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SUMMARY
Human chromosomes are pervasively transcribed, but systematic understanding of coding and long non-
coding RNA (lncRNA) genome function in cell differentiation is lacking. Using CRISPR interference
(CRISPRi) in human induced pluripotent stem cells, we performed dual genome-wide screens—assessing
18,905 protein-coding and 10,678 lncRNA loci—and identified 419 coding and 201 lncRNA genes that regu-
late neural induction. Integrative analyses revealed distinct properties of coding and lncRNA genome func-
tion, including a 10-fold enrichment of lncRNA genes for roles in differentiation compared with proliferation.
Further, we applied CRISPRi perturbation coupled with single-cell RNA-seq (Perturb-seq) to obtain granular
insights into neural induction phenotypes. While most coding hits stalled or aborted differentiation, lncRNA
hits were enriched for the genesis of diverse cellular states, including those outside the neural lineage. In
addition to providing a rich resource for understanding coding and lncRNA gene function in development,
these results indicate that the lncRNA genome regulates lineage commitment in a manner fundamentally
distinct from coding genes.
INTRODUCTION

The human genome expresses thousands of genes—both cod-

ing and noncoding1,2—and many are critical to the complex pro-

cesses of cell differentiation during development.3–5 Early in

mammalian development, neural stem cells (NSCs) are pro-

duced from pluripotent stem cells by the process of neural in-

duction.6 Long noncoding RNAs (lncRNAs) are transcripts longer

than 200 nucleotides that do not encode protein, and many are
This is an open access article under the CC BY-N
expressed in neural tissues.2,7,8 The recent evolutionary expan-

sion of these loci has led to the hypothesis that lncRNA

genes play critical roles in the development of complex organ-

isms.8–10 However, unlike coding genes, far fewer lncRNA genes

have been demonstrated to regulate cell biology.11 More

broadly, systematic understanding of how the coding and

lncRNA genomes regulate developmental processes is lacking.

Genetic screens are powerful methods for identifying

genes underlying phenotypes of interest.12 The vast majority of
Cell Genomics 2, 100177, November 9, 2022 1
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CRISPR-based screens have focused on the protein-coding

genome, typically excluding lncRNA loci. Nevertheless, these

studies provide insight into principles of coding genome

function by integrating screen data into a rich foundation of

literature, including knowledge of physical and functional inter-

action networks. Although genetic screens of lncRNAs are now

emerging,13–15 functional knowledge for this class of molecules

is still primarily drawn from the study of individual lncRNAs.

Genome-wide screens that integrate information from both the

coding and lncRNA genomes are rare14 and have not been

performed in complex contexts such as cell differentiation.

Such dual genome-wide approaches can provide unique data

resources to discover principles of developmental regulation.

In this work, we used functional genomics to systematically

assess 18,905 coding genes and 10,678 lncRNAs for roles in

human neural induction. Using dual genome-wide CRISPR

interference (CRISPRi) marker-based screens, we identified 419

protein-coding and 201 lncRNA genes that regulated the produc-

tion of NSCs from induced pluripotent stem cells (iPSCs). The

scale and design of this resource enabled integrated analyses

and the discovery of general properties of coding and lncRNA

genome function. To obtain deeper insights into the biology of

these regulators, we applied this resource to perform a CRISPRi

perturbation coupled with single-cell RNA sequencing (RNA-

seq), known as Perturb-seq.16–20 Collectively, these systematic

studies revealed fundamental insights about the unique develop-

mental roles of the coding and lncRNA genomes at a level that is

challenging to ascertain by the study of individual genes.

RESULTS

Dual genome-wide CRISPRi screens identify coding and
noncoding genes regulating neural induction
An early step toward brain development is neural induction from

pluripotent stem cells. Using dual SMAD inhibition (dSMADi),6,21

we induced NSCs from iPSCs that express dCas9-KRAB

(CRISPRi-iPSCs) under doxycycline-inducible control (Fig-

ure 1A). The induction of NSCs was progressive over time, which

we characterized by flow cytometry analysis of the canonical

marker PAX6 (Figure 1B) and RNA-seq of polyadenylated and to-

tal RNA at multiple time-points (0–11 days). Many thousands of

coding and noncoding genes were dynamically expressed over

the course of neural induction (Figure 1C; Table S1).

We applied the transcriptomic data to inform the assembly of a

dual genome-wide library (STARMethods) containing published,

validated CRISPRi single-guide RNAs (sgRNAs) targeting human

coding (hCRISPRi-v2)22 and lncRNA (CRiNCL) genes.13 These

sgRNAs were selected based on RNA-seq expression during

neural induction and were designed in prior studies using an al-

gorithm that incorporates nucleosome-positioning and FANTOM

cap analysis of gene expression data, with off-target activity

filtering.13,22 We included a total of 212,938 sgRNAs (with

4,523 non-targeting controls) against 29,583 targets, covering

18,905 coding (five sgRNAs/target) and 10,678 lncRNA genes

(10 sgRNAs/target).

We conducted the dual genome-wide screens using

CRISPRi-iPSCs with PAX6 staining as the readout for neural in-

duction (Figure 1D). We selected day 8 of neural induction as
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the endpoint, when both PAX6+ and PAX6� populations

were present (Figure 1B), enabling the identification of hits

that either increase or decrease this marker of neural induction.

After sequencing the assembled library to ensure uniform distri-

bution, we packaged lentivirus and transduced �650 million

CRISPRi-iPSCs in two biological replicates. Cells were propa-

gated in self-renewal media under puromycin selection until

reaching >80% sgRNA positivity, detected by co-expressed

blue fluorescent protein (BFP).

We maintained the screens at >1,0003 sgRNA coverage per

replicate over the course of neural induction. Time zero (T0) ali-

quots were collected to assess initial sgRNA abundance. After

8 days of neural induction and dCas9-KRAB expression, cells

were harvested and quantified. Approximately 2.7 billion cells in

total were fixed, permeabilized, and stained with antibodies

against PAX6 for fluorescence-activated cell sorting (FACS) into

PAX6+ and PAX6� fractions (top and bottom thirds; Figure 1D,

right). The abundance of sgRNAs in each fraction were quantified

by PCR amplification followed by Illumina sequencing.

The differentiation phenotype rho (r; log2 enrichment ratio of

normalized sgRNA abundance in PAX6+ versus PAX6� fraction)

was calculated for all targets and non-targeting controls (Fig-

ure 1D, right). This r value, used in other marker-based studies,

represents the log2 fold change of each sgRNA in the positive

fraction relative to the negative fraction.13,16,23 Negative values

of r indicate that the sgRNA decreased neural induction (e.g.,

knockdown of pro-neural factors), while positive r values indi-

cate that the sgRNA promoted the development of PAX6+ cells

(e.g., knockdown of pluripotency factors). Independent repli-

cates were correlated (Figure S1A) and non-targeting control

sgRNAs produced r values centered around zero, as expected

(Figure S1B). More than 99% of sgRNAs met a threshold of

>1003 coverage (with 97% with >5003) providing sufficient

data for all 29,583 targets, with 94% of targets having all de-

signed sgRNAs represented. After applying an empirical false

discovery rate (FDR) of 0.05, exclusion of sgRNAs targeting mul-

tiple loci and gene ‘‘neighbor hits’’ (STARMethods), we identified

419 protein-coding and 201 lncRNA genes that altered the pro-

duction of PAX6+ NSCs (Figure 1E).

Since each hit was targeted by multiple sgRNAs, we assessed

whether these sgRNAs were in agreement by calculating the

fraction of sgRNAs in the same direction as the hit. Hits showed

a very high median concordance of 1 (indicating that all sgRNAs

had the same effect) while those targeting non-hits had amedian

concordance of 0.5 (indicating random chance) (Figure S1C).

Additionally, given the large scale of the screen, we estimated

hit identification performance at smaller scales by downsam-

pling the raw data for precision-recall analysis. At 10% down-

sampling (�1003 coverage), performance was poor (<40% of

hits identified). This improved substantially at 2003 and 5003

coverage, where >70% and >80% of hits were identified,

respectively (Figure S1D). Thus, the comprehensive scale of

the dual genome-wide screens provides an unparalleled glimpse

into this early differentiation process.

Validation of genome-wide screen results
Of the 18,905 coding genes screened, PAX6 itself was expect-

edly the highest scoring negative hit (Figure 1E) with r = �3.01,



Figure 1. Dual genome-wide CRISPRi screens identify coding and noncoding genes regulating neural induction

(A) Neural induction of CRISPRi-iPSCs by dual SMAD inhibition, stained for PAX6 protein, a canonical marker of NSCs. Scale bar, 50 mm.

(B) Progressive increase of PAX6+ NSCs over time during neural induction, analyzed by flow cytometry. Distinct peaks of PAX6+ and PAX6�were present at day

8, which was selected as the screen endpoint.

(C) Heatmap showing Z-scaled gene expression of differentially expressed coding and lncRNA transcripts during neural induction.

(D) Overview of pooled, marker-based genome-wide CRISPRi screen design for assessing 18,905 coding genes and 10,678 lncRNA targets in the regulation of

neural induction. Each class was targeted with�100,000 sgRNAs, with five sgRNAs/transcriptional start sites (TSSs) for coding genes and 10 sgRNAs/TSSs for

lncRNA genes. Top and bottom thirds of the PAX6 fractions were sorted during FACS for next-generation sequencing.

