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OVERVIEW

Technological advances have made it possible to capture a specific assembly of neurons active
during a learning event andmanipulate the captured cells, demonstrating some form of relationship
between brief retention events and the cell assembly. The reductionists’ claim of localizing
the engram has been met with considerable skepticism. The potential for off-target effects in
“cell capture” techniques, such as optogenetics, reveal serious limitations when given the highly
interconnected nature of brain networks beyond a selective assembly of cells in a restricted
area of manipulation. Recent studies of subcortical-cortical interactions prompted us to review
the historic search for the engram, revealing a parallel between the empirical attempts to
localize the engram in cortical then subcortical systems. When brought together conceptually,
the very extensive independent work of Karl Lashley and Robert Thompson suggest that each
held a piece of the puzzle. Recent research implicates the interaction between subcortical
memory systems and association cortex in the transformation of mnemonic information from a
short-term process of plasticity to a long-term state of stability. We propose that one function
of subcortical-cortical connectivity is to continuously update contextually retrieved long-term
memory during reconsolidation of newly acquired information processing, creating a constantly
evolving emergent engram.

THE EARLY ENGRAM

Researchers claim to now “capture” activated cells allocated during a learning experience to
represent an enduring change among an assembly of neurons called an engram (Josselyn et al., 2015;
Tonegawa et al., 2015). Semon (1921, p. 12) made up the term and defined it as “...the enduring
though primarily latent modification in the irritable substance produced by a stimulus.” Semon
favored his novel word creation to avoid undesirable connotations of everyday terms in favor of
a precise scientific definition. However, he did not provide a precise definition due to “a lack of
physiological knowledge at the time,” and claiming that “. . . such speculation was unwarranted”
(Schacter et al., 1978, p. 726). The lack of a satisfactory definition has led to the “filling-in” of what’s
missing scientifically, and has become popular in mainstream culture (from scientology to popular
video games).

TWO ROUTES OF INVESTIGATION

Research on the engram then took two routes of inquiry. The first route (Hebb, 1949), described cell
assemblies and the “learning rule” as an enduring synaptic change later supported by the discovery
of long-term potentiation (Bliss and Lomo, 1973; Bliss and Collingridge, 1993). The second route,
taken by Hebb’s mentor, Karl Lashley (Lashley, 1950; Bruce, 2001), set out to localize an engram
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empirically somewhere within association cortex, thought to be
the repository of long-term memory (Battaglia et al., 2004; Dash
et al., 2004; Rauchs et al., 2005; Girardeau et al., 2009; Wang and
Morris, 2010; Insel and Takehara-Nishiuchi, 2013; Wiltgen and
Tanaka, 2013; de Voogd et al., 2016; Sekeres et al., 2018).

Karl Lashley used various post-training lesion techniques to
disrupt the retrieval of memory in rats and monkeys (Lashley,
1950). After decades of systematic empirical work, Lashley
concluded that it was not possible to localize an engram
in association cortex because memory was widely distributed
throughout a network of neurons that all have an equal potential
to contribute to the memory trace. Robert Thompson, continued
Lashley’s work in subcortical structures using pre- and post-
training lesions (Thorne, 1995), and published two books
(Thompson, 1978; Thompson et al., 1990) that summarized
findings from over 120 published journal articles.

Though his work has not been widely recognized in recent
reviews of the engram (Josselyn et al., 2015; Tonegawa et al.,
2015), it has been pointed out that Thompson was friends
with Karl Lashley at the Yerkes Primate Center where they
discussed research and the lack of progress in localizing an
engram (Thorne, 1995). Robert Thompson thought that Lashley
may not be looking in the right place for engrams and, his interest
in Penfield’s Centrencephalic Integrating System (Penfield, 1958),
as the general learning system (Thompson, 1993), resulted in his
continuation of a systematic empirical search within subcortical
structures, resulting in greater success than Lashley’s work
(Thorne, 1995).

The success of Thompson’s work supports the more
modern research of parallel and interactive memory systems
in subcortical structures (McDonald et al., 2017). Thompson
declared that a level of localization was possible with pre-training
lesions among subcortical substrates, later borne out by findings
as the understanding and sophistication of behavioral tests were
designed for associative learning specificity (Packard et al., 1989;
McDonald and White, 1993, 2013; White et al., 2013). More
recently, studies of cooperative interactions between memory
systems and memory subsystems using the water maze paradigm
in rats (Devan et al., 1996, 1999; Devan andWhite, 1999) provide
new models of cognitive-habit interactions (Devan et al., 2011,
2016; Sukumar et al., 2012).

