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Science is going through two rapidly changing phenomena: one is the increasing capabilities of the computers and software tools
from terabytes to petabytes and beyond, and the other is the advancement in high-throughput molecular biology producing piles
of data related to genomes, transcriptomes, proteomes, metabolomes, interactomes, and so on. Biology has become a data intensive
science and as a consequence biology and computer science have become complementary to each other bridged by other branches
of science such as statistics, mathematics, physics, and chemistry. The combination of versatile knowledge has caused the advent
of big-data biology, network biology, and other new branches of biology. Network biology for instance facilitates the system-level
understanding of the cell or cellular components and subprocesses. It is often also referred to as systems biology. The purpose of
this field is to understand organisms or cells as a whole at various levels of functions and mechanisms. Systems biology is now
facing the challenges of analyzing big molecular biological data and huge biological networks. This review gives an overview of
the progress in big-data biology, and data handling and also introduces some applications of networks and multivariate analysis in

systems biology.

1. Introduction

Biology has recently become a “big-data science” mainly
supported by the advances in high-throughput experimental
technologies. Data-intensive science consists of three basic
activities: capture, curation, and analysis [1]. All three of
these phases of handling big data raise many new research
challenges to pursue in systems biology. The big data chal-
lenges are not only their size but also their increasing
complexity. The emergence of big data biological sciences,
such as systems biology, and their growing impact on health,
nutrition, ecosystems, and other societal issues have only
recently become the focus of scholars in social studies,
science, and information studies [2]. Jim Gray proposed the
fourth data paradigm and farming of the “data deluge;” that
is, the capacity to measure, store, analyze, and visualize data
is the new reality to which science must adapt. The heart of
the fourth paradigm is data and it sits alongside empiricism

(Ist paradigm), theory (2nd paradigm), and simulation (3rd
paradigm), which together form the continuum we think
of as the modern scientific method [1]. Systems biology
is one of the several other subjects including astronomy,
ecology, and meteorology where challenges of the fourth
data paradigm have become relevant. The basic purpose of
systems biology is the system-level understanding of a cell
or an organism, which can be summarized in the context of
molecular networks as (1) an understanding of the structure
of all the components of a cell/organism up to molecular level,
(2) the ability to predict the future state of the cell/organism
under a normal environment, (3) the ability to predict the
output responses for a given input stimulus, and (4) the ability
to estimate the changes in system behavior upon perturbation
of the components or the environment. In a cell or organism
the primary-level components, for example, the molecules,
are of numerous types and numbers and hence system-
level understanding of a cell/organism is still a very difficult
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task. However along the way to achieve the theoretical goal
of systems biology, that is, to understand life scientifically,
many other practical applications will be invented. Practical
applications will include development of new generation
medical tests, drugs, foods, fuel, materials, sensors, and other
applications. Systems biology now faces the challenges of
analyzing large amounts of molecular biological data and
huge biological networks.

2. Big Picture of Hierarchy and Networks in
Systems Biology

The hierarchy shown in Figure 1(a) summarizes the major
types of molecules being studied in systems biology, which
aims to determine the functions of the molecules of each layer
and how these molecules interact with each other within indi-
vidual layers and between layers to perform biological tasks.
Figure 1(b) shows the overview of the accumulated data in the
KNApSAcK database which has been developed to facilitate
the knowledge discovery regarding plants and plant-human
omics [3]. The upper part of Figure 1(a) can be regarded as
an example of a big picture of networks in systems biology.
This figure implies the existence and abstraction of networks
in individual species and across species. Numerous studies
constructed suitable networks for understanding systems or
subsystems within species. Networks representing systems or
subsystems can also be compared or linked between species
(Figure 1(b)). This world is cohabitated by humans and many
other species and the understanding of the interactions at the
molecular level among all the species is important for healthy
and sustainable living for humans and other organisms.

3. Data Types in Systems Biology

Many experiments are conducted in systems biology like
many other branches of science; these experiments produce
various types of data. Currently in systems biology some of
the popularly-used data types are as follows.