(E) Volcano plots of screen results for coding and lncRNA genes, with x axis showing screen phenotype rho (r) value (log2 enrichment in PAX6+/PAX6� fractions)

and y axis showing �log10 p value. Blue dots show hits (FDR < 0.05), dark gray dots show non-hits, and light gray dots show non-targeting controls.

See also Figure S1 and Tables S1 and S2.
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representing an 88% reduction in PAX6+ cells by FACS. We also

observed numerous examples of hits with expected positive or

negative impact on neural induction. For instance, pro-pluripo-

tency factors (POU5F1/OCT4, GBX2, SMARCC1, PRDM14)

were positive hits while genes with known neurodevelopmental

roles (SOX2, SOX4, SOX11, HES1, OTX2) were negative hits.

Protein-protein network analysis revealed enrichment for known
functional interactions among coding gene hits, such as those of

the BRG1/BRM-associated factor (BAF) chromatin remodeling

complex, the Polycomb repressive complex (PRC), and signaling

pathways critical to neurodevelopment such as NOTCH

(Figures S2A and S2B). Furthermore, Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis of coding hits revealed enrichment for processes
Cell Genomics 2, 100177, November 9, 2022 3



Figure 2. Experimental validation of genome-wide screen results

(A) Diagram of arrayed, individual sgRNA validation assay using CRISPRi-iPSCs with exemplar PAX6 flow cytometry histograms for negative and positive

screen hits.

(B) Histograms showing PAX6 flow cytometry staining of validated positive and negative hits for both coding and lncRNA classes.

(C) Validation scatterplot of 32 sgRNAs targeting positive and negative hits of both coding and lncRNA classes (16 total targets3 2 replicates3 2 sgRNAs), with

x axis showing the genome-wide screen r and y axis showing the individual validation r0, which were strongly correlated (Pearson r = 0.91).

See also Figure S2.
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important in early development (Figure S2C). Thus, our screen

recovers a large number of genes known to function in com-

plexes and pathways important for neural induction.

To experimentally validate screen results, we selected 16 hits

and targeted each with two independent sgRNAs (32 different

sgRNAs in total covering each of the hit subcategories, i.e., cod-

ing/lncRNA, positive/negative, with two biological replicates per

sgRNA). These sgRNAs were individually transduced into iPSCs,

and, after 8 days of neural induction and CRISPRi, the cells were

analyzed by PAX6 staining via flow cytometry (Figure 2A). Indi-

vidual sgRNAs targeting both coding and lncRNA genes showed

phenotypes matching their screen phenotypes (Figure 2B).

Collectively, quantitative results from individual experiments

were highly correlated with the screen r phenotype (Pearson

r = 0.91, Figure 2C), providing experimental validation to the

hits identified in the screen.

lncRNA genes are enriched for roles in promoting neural
induction
Similar numbers of coding gene hits exerted positive (52%) and

negative (48%) effects on neural induction, and this slight bias

was not significant (permutation test p = 0.27; Figure 3A, left).

In contrast, the majority (87%) of lncRNA hits identified were

negative hits, and this enrichment in the lncRNA hit distribution

was highly significant (permutation test p < 1 3 10�6; Figure 3A,
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right). These results indicate that lncRNA hits were enriched for

functions that normally promote neural induction.

During development, cell division can have important effects

on differentiation. To investigate the effects of proliferation dur-

ing neural induction, we compared the total sgRNA abundance

in the PAX6+ and PAX6� fractions at day 8 (final abundance)

with the initial sgRNA abundance in samples collected at the

beginning of the screen (Figure S3A). This enabled calculation

of the growth enrichment index gamma (g; negative values indi-

cate a decrease in proliferation; positive values indicate an in-

crease), which we directly validated in a separate screen without

FACS (STAR Methods; Figure S3B).

We identified 730 coding gene hits and 24 lncRNA gene hits

that altered cell proliferation during neural induction (Table S2).

As expected, coding gene hits included numerous cell cycle,

apoptosis, and other essential genes (e.g., CDC20, CDT1,

TP53, MDM2, TOP2A, BAX) (Figure S3C). Proliferation hits

were strongly enriched for GO terms relating to essential biolog-

ical processes, including ribosome biogenesis and DNA helicase

activity (Figure S3D). As a group, coding hits were biased toward

negative proliferation hits (Figure 3B), consistent with previous

studies of essential genes.24–26

Integrated analyses of both differentiation and proliferation

effects (Figure 3C) revealed that the majority (91%) of hits pro-

duced a single phenotype (i.e., differentiation or proliferation,



Figure 3. lncRNA genes are enriched for roles in promoting neural induction

(A) Distributions of genome-wide r values for coding and lncRNA hits in PAX6 marker-based differentiation screens. *p < 1 3 10�6 by permutation test.

(B) Distributions of genome-wide g values for coding and lncRNA hits in growth-based proliferation screens. *p < 1 3 10�6 by permutation test.

(C) Scatterplots showing both differentiation (r) and proliferation (g) phenotypes for all screened genes, with hits colored by their primary phenotype (differen-

tiation, blue; proliferation, orange; or dual, purple) and non-hits shown in gray.

(D) Venn diagrams showing relative breakdown of coding and lncRNA hits by their primary phenotypes, drawn to scale.

(E) Ratio of differentiation to proliferation hits for coding genes and lncRNAs in neural induction. *p < 1 3 10�6 by permutation test.

See also Figure S3 and Table S2.
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but not both). Of the 1,258 hits across both coding and lncRNA

genomes, only 9% of hits had dual phenotypes (Figure 3D).

For example, knockdown of the dual hit POU5F1/OCT4

increased differentiation (positive p; Figure 1E) and decreased

proliferation (negative g; Figure S3C), consistent with its role

in maintaining both pluripotency and self-renewing stem cell

divisions.27,28

Notably, the coding and lncRNA genomes differed vastly in

their propensity for differentiation and proliferation phenotypes.
Among coding genes, there were only half as many differentia-

tion hits compared with proliferation hits (permutation test,

p < 1 3 10�6). In stark contrast, among lncRNA genes, differen-

tiation hits outnumbered proliferation hits by over 9-fold

(permutation test, p < 1 3 10�6; Figure 3E). These differences

in differentiation versus proliferation ratios highlight the unique

roles of these two aspects of the genome in regulating cell

biology. Overall, these integrated analyses of the dual genome-

wide screen results indicate that the lncRNA genome is far
Cell Genomics 2, 100177, November 9, 2022 5
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more specialized for roles in promoting neural induction

compared with the coding genome.

Distinct transcriptomics and epigenomics of coding and
lncRNA gene hits
We next leveraged the screen data to identify transcriptomic and

epigenomic properties that distinguish hits from non-hits. A pri-

ori, we hypothesized that differential expression would be pre-

dictive of hits. For example, negative hits may have expression

patterns similar to PAX6 (high in NSCs, low in stem cells),

whereas positive hits may have the expression pattern of

POU5F1/OCT4 (high in stem cells, low in NSCs). However, ex-

amination of individual genes revealed both negative (e.g.,

PAF1) and positive (e.g., SMARCE1) hits with stable expression

throughout neural induction (Figure S4A). To systematically

assess the relationships of transcriptomic and epigenomic

data to screen phenotypes, we turned to a machine learning

approach.

To provide transcriptomic features for this analysis, we used

our neural induction RNA-seq time-series data. For each target

in the screen, we determined the gene expression (transcripts

per million [TPM]), fold change at each time-point relative to

day 0, maximum expression, maximum fold change, and scaled

expression (Z score representing relative change over time). For

epigenomic features, we used data from the Roadmap Epige-

nomics project that profiled 27 histone marks in human embry-

onic stem cells (ESCs) undergoing dual SMAD inhibition neural

induction similar to that performed in our screen.29 Specifically,

an individual epigenomic feature would be the level of a histone

mark in the stem cell and NSC stages. For all coding and lncRNA

gene promoters, we quantified the levels of the histone marks at

these stages.

To compare the overall ability of transcriptomic and epige-

nomic data to discriminate hits from non-hits, we constructed

machine learning classifiers and analyzed the area under the

curve (AUC) of the receiver operating characteristic (ROC) (Fig-

ure S4B). While transcriptomic data were able to classify coding

hits (mean AUC, 0.74), these data performed poorly for lncRNA

hits (mean AUC, 0.55) overall and in a bootstrapped analysis of

individual features (Figures 4A and 4B). The median expression

level of coding hits (50.4 TPM) was more than 4-fold higher

than that of non-hits (11.7 TPM), whereas the expression level

difference of lncRNA hits (0.7 TPM) and non-hits (0.4 TPM) was

smaller and less significant (Figure S4C, left). Differential expres-

sion differences (maximum absolute fold change) were also

more associated with coding hits than lncRNA hits (Figure S4C,

right). Furthermore, in an analysis of temporal expression dy-

namics, coding hits were associatedwith certain expression pat-

terns, but lncRNA hits were not enriched for any pattern

(Figures S4D and S4E). Thus, common transcriptional heuristics

used to predict the biological activity of coding genes—such as

expression level or temporal pattern—do not apply to lncRNA

genes.

