection processes (van der Poll et al., 2017). Due to a lack of
timely early diagnosis and treatment, sepsis has become one of
the diseases with a high fatality and disability rate worldwide, and
reducing the mortality rate has become the ultimate goal of its
treatment.With in-depth studies of the pathogenesis of sepsis and
the continuous attempt at treatment methods, distinct
biomarkers have been employed in the diagnosis and
treatment monitoring of sepsis (Faix, 2013; Nguyen et al.,
2016). However, the interaction of the multiple genes involved
in diverse biological functions may cause individual differences
and complex pathophysiological mechanisms of sepsis (Maslove
and Wong, 2014), which leads to unsatisfactory clinical diagnosis
of a single biomarker. Therefore, it is urgent to identify distinct
molecular subtypes of sepsis and elucidate the core genes and
pathways associated with sepsis.

FIGURE 7 | Identification of potential core genes through the LASSO model. (A) Selection of potential gene signature based on the optimal parameter (lambda) in
the LASSO regression model. (B) The LASSO coefficient profiles of DEGs identified by the optimal lambda. (C) ROC curve analysis in train dataset and test dataset. (D)
Potential genes with the value of AUC in both GSE154918 and GSE69063 datasets are shown in a scatter plot. (E) Genes with a value of AUC more than 0.95 in both
GSE154918 and GSE69063 datasets are shown in a bar chart.
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In our current study, we identified the DEGs and specific gene
modules associated with sepsis in GSE154918 and
GSE25504 datasets, utilizing the DEGs and WGCNA methods,
respectively. Moreover, the “Consensus ClusterPlus” package was
used to unsupervised cluster the patients of 233 sepsis patients
from the GSE9960, GSE13904, and GSE54514 datasets.
Afterward, a total of 40 co-DEGs were obtained by
intersecting the DEGs, specific gene modules, and molecular
cluster-related genes. GO, KEGG and Reactome enrichment
analysis of these co-DEGs all indicated that sepsis was closely

related to immune response and signal transduction, which may
be the primary factor leading to sepsis progression. Therefore,
screening of co-DEGs and identification of enrichment pathways
significantly reduced the scope of our research, whichmay be able
to ascertain more effective biomarkers for the early diagnosis and
treatment of sepsis.

Defining different cut-off values plays a decisive role in DEG
analysis. It is widely recognized that a more stringent screening
criterion makes the results more convincing. However, according
to the strict criterion for DEGs analysis (adjusted P-value <

FIGURE 8 | Validation of the 7 specifically expressed hub genes. (A) Verification of the expression of 7 specifically hub genes in the GSE154918 dataset. (B)
Verification of the expression of 7 specifically hub genes in different sepsis molecular subtypes.
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0.05 and |logFC| > 1) (Liu et al., 2021; Lu et al., 2021; Su et al.,
2021), we only obtained a total of 208 up-regulated and
380 down-regulated genes in the GSE154918 datasets, and
119 up-regulated and 302 down-regulated genes in the
GSE25504 dataset. Therefore, we selected relatively rough cut-
off values (p-value < 0.05 and |logFC| > 0.5) to identify as many
DEGs and co-DEGs as possible. We finally acquired 3,294 DEGs,
including 1,671 up-regulated and 1,623 down-regulated genes in
the GSE154918 dataset, and 1738 DEGs, including 945 up-
regulated and 793 down-regulated genes in the GSE25504 dataset.

Different sepsis patients have distinct prognoses, which may
be caused by multiple pathways in which different key genes are
involved. In our study, we performed an unsupervised cluster for
sepsis patients based on whole-genome expression profiles and
clustered 233 sepsis patients into three molecular subtypes.
However, only 79 overlapped cluster-specific DEGs were
screened when overlapping these DEGs among three
subgroups. Therefore, to identify as many cluster-specific
DEGs as possible, we merged these results and applied these
1803 merged cluster-specific DEGs for subsequent analysis. The
consequences of GSVA analysis indicated that 103 differentially
enriched gene pathways between cluster1 and 3 were screened,
90 differentially enriched gene pathways between clusters 1 and
4 were identified, and 110 differentially enriched gene pathways
between clusters 1 and 4 were screened. These enriched gene
pathways, such as metabolism, oxidative phosphorylation,
autophagy regulation, and VEGF pathways have proved to be
associated with the sepsis prognosis. Metabolism, the chemical
reaction necessary for cell survival, usually retains the
homeostasis between anabolism and catabolism under normal
conditions (Qiu P. et al., 2019; Judge and Dodd, 2020; Xu et al.,
2021). Additionally, metabolism involves the regulation of
diverse cellular pathways, thus offering a large amount of
energy for cells to ensure the execution of the function
(Mulukutla et al., 2016; Panda, 2016). Oxidative
phosphorylation is a coupling reaction that usually occurs in
the mitochondrial inner membrane, which is characterized by the
generation of cellular ATP based on mitochondrial electron
transfer reactions (Ashton et al., 2018; Nolfi-Donegan et al.,
2020; Głombik et al., 2021). Targeting mitochondrial oxidative
phosphorylation is generally considered to be a novel strategy for
the treatment of sepsis. Autophagy has been widely explored in
numerous diseases including sepsis (Levy, 2007; Su et al., 2019).
As previously described, autophagy exerts effects on immune
regulation and inhibition of tissue damage after sepsis through
regulating the expression of various immune cells (Oami et al.,
2017). Moreover, autophagy has been demonstrated as an
effective target for alleviating oxidative stress-induced organ
failure after sepsis (Thiessen et al., 2017). VEGF pathways
mainly participated in the regulation of blood vessel growth
and play a vital role in promoting endothelial proliferation,
migration, and survival by preserving the homeostasis of
microvasculature (Ferrara and Gerber, 2001; Breen, 2007; Apte
et al., 2019). With the progression of sepsis, VEGF activation
results in vascular leak and dysfunction of host response,
eventually leading to sepsis-related hypotension (van der Flier
et al., 2005; Schuetz et al., 2011). To further screen sepsis-related