3.1. Sequences. The DNA is a molecule of double helix
structure that consisted of two complementary strands of
sequences of four nucleotide bases—adenine, thymine, gua-
nine, and cytosine, represented as A, T, G, and C, respectively
[4]. DNA contains all the necessary information preserved in
the order of the nucleotide sequences. Hence, it is important
to determine the sequences accurately. A gene is usually a
continuous part of one of the DNA strands and contains
codes for one or a few different proteins. The proteins are
essential molecules that consisted of amino acid sequences.
From the starting site of a gene, every three nucleotides are
called a codon and a codon corresponds to an amino acid.
It is in this way that a gene preserves the code of a protein.
For example ATGAAGCTACTGTCTTCTATCGAACAA-
GCATGCGAT is the sequence of the first 30 nucleotides of
GAL4 gene of yeast and KLLSSIEQAC is the sequence of the
first 10 amino acids of the corresponding protein. There is
variation in codon usage by different organisms and links
can be established between codon usage and the biological
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characteristics of an organism [5, 6]. Development of DNA
sequencing techniques started in the 1970s and since then
various methods have been developed [7-9]. The sequence
of individual genes, group of genes, parts of chromosomes,
full chromosomes, or entire genomes are determined for
different purposes. Recent developments in next generation
sequencing techniques have greatly reduced the time and cost
of sequencing [10-12].

3.2. Molecular Structure. Determination and prediction of
the three-dimensional structures of omics molecules are also
very important. DNA is packed into protein-DNA structures
referred to as chromatin mainly to fit the long DNA chain
inside the cell. The primary protein components of chromatin
are histones. The DNA packaging protects DNA from damage
and plays important roles in gene regulation by allowing
or blocking the binding of transcription factors and other
molecules to DNA. Usually, proteins also work by forming
complexes with other proteins. In general it can be stated
that DNA, RNA, and protein molecules usually bind with
one another dynamically to perform different cellular func-
tions. Therefore, not only the sequences but also the three-
dimensional structures of the omics molecules are important
for predicting the possibility of binding between molecules
and thus predict the functions of uncharacterized molecules.
X-ray crystallography, nuclear magnetic resonance (NMR),
and electron microscopy are the experimental procedures
used for determining the 3D structures of proteins. A number
of methods for the computational prediction of protein
structure from its sequence have been developed [13, 14].
Also, there are computational methods for the prediction of
RNA structures [15-17]. There are numerous software tools
for predicting and visualizing 3D structures of proteins and
RNAs. A comprehensive list of these tools can be found in
scientific literature. Molecular structure data are therefore
three-dimensional geometrical figures of versatile shapes or
related information that can be easily converted to three-
dimensional structures usually with the aid of computer
software.

3.3. Gene Expression. Gene expression is the process of
extracting information of a gene and is the initial step of
producing gene products such as mRNAs which are usually
translated to proteins and functional RNAs such as rRNA
or tRNA. Gene expression is known to take place in all
life forms, that is, eukaryotes (unicellular and multicellular),
prokaryotes (bacteria and Archaea), and viruses—to generate
the macromolecular machinery and building blocks for life.
Though most cells in an organism contain the same genes,
not all of the genes are used in each cell. Some genes are
turned on, or “expressed,” when needed in particular types
of cells. Microarray technology [18, 19] allows us to look at
many genes at once and determine which are expressed in
a particular cell type and to what extent. Next generation
sequencers are also currently used to determine the gene
expression [20]. To say that “a gene is highly expressed”
means many copies of mRNA corresponding to that gene
are produced in the cell. The extent of expression of genes is
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usually measured for comparison by using samples collected ~ represent experimental conditions; that is, gene expression
under different experimental conditions, for example, sick  data are multivariate data.

and healthy tissues, normal cells or cells put under certain

stress or starving. Gene expression data is usually represented ~ 3.4. Binding Sites and Domains. Many important cell pro-
as a matrix where the rows represent genes and the columns  cesses such as RNA transcription, DNA packing, DNA



replication, DNA recombination, and DNA repair are ini-
tiated and regulated by binding of proteins to selected
DNA sequences. A position weight matrix (PWM) is a
commonly-used representation of motifs (patterns) in bio-
logical sequences [21]. A PWM, also called position-specific
weight matrix (PSWM) or position-specific scoring matrix
(PSSM), is a matrix of score values that gives a weighted
match to any given substring of fixed length. A DNA-binding
domain (DBD) of a protein is an independently folded
domain that contains at least one motif that identifies and
binds double- or single-stranded DNA. A DBD can recognize
a specific DNA sequence usually known as a recognition
sequence or have a general affinity to DNA [22]. The domains
of proteins and the binding sites at DNA are therefore part of
the sequences of the corresponding proteins and the DNA,
respectively.