The epigenomic data classified both coding and lncRNA gene

hits at a similar performance, with mean AUC of 0.75 and 0.74,

respectively (Figure 4C). To explore this finding at a more gran-

ular level, we turned to the analysis of individual histone marks

(Figure 4D), which revealed significant scores for histone-3
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lysine-4 trimethylation (H3K4me3), indicating that this mark

distinguished hits from non-hits better than random chance for

both coding and lncRNA genes. The H3K4me3 modification is

associated with active genes,30 with the top 5% ‘‘broadest’’ do-

mains enriched for genes important for cellular identity and func-

tion.31 Analysis of chromatin immunoprecipitation sequencing

(ChIP-seq) profiles revealed elevated H3K4me3 deposition at

both coding and lncRNA hit promoter regions (Figure 4E). Addi-

tionally, both coding and lncRNA hits were significantly enriched

(odds ratio,�4–8) in the broadest H3K4me3 domains (Figure 4F),

indicating importance in cell identity. Together, these findings

illustrate how epigenomic features—as a group as well as at

the level of a specific histone mark—distinguish hits from non-

hits in a screen for regulators of neural induction.

A small fraction of lncRNA gene hits have evidence of
enhancer-like function
Some lncRNA loci can function as transcriptional en-

hancers.32–34 We therefore investigated what proportion of

lncRNA hits have evidence of enhancer-like function. The linear

genomic distance of lncRNA gene hits to coding gene hits was

somewhat decreased (median, 1.4 Mb) compared with the over-

all distribution (2 Mb), although these distributions were largely

overlapping (Figure S5A). To more comprehensively identify po-

tential enhancer loci among hits, we considered the Functional

ANnoTation Of the Mammalian genome (FANTOM5) atlas of

43,011 human enhancers,35 a massively parallel reporter assay

(MPRA) that identified 1,547 candidate regulatory sequences

activated during human neural induction,36 the genomic relation-

ship of each lncRNA gene hit with the nearest coding gene hit,

and long-range three-dimensional intrachromosomal interac-

tions between lncRNA and coding genes derived from Proximity

ligation-assisted ChIP-seq (PLAC-seq) (Figures 5A–5F). In total,

18% (36 of 201) of lncRNA hits overlapped at least one of these

maps (Figure 5G, left). Of note, these broadly inclusive criteria

also classified 13% (54 of 419) of coding hits as potential en-

hancers (Figure 5G, right). At higher stringency—evidence from

at least two of the analyses—only 2% (4 of 201) of lncRNA hits

were classified as enhancers (Tables S3 and S4). Thus, only ami-

nority of coding and lncRNA gene hits are potential enhancers.

Dual genome-wide screens enable Perturb-seq
experiment to dissect coding and lncRNA phenotypes
By coupling CRISPRi genetic perturbation with rich single-cell

transcriptomic readout, Perturb-seq16–18 provides deeper in-

sights into gene function and cell biology. While the readout of

pooled screens is usually based on simple phenotypes such as

cell growth, survival, or marker gene expression, Perturb-seq

allows the dissection of different phenotypes and molecular

mechanisms that are masked in bulk experiments.

We used our functional atlas from the dual genome-wide

screens to inform a Perturb-seq experiment that interrogates

both coding and lncRNA gene function. We selected targets by

prioritizing the highest scoring differentiation hits and excluding

any hits with strong proliferative phenotypes; i.e., those with

absolute g greater than 1 (predicted to become substantially over-

represented or underrepresented due to survival differences). For

comparative analysis, we also randomly sampled non-hit genes



Figure 4. Machine learning analyses reveal distinct transcriptomic and epigenomic properties of coding and lncRNA hits

(A) Representative ROC curves for transcriptomic data in classifying coding and lncRNA hits versus non-hits. Selected curves were within 1%of themean AUC of

1,000 training/validation trials.

(B) Heatmaps showing AUC values for individual transcriptomic features for classifying coding and lncRNA hits versus non-hits. Statistical significance deter-

mined at the 99% confidence level from 1,000 bootstraps; non-significant features denoted in gray.

(C) Representative ROC curves for epigenomic data in classifying coding and lncRNA hits versus non-hits. Selected curves were within 1% of the mean AUC

value of 1,000 training/validation trials.

(D) Heatmaps showing AUC values for individual epigenomic features for classifying coding and lncRNA hits versus non-hits. Statistical significance determined

at the 99% confidence level from 1,000 bootstraps; non-significant features denoted in gray.

(E) ChIP-seq profiles showing average H3K4me3 signal in a 2-kb window at the promoter region of coding and lncRNA genes in ESCs. Coding hits in green,

lncRNA hits in magenta, and non-hits in gray.

(F) Odds ratio for the enrichment of hits in broad H3K4me3 domains. Both coding and lncRNA gene hits were significantly enriched compared with non-hits.

Dashed line denotes an odds ratio of 1 (null hypothesis), and error bars denote 95% confidence intervals by Fisher exact test. *p < 1 3 10�8.

See also Figure S4 and Table S1.
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with similar expression levels. The final Perturb-seq library con-

sisted of 480 sgRNAs for 240 unique targets (120 lncRNA and

120 coding genes, with two independent sgRNAs for each target),

covering 60 positive differentiation hits, 85 negative differentiation

hits, 30 dual hits, and 65 non-hits; additionally, 12 non-targeting

control sgRNAs were included for a total of 492 unique sgRNAs.

The library was transduced into CRISPRi-iPSCs at a lowmultiplic-

ity of infection (MOI) of 0.1, corresponding to>95%cellswith a sin-

gle sgRNA integration. After FACS for sgRNA+ cells, we initiated

neural induction and activation of CRISPRi (Figure 6A). On day 8,

we harvested cells and prepared single-cell RNA-seq (scRNA-

seq) libraries using direct sgRNA capture.18

Following sequencing and data processing, we filtered cells

for sgRNA detection, singlet status, and quality metrics (STAR
Methods; Table S5). We obtained a total of 78,393 cells that

harbored single sgRNA perturbations, with each perturbation

represented in a median of 317 cells. Analysis of target gene

expression data revealed a median knockdown efficiency of

80% (Figure S6A), comparable with prior studies.18 The Per-

turb-seq dataset was visualized in two dimensions using uniform

manifold approximation and projection (UMAP).

Based on RNA velocity analysis37,38 (Figure 6B) and marker

gene expression (Figures 6C and S6B), we identified three major

cellular trajectories. The largest trajectory (NSC lineage, repre-

senting�50%of the cells) corresponded to non-cycling cells un-

dergoing neural induction, with velocities directed toward a final

cell state with high expression of neural markers including PAX6,

FOXG1, and EMX2. Pluripotency markers such as GBX2 and
Cell Genomics 2, 100177, November 9, 2022 7



Figure 5. A small fraction of lncRNA gene hits have evidence of enhancer-like function

(A) Diagram of screen hits that map to enhancer sequences across FANTOM5 atlas and MPRA neural induction enhancer datasets.

(B) Bar plots showing fraction of coding and lncRNA genes (colored, hit; gray, non-hit) mapping to enhancers described in (A).*p < 0.05 comparing hits and non-

hits by Fisher exact test; n.s., non-significant.

(C) Diagram of close-range lncRNA-coding hit pair genomic relationships.

(D) Bar plots showing fraction of coding and lncRNA genes (colored, hit; gray, non-hit) in each category described in (C). *p < 0.05 comparing hits and non-hits by

Fisher exact test; n.s., non-significant.

(E) Diagram of long-range 3D chromatin interactions between lncRNA and coding hit pairs.

(F) Histogram showing distances of long-range 3D gene-gene looping interactions identified by PLAC-seq. Interaction hits are colored in light red; all other

interactions in gray.

(G) Venn diagrams showing potential enhancer-like screen hits classified into the categories detailed above.

See also Figure S5 and Tables S3 and S4.
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POU5F1/OCT4 were lowly expressed in this trajectory but pre-

sent in other cell populations (Figures 6C and S6B). The second

largest trajectory (cell cycle,�30% of cells) consisted of actively

cycling cells (CDC6+ and MKI67+), including both PAX6+ cells

as well as PAX6� cells that expressed pluripotency markers.

Cells exiting the cell cycle trajectory branched into either the

NSC lineage or a third trajectory—non-central nervous system

(non-CNS) ectoderm, �14% of cells—characterized by markers

of ectodermal lineages (e.g., TFAP2A/B) that normally develop

outside the CNS and can appear in a subset of cells undergoing
8 Cell Genomics 2, 100177, November 9, 2022
neural induction.21 Approximately 7% of cells did not fall within

these three major trajectories.

Each Perturb-seq sgRNA was mapped to each cell, and we

constructed normalized 2D density heatmaps to visualize the

enrichment of hits and non-hits in the UMAP space. As a group,

positive-hit sgRNAs were enriched in PAX6+ NSCs, whereas

negative-hit sgRNAswere enriched inmultiple PAX6� cell states

(Figure 6D). The group of non-hit sgRNAs were not statistically

distinguishable from non-targeting control sgRNAs (represent-

ing non-perturbed cells), indicating that they did not have



Figure 6. Dual genome-wide screens enable Perturb-seq experiment to dissect coding and lncRNA phenotypes

(A) Overview of neural induction Perturb-seq experimental design with direct capture of sgRNAs.

(B) Major trajectories derived from RNA velocity and visualized by UMAP.

(C) Expression of markers for NSCs, pluripotent cells, and cycling cells, visualized on UMAP.

(D) Normalized density heatmaps of hit and non-hit sgRNAs on UMAP. Density profiles of target sgRNAs were calculated in UMAP space and normalized to the

background density of non-targeting controls. *p < 1 3 10�3 based on multivariate Kolmogorov-Smirnov test versus non-targeting control distribution.

(E) Heatmap of hierarchical clustering of Perturb-seq targets by similarity of sgRNA density profiles by overlap coefficient. Two groups of targets, the BAF and

PAF1 complexes, are highlighted in blue and red, respectively.