hub genes, we intersected the DEGs identified by the DEGs and
WGCNAmethods with subtypes-related specific genes. A total of
40 co-DEGs were identified, most of which existed with
significant correlation. The results of GO, KEGG, and
Reactome enrichment analysis revealed that the immune
response may be closely connected with the severity of sepsis.
Therefore, we speculated that the interaction of immune response
with autophagy, VEGF, oxidative stress, and metabolic pathways
may be the major factor leading to the progression of sepsis
(Minion and Tewari, 2018; Yin et al., 2019; McBride et al., 2020;
Huff et al., 2021). These results, combined with our findings,
indicate that these differentially activated pathways could develop
potential therapeutic targets for sepsis patients with distinctive
molecular subtypes.

In our current study, we received a 25-gene signature based on
the LASSOmodel, which can accurately diagnose sepsis in both the
train and validation datasets. Among them, ANKRD22, GPR84,
GYG1, BLOC1S1, CARD11, NOG, and LRG1 were further
identified as the most relevant key genes based on AUCs in the
GSE154918 and GSE69063 datasets. Bioinformatics analysis
demonstrated that ANKRD22 and NOG can serve as potential
biomarkers for the progression of cancers (Tarragona et al., 2012;
Qiu Y. et al., 2019; Wu et al., 2021). GPR84 is a kind of G-protein-
coupled receptor activated by free fatty acids (FFA) and plays a
critical role in regulating lipid metabolism (Paulsen et al., 2014;
Recio et al., 2018). Enhanced GPR84 is closely related to the
activation of inflammation, thus exacerbating the development
of adiposity and diabesity (Nagasaki et al., 2012). GYG1 deficiency
is known to be associated with polyglucosan body myopathy
(Malfatti et al., 2014) and BLOC1S1 is widely recognized as a
degradation substrate for IRE1alpha (Hur et al., 2012). Mutations
in CARD1, a protein carrying special caspase-related recruitment
domains, can result in the poor prognosis of diffuse large B-cell
lymphoma (Dong et al., 2020). LRG1, which serves as a novel
angiogenic factor, is required for the regulation of pathogenic
angiogenesis (Wang et al., 2017). Although no previous studies
have reported on the association between these 7 key genes and
sepsis, the results of our analysis indicate that these hub genes may
be potential markers for early diagnosis of sepsis.

To further explore and verify the clinical application value, we
validated the expression levels of these 7 core genes in external
datasets. All of the genes varied significantly between normal and
sepsis samples in the GSE154918 and GSE69063 datasets.
Additionally, sepsis with different molecular subtypes also
exhibited the distinct expression of these 7 core genes. Further
research needs to be carried out to elucidate the molecular
mechanism of the 7 hub genes involved in the pathogenesis of
sepsis molecular subtypes.

Several limitations have to be taken into account in our current
study. First, the datasets used for analyses contained different sample
sizes of normal and sepsis patients, which may influence the accuracy
of the analytical results. Second, these datasets were downloaded from
a publically available database, and lacked information on main
clinical features such as sex, age, complications, recurrence rate,
and individual therapeutic effect. A supplementary study is
required, with a more detailed analysis of the demographic and
clinical characteristics of sepsis. In addition, relatively rough cut-off
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values (p-value < 0.05 and |logFC| > 0.5) may influence the accuracy
of the results. Moreover, the results of our analysis need to be
confirmed in vitro, in vivo, and in clinical trials studies.

CONCLUSION

In conclusion, we identified 40 co-DEGs and several immune
response pathways related to sepsis prognosis using various
bioinformatics analyses. We constructed a 25-gene signature
diagnostic model based on LASSO regression analysis, which
has a high value for the early diagnosis of sepsis. There are
remarkable differences in ANKRD22, GPR84, GYG1, BLOC1S1,
CARD11, NOG, and LRG1 gene expression and enriched
pathways among different molecular subgroups of sepsis,
which may be the key factors leading to the heterogeneity of
clinical symptoms and prognosis in patients with sepsis. Our
current study provides novel diagnostic and therapeutic
biomarkers for sepsis molecular subtypes.
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