Scientific advancement using the latest technology in
localizing engrams depends on the systems-level circuit
analysis of functional interactions. First proposed by Richard
Hirsh (Hirsh, 1974; Hirsh and Krajden, 1982) and later
exemplified by the meticulous, cell recording, lesion and
chemical inactivation work by Richard F. Thompson and
colleagues (The “R. Thompson” ambiguity may have contributed
to the confusion and lack of recognition for Robert Thompson)
identified “temporal neuronal models” of activation formed
in hippocampus early in classical conditioning (Berger et al.,
1976). Richard F. Thompson and colleagues then discovered
the essential role of the cerebellar dentate-interpositus nuclei
in learning and performance of classically conditioned skeletal
responses (McCormick and Thompson, 1984). A combination
of conceptual and methodological approaches continue to define
memory substrates and circuits within cerebellum (Poulos

and Thompson, 2015) and the general advancement of the
neurobiology of learning and memory (Thompson, 1986). This
kind of extraordinary scientific progress, or strong inference
(Platt, 1964), depends on converging operations in eliminating
alternative/competing explanations of scientific findings.

THE PRESENT STATE OF THE ENGRAM

Decades of research to localize an engram using various
techniques in the past (Lashley, 1950; Thompson, 1978, 2005,
2013; Thompson et al., 1990; Mayford, 2014; Eichenbaum,
2016) has provided a foundation for the current state of
engram research, expressed in a recent Forum (Poo et al.,
2016). Different levels of organization of an engram were
considered, including processes from chemical, synaptic, and cell
levels. However, systems-level interactions were largely missing
from the discussion, except for proposed changes in the site
of engrams from subcortical structures to association cortex.
Robert Thompson and Lashley’s independent work on these very
locations warrant further consideration within an interactive
memory systems perspective.

Two exciting papers recently published in Science
(Khodagholy et al., 2017; Kitamura et al., 2017) begin to
show how the neglected interactive systems-level is involved
in the wide distribution of the engram over time and space,
i.e., the succession of events in neuronal activity (Buzsáki and
Llinás, 2017). As no approach is perfect, the weaknesses of
one are offset by the strengths of another; such converging
operations therefore strengthen the conclusions that could not
be reached by either approach alone. Although the conceptual
strength of optogenetics and other cell “capture techniques”
is the precise localization of the sparse network of neurons
that make up an isolated engram (see Figure 1), the physical
representation of a complex episodic engram is much more likely
the emergent property of interactive memory systems (Tulving,
1987; Nyberg et al., 1998; McDonald et al., 2004a,b, 2017). Other
technical problems of optogenetics may be considered, such
as off-target effects in downstream circuits, as well as other
spatial and temporal factors (Otchy et al., 2015; Südhof, 2015;
Yates, 2016; Hardt and Nadel, 2017; McDonald and Deibel,
2017). For example, the specificity of a few neurons active in
one area seems to mimic an in vitro-like isolation approach,
while the snapshot-like association specificity in learning limits
the unfolding of an event over time. A densely interconnected
brain with molecularly distinct subclasses of neurons, glia and
vasculature cell types in different brain areas (Zeisel et al., 2015)
may expand the simple redux engram.

The above studies illustrate widespread connections and
changes in plasticity that may form the neurochemical and
electrophysiological substrates of a broader episodic engram
representation. In the first study (Kitamura et al., 2017),
functional reorganization of circuits occurred at the systems level
from hippocampal and basolateral amygdala engrams, slowly
strengthening the vertical pathways to prefrontal assemblies,
while the hippocampal engrams became silent and amygdala
engrams remained active. In the second study (Khodagholy et al.,
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FIGURE 1 | (A) A local engram identified by cell capture techniques within a defined brain structure. This engram is precise yet conceptually isolated from the rest of

the brain. Evidence reviewed in text show “off-target” effects outside the in vitro-like conceptual environment, as projections from axon fibers interconnect the local

engram with widespread subcortical and cortical targets. (B) The emergent engram with subcortical and cortical components. The wide distribution of connectivity

balances the scope of local engrams (pointed clusters) and distributed components of the potential system-wide interactions among multiple subcortical memory

systems, with routes to association cortex for (re)consolidation of stable long-term memory representations, thought to occur during sleep (Sara and Hars, 2006;

Sara, 2017).