(F) Normalized density heatmaps of sgRNAs targeting BAF and PAF1 complex members, showing their colocalization in UMAP.

See also Figure S6 and Tables S5 and S6.

Resource
ll

OPEN ACCESS
substantial effects on the neural induction transcriptome. Thus,

Perturb-seq validates the differentiation phenotypes of targets

from the genome-wide screens.

To assess potential sgRNA effects on cell proliferation, we

quantified the number of cells expressing each sgRNA, providing

a relative measure of this growth phenotype (e.g., a target that

reduces proliferation would drop out over time, resulting in fewer

sgRNA+ cells). For targets in the Perturb-seq experiment, the

sgRNA cell counts at day 8 of neural induction were proportional

to the g proliferation phenotype from the genome-wide screens
(Figure S6C), with dual hits showing a strong correlation (Pear-

son r = 0.92). Thus, Perturb-seq confirms both proliferation

and differentiation phenotypes, supporting the findings of the

genome-wide screens (Figures 3C and 3D).

To study the effects of individual hits, we generated normal-

ized density heatmaps for each target, using density-based

spatial clustering and application with noise39 (DBSCAN) to iden-

tify the discrete UMAP regions of high sgRNA density (STAR

Methods). Pairwise analysis and clustering of the sgRNA density

profiles revealed groups of targets that had similar effects
Cell Genomics 2, 100177, November 9, 2022 9
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(Figures 6E, S6D, and S6E; Table S6). For instance, BAF1 com-

plex members were positive hits in the genome-wide screen

(Figures 1E and S2B), and sgRNAs targeting ARID1A

(BAF250A), SMARCA4 (BRG1), SMARCC1 (BAF155), and

SMARCE1 (BAF57) were localized in the same patterns in

UMAP (Figure 6F, top), suggesting they affected neural induction

in a similar manner. Knockdown of the BAF complex led to cells

farther along both NSC and non-CNS ectoderm trajectories,

consistent with the role of this chromatin regulator complex in

maintaining pluripotency and acting as a general barrier to differ-

entiation.40 Proteins encoded by negative hits PAF1, CTR9,

RTF1, and CDC73 physically interact in a complex known as

PAF1c that regulates transcription, chromatin structure, and

signaling pathways important for embryogenesis.41 Targeting

these PAF1c components produced a transcriptome that is

distinct from the major cell trajectories observed in neural

induction (Figure 6F, bottom). Similarly, Perturb-seq revealed

overlapping phenotypes among physically interacting hits

related to the Mediator, DNA synthesis, and Polycomb com-

plexes (Figure S6D).

Additionally, genes that function in the same pathway pro-

duced similar UMAP density profiles. POU5F1/OCT4 is upregu-

lated by SALL4,42 and the density heatmaps of these two posi-

tive hits were highly overlapping (Figure S6E, left), indicating

that repression of POU5F1 and SALL4 led to similar phenotypes.

Analysis of the density heatmaps also identified similar patterns

among other coding genes that function in the same pathways,

such as Wingless (WNT) and mitogen-activated protein kinase

(MAPK) signaling (Figure S6E). Collectively, these examples

demonstrate that Perturb-seq targeting of genes in the same

pathway or molecular complex produces highly similar UMAP

profiles that reflect the underlying biological process governed

by those genes.

Coding gene repression stalls or aborts differentiation,
while lncRNA gene repression permits a greater
diversity of cell states
Based on the analysis of density profiles for all Perturb-seq tar-

gets, we identified a total of 29 cell states (Figures 7A and

S7A–S7C). Each Perturb-seq target was then analyzed for the

relative distribution of its sgRNAs mapping to each of the 29

states, and these data were visualized by heatmap (Figure S7D).

Hits were color coded according to their positive or negative dif-

ferentiation phenotype from the dual genome-wide screens,

and, although this information was not used to inform clustering,

positive and negative hits segregated from each other. For

instance, positive hits associated with NSC states (e.g., 16, 12,

9, 23, 24), while negative hits were prominent in less differenti-

ated, intermediate cell states (e.g., 13, 6).

For both coding and lncRNA genes, positive hits generally

produced similar PAX6+ NSC states. For instance, sgRNAs tar-

geting OGT—which encodes the O-GlcNAc transferase protein

that regulates pluripotency and neural differentiation43,44—

were enriched in NSC state 16 (Figure 7B). This state was char-

acterized by the highest expression of neural markers, including

genes involved in forebrain development (e.g., PAX6, FOXG1,

FEZF1, EMX2) (Figure 7C; Table S6). Targeting the novel lncRNA

gene LH09400 (internal identifier) led to enrichment in NSC state
10 Cell Genomics 2, 100177, November 9, 2022
12 (Figure 7B), which expressed a highly similar signature of neu-

ral markers but with elevated levels of HES4, HES5, and ID4,

genes downstream of NOTCH signaling (Figure 7C).

Negative hits showed highly divergent phenotypes between

coding genes and lncRNA genes. For coding genes, the most

common phenotype (40%) was enrichment in an intermediate

cell state. For example, knockdown of the forebrain develop-

ment factor HESX1, a homeobox,45 led to enrichment in cell

state 6. This intermediate state lies at the junction of the major

RNA velocity trajectories (Figure 6B) and is characterized by

PAX6�/GBX2+ cells exiting the cell cycle (Figure 6C), suggest-

ing that these cells are most similar to undifferentiated cells,

and may have stalled or are slower to progress along their differ-

entiation trajectory to NSCs. The next most common phenotype

(16%) was an apoptotic signature (e.g., BAX, CDKN1A), indi-

cating that these cells failed differentiation, most likely due to

impaired survival. Together, stalled and apoptotic phenotypes

(collectively ‘‘non-productive’’) represented the majority (56%)

of negative coding hits.

In contrast, few lncRNA gene perturbations exhibited non-pro-

ductive states as the main phenotype. Repression of lncRNA

genes instead generally led to diverse cell states along multiple

trajectories (Figure S7E). For instance, sgRNAs targeting the un-

characterized lncRNA gene SERTAD4-AS1 were enriched in all

three trajectories (Figure 7B), even though this hit inhibited neural

induction to a similar degree as HESX1. In addition to affecting

cells in the NSC lineage (state 12), perturbation of SERTAD4-

AS1 also resulted in changes to cell cycle (state 18), and cells

at the far end of the non-CNS ectoderm trajectory that appear

neural crest derived (state 1; Figure 7C). Thus, despite inhibiting

neural induction to a similar degree, the underlying phenotype of

SERTAD4-AS1 was vastly different from that of HESX1.

Quantitative classification of negative hit phenotypes revealed

profound differences between coding and lncRNA genes (Fig-

ure 7D). Although coding gene knockdown typically prevented

neural induction by generating non-productive (i.e., stalled or

apoptotic) phenotypes, lncRNA gene knockdown generally

blocked neural induction by dispersing cells along multiple tra-

jectories, including cell identities outside the NSC lineage.

Furthermore, the number of trajectories was not explained by

neural induction effect size (Figure S7F). These granular Per-

turb-seq phenotypes therefore support our broader findings of

differences in coding and lncRNA differentiation and proliferation

phenotypes (Figures 3D and 3E). Collectively, our findings indi-

cate that coding and noncoding genes required for neural induc-

tion have markedly different phenotypes, suggesting that

lncRNA genes—which have arisen much later in evolution than

coding genes—may be employed by the genome for broadly

different cellular roles, providing an additional facet of complex

gene regulation during development.

Repression of SERTAD4-AS1 increases production of
TAGLN+ cells
To facilitate the widespread use of our resource, we created an

interactive data portal (danlimlab.shinyapps.io/dualgenomewide).

This website enables intuitive exploration of our collective

datasets without any programming experience, from retrieving

the differentiation and proliferation effects for genes of interest to

https://danlimlab.shinyapps.io/dualgenomewide


Figure 7. Coding gene repression stalls or aborts differentiation, while lncRNA gene repression permits a greater diversity of cell states

(A) Cell states associated with target perturbations, on UMAP.

(B) Normalized density heatmaps of positive and negative coding and lncRNA hits with similar magnitudes of effect from the genome-wide screens.

(C) Heatmap of gene expression signatures of cell states observed in (B), with examples of enriched ontology terms (FDR < 0.01).

(D) Pie charts showing the proportion of negative hits classified as non-productive or multiple trajectories. Coding and lncRNA hits were significantly different in

the proportion of these phenotypes. *p < 1 3 10�5 by Fisher’s exact test.

(E) Diagram of internally controlled differentiation assay, with sgRNA-containing cells labeled by GFP or RFP.

(F) Overall percentage of GFP andRFP cells that express TAGLN protein (n = 3 replicates per condition). GFP/RFP double-positive cells (expressing both sgRNAs)

were excluded. Error bars denote 1 SD. *p < 0.01 by t test.

(G) Relative expression of SERTAD4-AS1 and SERTAD4 coding gene in Perturb-seq experiment in cells with sgSERTAD4-AS1 compared with sgControl.

Compared with control cells, complete knockdown was achieved for SERTAD4-AS1, with no significant change in SERTAD4 coding gene expression. Error bars

show mean ± SEM (n = 6 pseudobulk samples). *p = 0.004 by t test.
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visualizing the single-cell gene expression and sgRNA density pro-

files from the Perturb-seq experiment (Figure S8A).

For instance, Perturb-seq revealed that targeting the SER-

TAD4-AS1 gene inhibited neural induction by causing a multiple

trajectory phenotype, producing cells with transcriptomes far

outside of the neural stem cell lineage, such as non-CNS neural

crest. The SERTAD4-AS1 gene is located on chromosome 1 and

produces multiple multi-exon isoforms, in antisense orientation

to a transcript isoform of the coding gene SERTAD4. From the

transcriptomics data, SERTAD4-AS1 expression is highest in

iPSCs and induced cells (TPM > 1), with decreased expression

in the transition between these two states (Figure S8B). Impor-

tantly, the dual genome-wide nature of the study enabled us to

determine that, while the SERTAD4-AS1 lncRNA gene was a dif-

ferentiation hit, SERTAD4 coding gene was a non-hit (Fig-

ure S8C). In our enhancer analysis, SERTAD4-AS1 did not map

to anyMPRA or FANTOM5 enhancers, and chromatin interaction

analysis did not find any statistically enriched long-range 3D in-

teractions with other hits. Using the data portal to explore the

Perturb-seq analysis for SERTAD4-AS1 revealed the transgelin

(TAGLN) gene—which encodes an actin-binding protein and

early marker of smooth muscle cell differentiation46,47—to be

the top marker associated with SERTAD4-AS1 perturbation

(Figure S8D).

To further explore the underlying biological phenotype of SER-

TAD4-AS1 gene repression, we designed an internally controlled

differentiation assay. We sparsely labeled CRISPRi-iPSCs with

viral sgRNA vectors targeting SERTAD4-AS1 (co-expressing

GFP) or a non-targeting control sequence (co-expressing RFP)

(Figure 7E). After 8 days of neural induction, we performed immu-

nofluorescent staining for TAGLN protein. Significantly more

GFP+ cells (sgSERTAD4-AS1) were positive for TAGLN protein

compared with RFP+ cells (sgControl), indicating that loss of

SERTAD4-AS1 during neural induction leads to the abnormal

generation of cells with this early marker of smooth muscle

(Figures 7F and S8E). Notably, analysis of cells containing

sgSERTAD4-AS1 in the Perturb-seq experiment revealed excel-

lent on-target knockdown of SERTAD4-AS1 without affecting

SERTAD4 coding gene expression (Figure 7G). These experi-

mental findings, as predicted by our genome-wide screens

and Perturb-seq analyses, further strengthen the neural induc-

tion phenotype of this lncRNA gene hit.

DISCUSSION

In addition to identifying hundreds of coding and lncRNA genes

that regulate neural induction, the scale of the dual genome-wide

screens provided fundamental insights that would not have been

apparent with less comprehensive approaches. Perturb-seq

additionally revealed surprising differences in the phenotypes

of coding and lncRNA genes when examined at high resolution.

Taken together, our systematic studies underscore the unique

functional roles of the lncRNA and coding genomes and have

important implications for our understanding of gene expression

studies, genome evolution, and developmental phenotypes.

Gene expression is often used to predict biological function in

development.7,48 In our systematic analyses, the inference of

function by transcriptional information was relatively strong for
12 Cell Genomics 2, 100177, November 9, 2022
coding genes, but much weaker for the lncRNA class. In

contrast, epigenomic information (e.g., the level of specific his-

tone modifications) distinguished hits from non-hits for both

classes. Only a minority of coding and lncRNA hits mapped to

potential enhancers, suggesting that most hits do not regulate

neural induction through such activity. In addition to providing in-

formation that can help prioritize lncRNA genes for functional

studies, these insights broadly influence the interpretation of

expression data in other biological contexts and certain

disease-association studies, highlighting the critical need for

functional data rather than reliance on descriptive data (e.g.,

expression patterns).

Coding genes were equally distributed between positive and

negative regulators of neural induction, whereas lncRNA genes

were strongly enriched for positive regulators. Remarkably, anal-

ysis of growth effects uncovered further differences between the

two classes: lncRNA genes were �10-fold enriched for roles in

differentiation, whereas coding genes preferentially regulated

proliferation. Given their tissue-specific expression and recent

expansion in evolution, lncRNA genes have been suggested to

play critical developmental roles, especially in the mammalian

nervous system.2,7–10,49,50 Our work provides systematic,

genome-wide functional evidence that the lncRNA class is en-

riched for specialized cellular roles (e.g., regulating differentia-

tion) rather than essential housekeeping roles,51–53 which are

dominated by protein-coding genes.

The genome-wide screen resource enables highly granular

experimental studies, such as our coding-lncRNA gene Per-

turb-seq experiment. By targeting hundreds of coding and

lncRNA genes identified as functional in neural induction and

studying transcriptomes at single-cell resolution, we dissected

these phenotypes in new detail. Remarkably, most negative cod-

ing hits stalled or aborted the NSC trajectory upon knockdown,

whereas lncRNA gene knockdown was more permissive of

diverse states, including those outside of the NSC lineage. For

example, knockdown of HESX1 produced a single, intermediate

PAX6� state in the NSC trajectory (Figure 7B), suggesting that

these cells become stalled in their differentiation. In contrast,

knockdown of lncRNA SERTAD4-AS1—a hit with a similar over-

all phenotype magnitude as HESX1—was enriched in multiple

diverse states, including cell types outside the NSC lineage,

such as neural crest cells with early markers of smooth muscle.

One interpretation of this comparison is that, in neural induc-

tion, HESX1 may function primarily along a specific develop-

mental program, whereas lncRNASERTAD4-AS1 has function(s)

dispersed acrossmultiple cellular programs; for example, immu-

nofluorescence staining revealed that repression of SERTAD4-

AS1 produced significantly more cells positive for the TAGLN

protein, a canonical marker of smooth muscle cells, suggesting

that SERTAD4-AS1 promotes neural induction by suppressing

other developmental programs. More generally, the collective

results from this Perturb-seq study suggest a conceptual model

in which lncRNA hits are enriched for function in ‘‘shepherding’’

cells through the differentiation process, helping prevent cells

from ‘‘escaping’’ into non-intended cell trajectories. It is unclear

whether this phenotypic heterogeneity associated with lncRNA

genes is due to modifying factors, stochasticity, or other unmea-

sured processes, and detailed analyses of individual genes will
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be necessary to elucidate the underlying mechanisms. Regard-

less, these findings emphasize the distinct roles played by the

coding and lncRNA genomes in human cell differentiation.

Our systematic functional studies showcase the funda-

mental and surprising differences between the coding and

lncRNA genomes, and provide an expansive dual genome-

wide resource for investigating their function in human cell

differentiation. A variety of studies have implicated both pro-

tein-coding and lncRNA genes in a wide range of neurodeve-

lopmental disorders.48,54–57 Our work reveals that the lncRNA

genome enables proper differentiation in critical and unex-

pectedly unique ways from the coding genome, providing a

functional context in which to begin studying potential disease

associations. More generally, this vast trove of functional data

across the human genetic landscape enables fundamental

biological insights that are difficult to obtain by individual

gene studies or even screens of the coding or lncRNA genome

alone.

Limitations of the study
The conclusions of our study are limited by the use of iPSCs

rather than ESCs. The epigenetic memory of iPSCs may predis-

pose them to specific differentiation pathways related to the

parental cell type from which they were derived. Studies in other

human pluripotent stem cells and in other developmental con-

texts (e.g., mesodermal lineages) will be necessary to generalize

the findings from this work. Additionally, our characterization of

SERTAD4-AS1 in this study has been limited. Full analysis of a

lncRNA gene cannot rely on CRISPRi alone and requires many

detailed mechanistic studies, such as the case for lincRNA-

p21.58–60 Although we did not find that knockdown of SER-

TAD4-AS1 affected the expression of the neighbor coding

gene, its targets and molecular mechanism are unknown. As

CRISPRi can perturb a broad range of function—from cis-regu-

latory activity to RNA-dependent trans function—genome

engineering strategies such as promoter deletion or poly(A)

terminator insertion32,61 will be particularly important for under-

standing the function of this gene.
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Antibodies

Mouse anti-PAX6 BD Biosciences Cat# 561462, RRID: AB_10715442

Rabbit anti-TAGLN Abcam Cat# ab14106, RRID: AB_443021

Chicken anti-GFP Aves Labs Cat# GFP-1020, RRID: AB_10000240

Goat anti-RFP/tdTomato SICGEN Cat# AB8181, RRID: AB_2722750

Donkey anti-Rabbit Alexa Fluor 647 Thermo Fisher Scientific Cat# A-31573, RRID: AB_2536183

Donkey anti-Goat Alexa Fluor 555 Thermo Fisher Scientific Cat# A-21432, RRID: AB_2535853

Donkey anti-Chicken Alexa Fluor 488 Jackson ImmunoLabs Cat# 703-545-155, RRID: AB_2340375