2017), instead of optogenetics, a NeuroGrid and subcortical
recording of local field potentials and spiking throughout
dorsal cortex, revealed that not only does hippocampal activity
transform prefrontal activity during sleep following learning, but
also ripple-ripple coupling alters parietal and midline cortical
activity, possible components promoting widespread network
change throughout association neocortex (Buzsáki, 1996; Xu
et al., 2016). Perhaps even long-term consolidation (McGaugh,
1966) over time may continuously alternate between malleable
and rigid states of change in a never-ending cycle throughout life
(Dudai and Eisenberg, 2004; Dudai, 2012).

THE EMERGENT ENGRAM

It is apparent that the isolated engram is now expanded to an
interactive memory systems representation with widespread
association cortex coupling (Khodagholy et al., 2017) and
subcortical silencing (Kitamura et al., 2017) before recall
(Figure 1). It took Lashley three decades to conclude that
the cortical component was widely distributed, and several
more years for Robert Thompson to begin to localize
subcortical substrates. In our view, this extensive empirical
and theoretical work has set the stage for important future
scientific discovery. An integration among ascending vertical
(subcortical-neocortical) with horizontal (cortico-cortical)
connectivity (Qin et al., 1997) will further our understanding of

the emerging engram. A balanced scientific approach may allow
us to appreciate the complexities and vastness of the forest in
relation to the details of individual trees.

CONCLUSION

Although the specific term “emergent engram” does not appear
in major databases (e.g., PubMed and PsychINFO), its general
idea is prevalent throughout contemporary memory research.
Indeed, it is prominent throughout cognitive psychology, e.g., in
the writings of Endel Tulving with the emergence of multiple
memory systems (Tulving, 1987; Nyberg et al., 1998) among
others in the Gestalt tradition (Kałamała et al., 2017; Allon et al.,
2018). In addition, it has more contemporary relevance to other
recent work in behavioral neuroscience (Sara and Hars, 2006;
Sara, 2017). For example, Sara (2010) eloquently summarized the
view as “. . .memory is a dynamic property of the nervous system,
in constant flux as a result of being retrieved within current
cognitive environments” (pg. 4).

The recent physiological findings described above are
consistent with previous studies of coordinated activity within
several interactive systems. For example, associative learning
of a spatial discrimination was related to fast oscillations or
pronounced ripple activity in the hippocampus (Ramadan et al.,
2009). Neocortical slow oscillation synchrony increased with
thalamocortical spindle activity and hippocampal ripple activity

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 168

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Devan et al. Emergent Engram

during non-REM sleep (Mölle et al., 2009). These findings
may relate to hippocampal-cortical/subcortical coordination of
reactivation events (Skelin et al., 2018) involving multiple
subcortical memory systems with densely distributed networks
of “hard” synaptic changes among cells in different neocortical
assemblies (Milner, 1989, 1996).

The interactions among subcortical memory systems and the
coordination of spatial processing within the hippocampus and
the thalamocortical output of basal ganglia loops (Alexander
et al., 1986, 1990; Méndez-Couz et al., 2015) may mediate a
form of cognitive-habit integration (Devan et al., 2011, 2016).
This hypothesis is consistent with fMRI studies that show
cooperation between these systems in the flexible navigation of
virtual spatial tasks (Brown et al., 2012; Woolley et al., 2015), in

the demonstration of exceptional memory performance among
competitive mnemonists (Muller et al., 2018) and disrupted
functional connectivity between hippocampus and caudate
nucleus in patients suffering from obstructive sleep apnea (Song
et al., 2018). Further evidence suggests a potential role of glia in
consolidation-related sleep processes (Hyden and Lange, 1965;
Chen et al., 2015; Frank, 2018).

In summary, the historical search for the engram identified
ascending vertical subcortical-cortical networks supporting
consolidation processes in studies using the latest technology

(Khodagholy et al., 2017; Kitamura et al., 2017). Further, support
for multiple memory systems provided horizontal integration

among subcortical systems (Devan et al., 2011, 2016). The
combination of connections enable soft or labile interactions
between local subcortical cell assemblies and a dense or hard
(Milner, 1989) network of vastly rich cortical associations that are
constantly responsive to smaller units of reconsolidation through
the different stages of sleep (Sara and Hars, 2006; Sara, 2017).
As we learn more about glial cells and sleep physiology (Panatier
et al., 2006; Fields, 2011; Fields et al., 2014; Cousins et al., 2016;
Frank, 2018) we may gain valuable insight into the complexities
of yet unknown processes supporting (re)consolidation, hence
continually remolding the emerging engram to express both
stability and change.
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