Bacterial and virus strains

MegaX competent Cells Thermo Fisher Scientific Cat# C640003

Chemicals, peptides, and recombinant proteins

SB431542 Selleckchem Cat# S1067

LDN193189 Selleckchem Cat# S2618

Y-27632 ROCK inhibitor Selleckchem Cat# S1049

Doxycycline Selleckchem Cat# S4163

Puromycin Tocris Cat# 408950

Essential 8 (E8) medium Thermo Fisher Scientific Cat# A1517001

Essential 6 (E6) medium Thermo Fisher Scientific Cat# A1516401

StemPro Accutase Thermo Fisher Scientific Cat# A1110501

TransIT-LT1 Mirus Bio Cat# MIR 2300

ViralBoost Alstem Bio Cat# VB100

Q5 High-Fidelity Master Mix NEB Cat# M0492

Critical commercial assays

Direct-zol RNA Miniprep Zymo Research Cat# R2050

NEBNext Ultra II Directional RNA Library

Prep Kit

NEB Cat# E7760

NEBNext rRNA Depletion Kit NEB Cat# E6350

DNAStorm FFPE DNA Extraction Kit CellData Cat# CD502

Chromium Single-Cell 30 v3 with Feature

Barcoding

10x Genomics Cat# PN-1000075, PN-1000153, PN-

1000079

High Sensitivity RNA ScreenTape Agilent Cat# 5067-5580

High Sensitivity D1000 DNA ScreenTape Agilent Cat# 5067-5584

High Sensitivity D5000 DNA ScreenTape Agilent Cat# 5067-5592

Deposited data

Raw and analyzed data This study GEO: GSE150062

ENCODE Roadmap Epigenomics raw data Xie et al.29 GEO: GSE16256

FANTOM5 human enhancer atlas Andersson et al.35 https://fantom.gsc.riken.jp/5/

MPRA neural induction enhancers dataset Inoue et al.36 GEO: GSE115046

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Experimental models: Cell lines

CRISPRi WTC11 iPSCs Mandegar et al.62 Gen1C

Lenti-X 293T Takara Bio Cat# 632180

(Continued on next page)
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Oligonucleotides

Perturb-seq sgRNA sequences Twist Biosciences Table S5

Recombinant DNA

pCRISPRia-v2 sgRNA vector Horlbeck et al.22 Cat# 84832

pBA904 Perturb-seq sgRNA vector Replogle et al.18 Cat# 122238

Software and algorithms

ScreenProcessing Gilbert et al.63 https://github.com/mhorlbeck/

ScreenProcessing

Perturb-seq sgRNA assignment Replogle et al.18 https://github.com/josephreplogle/

guide_calling

MAPS pipeline Juric et al.64 https://github.com/ijuric/MAPS

Original code for analyses This study https://github.com/symbiologist/

dualgenomewide; https://doi.org/10.5281/

zenodo.6815996

ENCODE ChIP-Seq pipeline ENCODE Project Consortium https://github.com/ENCODE-DCC/

chip-seq-pipeline2

CellRanger 4.0.0 10x Genomics http://software.10xgenomics.com/

HISAT2 Pertea et al.65 http://daehwankimlab.github.io/hisat2/

kallisto 0.45.0 Bray et al.66 https://pachterlab.github.io/kallisto/about

FastQC 0.11.8 Babraham Institute https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

featureCounts 2.0.0 Liao et al.67 http://subread.sourceforge.net/

gffcompare 0.10.6 Pertea et al.68 https://ccb.jhu.edu/software/stringtie/

gffcompare.shtml

bbduk 38.36 DOE Joint Genome Institute https://sourceforge.net/projects/bbmap/

tximport 1.12.3 Soneson et al.69 https://github.com/mikelove/tximport

DESeq2 1.24.0 Love et al.70 http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

maSigPro 1.56.0 Conesa et al.71 https://www.bioconductor.org/packages/

release/bioc/html/maSigPro.html

caret 6.0 Kuhn72 https://topepo.github.io/caret/

Seurat 3.9.0 Stuart et al.73 https://satijalab.org/seurat/

velocyto Manno et al.37 http://velocyto.org/

scVelo Bergen et al.38 https://scvelo.readthedocs.io/

MACS2 2.2.6 Zhang et al.74 https://github.com/macs3-project/MACS

deepTools 3.4.0 Ramirez et al.75 https://deeptools.readthedocs.io

Other

Interactive data resource This study https://danlimlab.shinyapps.io/

dualgenomewide
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Daniel Lim

(daniel.lim@ucsf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Sequencing data generated in this study deposited in the Gene Expression Omnibus (GEO) under accession GSE150062 and

are publicly available as of the date of publication (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150062).
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d Custom Python scripts for analysis of genome-scale CRISPRi screens is available at https://github.com/mhorlbeck/

ScreenProcessing. Custom Python scripts and Jupyter notebooks for direct capture sgRNA identity assignment are available

at https://github.com/josephreplogle/guide_calling. All original code related to this work are deposited at https://github.com/

symbiologist/dualgenomewide. A public, interactive R Shiny data portal that enables exploration of the collective datasets

without programming experience is available at https://danlimlab.shinyapps.io/dualgenomewide. This paper analyzes existing,

publicly available data. These accession numbers for the datasets are listed in the key resources table. All accession numbers

and DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Themale CRISPRi wild-type C human induced pluripotent stem cell line62 was obtained from and verified by the Gladstone Institutes

Stem Cell Core. Cells were maintained in Essential 8 medium (Thermo Fisher Scientific) on Matrigel (Corning).

METHOD DETAILS

Neural induction of human pluripotent stem cells
Neural induction of human iPSCs was performed using the dual SMAD inhibition paradigm.6,21 Engineered CRISPRi-iPSCs62 were

grown in Essential 8 (Thermo Fisher Scientific) media on Matrigel (Corning) to 80% confluency. Cells were rinsed with DPBS and

dissociated with Accutase (StemPro). After centrifugation at 300 x g for 3 min and resuspension in Essential 8 media with 10 mM

Y-27632 ROCK inhibitor (Selleckchem), cells were replated at a density of 250,000 cells/cm2 overnight at 37�C. The next day

(D0), cells were rinsed with DPBS and changed to neural induction media, which consisted of Essential 6 media (Thermo Fisher

Scientific) with freshly-added SMAD inhibitors 500 nM LDN193189 (Selleckchem) and 10 mM SB431542 (Selleckchem). Media

was replaced every 2 days until the endpoint of interest, as described.21

Flow cytometry and fluorescence-activated Cell sorting (FACS)
Cells were harvested by dissociation with Accutase. After washing twice with DPBS, cells were quantified on the Countess II (Thermo

Fisher Scientific) and resuspended in 4% paraformaldehyde at 10 million cells/ml for 20 min at room temperature. Cells were then

washed twice in a permeabilization buffer (DPBS 5% goat serum with 0.5% saponin) and blocked in the same buffer for 30 min at

room temperature. Primary and secondary antibodies were added for 30min eachwith 2 washes in between. Prior to running through

the instrument, cells were resuspended in DPBS 5% BSA at 5 million cells/ml. Cells were gated by size (FSC) and granularity (SSC)

and then for singlets by FSC-H vs. FSC-W followed by SSC-H vs. SSC-W. Cells were further gated for expression of dCas9-KRAB by

coexpression of mCherry and expression of sgRNAs by coexpression of BFP before analyzing stained proteins.

Immunocytochemistry
Cells were grown on glass chamber slides until the desired endpoint and fixed in 4% paraformaldehyde for 15 min. After two washes

in PBS, cells were permeabilized in 0.1% Triton X-100 for 15 min, followed by blocking with 10% goat serum for 1 h. Primary and

secondary antibodies were added for 60 min each with 2 washes in between. DAPI (Thermo Fisher Scientific) was added 1:1,000

with the species-specific secondary antibody (see Key resources table). Slides were mounted overnight with coverslips using

Aqua Poly/Mount (Polysciences).

RNA purification and sequencing library preparation
RNA was purified using Direct-zol (Zymo) columns with DNase I treatment. RNA integrity was verified using the TapeStation 4200

(Agilent) prior to library generation. Libraries were generated using the NEBNext Ultra II Directional RNA kit (NEB) according to the

manufacturer’s instructions. For polyA RNA, Oligo-dT magnetic bead selection was used prior to library generation. For total

RNA, rRNA depletion using hybridization and RNase H-induced cleavage was used prior to library generation. For all samples,

2 mg of RNA was used as input. Samples were sequenced on HiSeq 4000 to >160 M reads per time-point.

Genome-wide CRISPRi screens for neural induction
Sublibraries of the hCRISPRiv2 and CRiNCL sgRNA libraries were assembled into coding and lncRNA libraries at equimolar ratios

and sequenced to ensure uniform distribution. Coding and lncRNA screens were performed separately on a staggered schedule

for feasibility. A lncRNA sublibrary (common sublibrary) was also performed in a separate batch to validate proliferation phenotypes

(described below in ‘‘Differentiation and proliferation screen analysis’’) and results were aggregated with themain lncRNA library dur-

ing analysis. Lentivirus was prepared in the high titer Lenti-X 293T subclonal line (Clontech) using TransIT-LT1 (Mirus) and ViralBoost

(Alstem) according to the manufacturer’s instructions. Viral supernatant was collected at 72 h, filtered, and concentrated through ul-

tracentrifugation for 2 h at 4�C. Titer was assessed through serial dilution of single-freeze aliquots to determine the necessary amount
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of virus to achieve the desiredMOI of 0.5. In total, approximately 650million CRISPRi-iPSCs were transduced for coding and lncRNA

libraries (each with 2 independent replicates). Once transduced and seeded, replicates weremaintained independently and never re-

pooled. Transduced iPSCs were selected under puromycin to >80% positivity and allowed 2 days to recover with >1,000X sgRNA

library representation per replicate. At the next seeding, an additional aliquot of each sample (�100 M cells per replicate) was frozen

to measure the initial sgRNA abundance (‘‘T0’’). A second, small aliquot of cells was seeded in a sentinel 6W plate for monitoring

screen progress. Doxycyclinewas added at 1 mMat the initiation of neural induction to activate the dCas9-KRABCRISPRimachinery.

At days 6–8, cells from the sentinel plate were fixed, permeabilized, and stained to assess neural induction progress. All samples

were harvested, fixed, permeabilized, stained, and sorted into PAX6+ and PAX6- fractions (top and bottom thirds) as described

above with final coverage of �4000X at day 8. Selection of this time-point was based on the flow cytometry analysis (Figure 1B)

showing presence of both PAX6+ and PAX6- populations; earlier time-points may not allow for sufficient differentiation and would

enable the discovery of sgRNAs that accelerate neural induction, but not those that prevented it. Later time-points, on the other

hand, may preclude the enrichment of sgRNAs that promoted neural induction, and would mainly identify depleted sgRNAs.

Genomic DNA was harvested using a chemically-catalyzed FFPE extraction method (CellData) following the manufacturer’s instruc-

tions. Sequencing libraries were prepared by targeted amplification of integrated sgRNAs using Q5 High-Fidelity Master Mix (NEB)

and sequenced on an Illumina HiSeq 4000 to >50 M reads per replicate. Processing of screen data was performed as previously

described using ScreenProcessing.63

Individual sgRNA cloning and experiments
Individual sgRNAs were cloned using an annealing and ligation procedure, as previously described.63 Sense and antisense oligos

that matched the desired CRISPRi protospacer sequence were annealed and ligated into a U6-driven lentiviral expression vector

derived from pSico. All individually-cloned sgRNA vectors underwent Sanger sequencing to verify successful sequence insertion.

Lentivirus was prepared and transduced into CRISPRi-iPSCs as described above, except in an arrayed fashion (12-well plates).

Transduction efficiency was monitored through detection of a BFP cassette coexpressed by the sgRNA vector. For validation exper-

iments, neural inductionwas performed as described above and cells were harvested at the endpoint for flow cytometry. Assessment

of individual sgRNA phenotypes were performed by comparing the ratio of PAX6+ to PAX6- cells for populations with and without

sgRNA (measured by BFP). For immunocytochemistry experiments, GFP and RFP versions of the same vectors were used and cells

were plated on glass slides and analyzed as described above (‘‘Immunocytochemistry’’).

Proximity ligation-Assisted ChIP-Seq (PLAC-Seq) for long-range chromatin loops
PLAC-Seq was performed as previously described.76,77 Approximately 1–5 million cells were used for library preparation. Digestion

was performed using 100 UMboI for 2 h at 37�C, and chromatin immunoprecipitation was performed using DynabeadsM-280 sheep

anti-rabbit IgG (Invitrogen 11203D) superparamagnetic beads bound with 5 mg anti-H3K4me3 antibody (Millipore 04-745).

Sequencing adapters were added during PCR amplification. Libraries were sequenced at paired-end 150 on an Illumina HiSeq

4000. Quality and adaptor trimming were performed with fastp (0.13).

Perturb-seq experimental design
A direct-capture Perturb-seq library consisting of a mixture of 492 sgRNAs targeting 120 coding genes, 120 lncRNAs, and 12 non-

targeting control sequences was cloned as a pool as previously described.18 Targets were selected from those with the highest

genome-wide neural induction screen scores, with strong proliferation hits excluded due to expected growth dropout effects. Dual

hits with mild-moderate phenotypes (g between �1 and 1) were not excluded from the experiment. A set of lncRNA sgRNAs iden-

tified as targeting ambiguous loci (described below, under ‘‘Differentiation and proliferation screen analysis’’) were included in the

Perturb-seq library for assessing potential local effects, and these targets were excluded for all reported analysis. Reported an-

alyses included the remaining 195 targets. After library sequencing to ensure sgRNA uniformity, CRISPRi-iPSCs were transduced

with the Perturb-seq library at a low MOI of 0.1 (corresponding to >95% of cells with a single sgRNA integration) and >1,000X

coverage using the lentiviral protocol described above. After FACS to sort for sgRNA + cells, we recovered the cells in mainte-

nancemedia for 2 days before initiating dual SMAD inhibition neural induction. We performed single-cell and direct sgRNA capture

at our previously determined endpoint of day 8, aiming for >100X singlet coverage per sgRNA on the Chromium V3 single-cell

RNA-Seq system with Feature Barcoding (10x Genomics). Gene expression libraries were sequenced to a median depth of

>50,000 reads/cell, producing a median library complexity of >3000 unique genes. Directly-captured CRISPRi sgRNAs were

sequenced to >5,000 reads/cell. All Perturb-seq sequencing was performed on an Illumina NovaSeq 6000 with paired-end

100 reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unified coding and lncRNA gene reference annotation
The lncRNA gene annotation corresponding to the CRiNCL library13 was merged with the ENSEMBL GRCh37.p13/hg19 annotation

that was used to inform the design of the hCRISPRi libraries.22 Duplicated entries were identified using gffcompare (0.10.6). To main-

tain consistency across datasets, all analyses were performed using the screen feature identifiers (‘‘feature id’’) for targeted genes as
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the unique identifier. GTF and BED files are deposited on GitHub and a searchable database is available on the interactive web

resource with direct links to the UCSC Genome Browser.

RNA-Seq processing and transcriptome analysis
RNA-Seq reads were analyzed for quality metrics using FastQC (0.11.8). Quality and adapter trimming were performed using bbduk

(38.36) prior to transcript pseudoalignment and quantification using kallisto (0.45) on the unified lncRNA and coding gene annotation

described above. Transcripts were aggregated to genes in R (3.6.3) using tximport (1.12.3). Expression values were processed using

DESeq2 (1.24) for variance-stabilized transformation. Transcripts per million or Z-scaled variance-stabilized transformation values

were used for downstream plotting and analysis. Time-course expression clustering was performed using maSigPro (1.56) at an

alpha level of 0.1 using the mclust algorithm. Genes that did not significantly cluster to any of the temporal patterns were aggregated

into the ‘‘unassigned’’ cluster.

Dual CRISPRi sgRNA libraries
Based on transcriptomic analysis, we identified expressed and dynamically regulated genes during neural induction. In order to

screen equal numbers of coding and lncRNA sgRNAs, we aimed for approximately 100,000 guides for each class. Coding genes

were targeted by 5 sgRNAs/locus due to well-annotated transcriptional start sites (TSS) while lncRNAs were targeted with 10

sgRNAs/locus. All sgRNAs were assembled from published CRISPRi libraries based on the human CRISPRi version 2.0 design al-

gorithm,13,22 which uses FANTOM cap analysis of gene expression (CAGE) data to provide highly confident transcription start site

coordinates. This enabled coverage of all 18,905 coding loci using the top 5 ranked sgRNAs. For lncRNA loci, we selected the com-

bination of CRiNCL sublibraries that covered the greatest unique number of detected lncRNAs prioritized by differential expression

and the temporal clustering. In total, we screened 212,938 sgRNAs targeting 29,583 loci (all 18,905 coding loci, 10,678 lncRNA loci,

with 4,523 non-targeting control sgRNAs, Figure 1D).

Differentiation and proliferation screen analysis
Analysis and hit scoring of screen data was performed as previously described using ScreenProcessing.13,22 Briefly, after sgRNA

quantification, all sgRNAs represented with fewer than 50 reads in any sample were excluded. Differentiation phenotypes (r) were

calculated by taking the log2 enrichment ratio of each sgRNA in the PAX6+ versus PAX6- sorted fractions, providing a symmetricmea-

sure of the impact on neural induction (as read out by PAX6 protein) on a log-scale (Figures 1D and S1B). Proliferation phenotypes (g)

were calculated by taking the log2 ratio of the final normalized abundance versus the initial normalized abundance of each sgRNA and

normalized by the number of cell divisions. For the genome-wide screen, the final abundancewas calculated from the combined sum

of sgRNA abundances in sorted fractions. This approach was directly validated through a separate lncRNA sublibrary screen with

37,395 sgRNAs targeting 3,560 lncRNAs (Figure S3B), whereweharvested cellswithout sorting for the final time-point. Upon analysis,

the two methods (sorted and unsorted) produced strongly correlated g values (Pearson r = 0.99 for hits, r = 0.81 for all targets) (Fig-

ure S3B). For all analyses, a screen score that incorporated both the effect size and significance was calculated for all targets as pre-

viously described13,22,63; briefly, it is the product of the -log10 p-value and the phenotype magnitude of the top 3 sgRNAs. Hits were

then identified based on this screen score, at an empirical FDR < 0.05 based on the distribution of non-targeting controls. A subset of

CRiNCL sgRNAs that were within the highly active CRISPRi targeting window (1 kb around TSS) of coding genes were identified as

ambiguous and excluded from all reported analyses (1468 loci); the coding loci were not excluded as they were more likely the cause

of any potential phenotype. However, 142 coding loci were also excluded from analysis as they did not map to ENSEMBL hg19 an-

notated transcripts. Additional details on the screen scoring procedure and hit identification are previously described.13,22

Downsampling and precision-recall analysis
For estimation of hit recovery at lower levels of coverage compared to the full dataset, precision-recall analysis was performed by

downsampling the raw counts data to 10%, 20%, and 50% with 1% Gaussian noise. The downsampled data then underwent the

screen processing and hit identification pipeline described above. Results were compared to the full dataset for determining preci-

sion-recall and the proportion of hits recovered at each level of sampling. The median of 3 independent downsampling replicates are

reported.

Gene ontology, pathway, and protein network analyses
For coding gene hits, gene ontology and KEGGpathway analyses were performed using clusterProfiler (3.14.3). Protein-protein inter-

action network analysis was performed using STRINGdb (11.0). For all of these analyses, we set the gene universe to contain all

screened genes. For the interaction network analysis, statistical background distributions were generated through random sampling

an equal number of genes from the gene universe.

Chromatin interaction analysis using MAPS
We called significant H3K4me3-mediated chromatin interactions using theMAPS pipeline64 at a resolution of 5 kb. Reads weremap-

ped to hg19/GRCh37 using BWA-MEM (0.7.17). Unmapped reads and reads with low mapping quality were discarded. PLAC-Seq

anchor bins were defined by H3K4me3 CUT&Tag using MACS2 with an q-value of 0.0001. To call significant interactions, we used a
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zero-truncated Poisson regression-based approach to normalize systematic biases from restriction sites, GC content, sequence

repetitiveness, andChIP enrichment.We fittedmodels separately for AND and XOR interactions and calculated FDRs for interactions

based on the expected and observed contact frequencies between interacting 5-kb bins. We grouped interactions whose ends were

locatedwithin 15 kb of each other into clusters and classified all other interactions as singletons.We defined our significant chromatin

interactions as interactions with 12 or more reads, normalized contact frequency (defined as the ratio between the observed and ex-

pected contact frequency) R 2, and FDR <0.01 for clusters and FDR <0.0001 for singletons. This was based on the reasoning that

biologically meaningful interactions are more likely to appear in clusters, whereas singletons are more likely to represent false pos-

itives. Significant interactions were overlappedwith all screened genes and annotated by hit category (e.g., lncRNA differentiation hit,

coding differentiation hit, and so forth). Interactions between all combinations of categories were tallied and assessed for significance

using Fisher’s exact test, with FDR-adjusted p-values for multiple testing correction.

Epigenomic dataset processing and analysis
Published neural induction epigenomics datasets were downloaded from the NIH Roadmap Epigenomics Project.29 Raw reads un-

derwent adaptor and quality trimming using bbduk (38.36) prior to alignment using HISAT2 (2.1). For all overlap analyses, regions

were counted if they overlapped by at least 1 bp within a 2 kb window centered around the transcription start site of screened genes.

For quantitative analysis of ChIP-Seq signal, readsweremapped to screened genes using featureCounts 1.6 and normalized to input.

For peak calling analysis of histone marks, significant peaks were identified using MACS2 (2.2.6) and replicate samples were IDR-

filtered before determining overlap with screened genes following parameters of the ENCODE ChIP-Seq Pipeline for broad and nar-

row peaks. Genomic coordinates of enhancer regions from published datasets35,36 were downloaded as BED files and analyzed for

overlap with screened genes by the same criteria. All analysis was performed on the hg19/GRCh37.p13 reference genome build, us-

ing the unified coding and lncRNA annotation described above. For visualization, bam files for replicates weremerged and converted

to bigwig files using deepTools 3.4.0.67 For analysis of broad H3K4me3 domains, we followed the procedure described31 by running

MACS2 in with the ‘‘–broad’’ flag for broad peak analysis. For all genes, promoter regions (2 kb window centered around the TSS)

were analyzed for overlap with H3K4me3 domains, which were categorized by percentile on their peak breadth. The top 5 percentile

of peaks were assigned ‘‘broad H3K4me3’’ domains, as described.31

Machine learning classification
Feature data consisted of the transcriptomic and epigenomic datasets described above. Transcriptomic features included the scaled

variance-stabilized and TPM values at each time-point (polyA or total RNA), log2 fold-change from day zero for each time-point, as

well as variables for the maximum/median expression levels, maximum fold-change, number of exons, gene length, and isoform

count. Epigenomic features consisted of the histone mark signal at the promoters (within 2 kb window surrounding the TSS) of

screened genes. To prevent confounding epigenomic signal from nearby coding and lncRNA promoters, all coding-lncRNA gene

pairs with promoters within the 2 kb window were excluded from classification. All predictor variables were centered around the

mean and standardized. To generate machine learning models, the screen hit status was binarized and used as the response var-

iable. For all classification models, coding genes and lncRNAs hits were compared to non-hits of the same class. For example, to

analyze features of coding genes, coding hits were binarized as 1 and analyzed against coding non-hits binarized as 0. Several clas-

ses of models (elastic net logistic regression, random forest, gradient boosting machines) were generated and tested, producing

similar results. Training and validation were performed using randomly-sampled partitions of 70% training data and 30% validation

data. Model parameters were estimated using 5-repeats of 5-fold cross-validation. Model performance was evaluated on the vali-

dation set using the area under the receiver-operating characteristic (ROC) curve. This resampling, training, validation, and ROC

assessment was repeated for 1,000 iterations, and the average AUC is reported. Each feature was additionally analyzed individually

using ROC analysis to assess its association with hits. For this individual analysis, statistical significance was determined using 1,000

iterations of bootstrapping at the 99% confidence level. Variables with confidence intervals that crossed AUC 0.5 were considered

non-significant.

Analysis of phenotype distribution and differentiation versus proliferation hit ratios
Differences in phenotype distributions between coding and lncRNA hits were assessed using the Kolmogorov-Smirnov (K-S) test.

Skews of positive and negative phenotype distributions were assessed for significance through permutation testing. Using the base-

line number of total hits for each library, we permuted the label of ‘‘positive’’ and ‘‘negative’’ hit status and calculated the ratio of pos-

itive to negative hits for 1 million trials. Skews between proliferation and differentiation hits were calculated in a similar manner, with

permutation of the ‘‘proliferation’’ and ‘‘differentiation’’ hit labels performed for 1 million trials. In each case, the p-value was deter-

mined by the fraction of trials producing a more extreme ratio.

Perturb-seq computational processing
Paired-end 100 reads for gene expression and sgRNA libraries were processed using 10x cellranger software (4.0) following devel-

oper instructions for CRISPR library analysis. Data was processed on the unified lncRNA and coding gene reference described

above13 as well as the newer GRCh38 genome, which led to similar results. Initial quality filtering was performed with background

removal and empty droplet identification using cellbender (2.1). Barcodes identified as those belonging to cells from the cellranger
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and cellbender pipelines were compiled. Assignment of sgRNAs to cellular barcodes was performed using a two-component mixture

model, consisting of Poisson (lower) and Gaussian (upper) distributions,18 which enabled doublet identification (barcodes with >1

sgRNA). After excluding doublets, we obtained 84,808 single cells harboring the distinct genetic perturbations. Quality scoring

was performed based on unique genes detected, mitochondrial RNA percentage, and ribosomal RNA percentage. In order to assess

whether apparent low-quality cellular transcriptomes were the result of any perturbations, no cells were filtered on quality metrics

until after clustering and analysis (described below). After batches were integrated using multi-canonical correlation analysis in

Seurat (3.9) based on the top 5000 variable genes, data was variance-stabilized and transformed using SCTransform (0.3.2). Dimen-

sionality reduction was performed using principal components analysis followed by uniformmanifold approximation projection of the

top 30 principal components. High-resolution clustering of cells was performed using a shared nearest neighbor network with k = 30

and the Leiden algorithm set at a resolution of 1.2. This resulted in 30 total clusters, and clusters driven by the quality metrics

described above were excluded. In total, 78,393 high-quality single-cell transcriptomes containing single sgRNA perturbations

were used for all reported analysis.

Perturbation knockdown analysis
On-target knockdown of Perturb-seq targets was analyzed in a similar fashion as previously.16,18 Within each batch (10x Genomics

well), cells harboring sgRNAs against each target were analyzed compared to cells harboring non-targeting control sgRNAs. To in-

crease statistical confidence and minimize bias from gene dropout, cells were merged in a pseudobulk approach, using each batch

as an individual replicate.

RNA velocity analysis
Output bam files from cellranger were processed for RNA velocity analysis of spliced an unspliced transcripts using velocyto.37

Velocity vectors were computed and visualized using scVelo,38 with 30 principal components and 30 neighbors based on the top

3000 highly variable genes for computational feasibility.

Normalized density analysis of Perturb-seq perturbations
To visualize phenotypes of Perturb-seq sgRNAs in the UMAP embedding, normalized density heatmaps of cells were constructed.

For each target, cells harboring the relevant sgRNAs were identified and located in UMAP space. Gaussian kernel densities were

calculated for these cells in 2 dimensions, with 10,000 total bins (100 bins in each dimension spanning the full coordinate range).

To normalize for the background distribution, this density calculation was performed with the same parameters for non-targeting

control sgRNAs, and this background was subtracted. The density profile was then visualized by color intensity and overlaid onto

the UMAP projection.

Pairwise similarity and hierarchical clustering analysis
After calculating the normalized density for each target in the 2D UMAP embedding, density-based spatial clustering and application

with noise (DBSCAN) was applied to identify areas of high density for each target. Regions of zero or near zero density were excluded

using a threshold of 1%of the top TheDBSCANepsilon parameter of 1 and aminimum threshold of 25 binswere used for the top 50%

of regions with highest densities. These regions were considered the enriched cell states for each target. To identify targets with

similar density profiles, the overlap coefficient was determined for all pairwise comparisons and this pairwise table was converted

to a distance matrix for unsupervised hierarchical clustering. To merge overlapping cell states from different targets into a universal

set of cell states, all states across all targets were compared by overlap coefficient and collapsed to 29 cell states after hierarchical

clustering, with the final k determined by the silhouette method for values ranging from 2 to 50.
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