3.5. Protein-Protein Interaction (PPI). In cells, thousands
of different types of proteins act as enzymes-catalysts to
chemical reactions of the metabolism, components of cellular
machinery (e.g., ribosomes), regulators of gene expression,
and so on. Some proteins play specific roles in special cellular
compartments, whereas others move from one compartment
to another carrying mass or information. A protein may work
as an individual entity, but usually two or more proteins bind
together and form a complex to carry out their biological
functions. The RNA polymerase, a large molecular machine
that copies information from DNA to produce mRNA, is
indeed a big protein complex that consisted of many proteins.
Proteins are generally bound together in a complex not
by chemical bonds but by other forces. Usually PPI data
are represented as binary relation between two proteins
whether they are part of two-protein complex or multi-
protein complex. All or a number of the PPIs of an organism
can be represented as a network where a protein represents
a node and an interaction represents an edge. Experiments
that are used to determine PPIs are yeast two hybrid system
(Y2H) [23, 24], affinity purification coupled to MS (AP-MS)
[25], and so forth.

3.6. Mass Spectrometry. Mass spectrometry (MS) is an ana-
Iytical technique that produces spectra (singular spectrum)
of the masses of the molecules comprising a sample. The
spectra are used to determine the elemental composition
of a sample, the masses of particles and of molecules, and
to elucidate the chemical structures of molecules, such as
peptides, metabolites, and other chemical compounds. Mass
spectrometry works by ionizing chemical compounds to
generate charged molecules or molecule fragments and mea-
suring their mass-to-charge ratios [26]. Mass spectrometry
data can be represented as 2- (molecular weight versus
magnitude) or 3- (molecular weight versus magnitude versus
time) dimensional arrays; that is, they can be treated as
multivariate data.

3.7. Metabolic Pathways. Living cells generate energy and
produce building material for cell components and replen-
ishing enzymes by the process of metabolism. All organisms
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live and grow by receiving food and nutrients from the
environment. The foods are processed through thousands of
reactions. In cells chemical reactions take place around-the-
clock, constantly breaking and making chemical molecules
and transferring ions and electrons. These reactions are called
metabolic pathways. All or a group of known metabolic
reactions of an organism can be represented as a network
where metabolites are considered as nodes and a reaction
between them is represented as edges. The edges in metabolic
pathways correspond to one or more enzymes. Metabolic
reactions follow the laws of physics and chemistry and thus
modeling of metabolic reactions requires considering many
physicochemical constraints [27]. In summary, it can be said
that in terms of structure, extensively-used data in systems
biology consist of four types: sequence data, 3D-structure
data, multivariate data, and network data. However, the
present challenge is that the amount of data is expanding
rapidly requiring new tools and algorithms for handling big
data. One type of data can be converted to another type for
convenience of analysis. In the following section we discuss
how networks can be generated from multivariate data and
sequence data.

4. Network Generation from
Different Data Types

In multivariate data, entities are represented by multiple
variables and each entity can be regarded as a point in a mul-
tidimensional space or as a profile wave sketched according
to the data values. Therefore, to convert multivariate data
to a network, it is necessary to use a metric or some kind
of measure that can assess distance or similarity between
two multivariate entities. Widely-used distance or similar-
ity measures are Euclidean distance, Manhattan distance,
Mahalanobis distance, Correlation, and so forth [28-30]. The
value of correlation ranges from —1 to +1 and the higher
the value between two multivariate entities the more similar
the entities. The opposite of distance can be used as a
measure of similarity. Usually similarity between each pair of
entities is calculated and then a threshold similarity is decided
based on statistical analysis or some other important criteria,
for example, to ensure scale-free degree distribution of the
generated network or something like that. After selecting the
threshold, all entities of the multivariate data are considered
as the nodes of a network and an edge is inserted between
the pair of entities for which the similarity is more than
the threshold. A weighted network can be constructed by
considering the similarity values as the weights of the edges.
Sometimes one type of network is converted to another type
for the convenience of applying algorithms or for some other
purposes. In [31] the metabolic pathways are converted to a
simple network of enzymes/genes. After that, graph spectral
clustering was applied to the converted networks correspond-
ing to M. tuberculosis, M. leprae, and E. coli. It was observed
that reactions belonging to fatty acid biosynthesis and the
FAS-II cycle of the mycolic acid pathway in M. tuberculosis
form distinct, tightly connected subclusters. Also, based on
degree centrality and eigenvector centrality the important
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genes in the networks were determined and their functions
were analyzed. In [32] a PPI network was converted to the
corresponding line graph for the convenience of applying a
clustering algorithm. The conversion to line graph helped to
place the related proteins to densely connected regions or
clusters and thus paved the way to obtain useful results by
the application of a graph clustering algorithm.

5. Big Biological Databases

Curation and analysis become important after capturing
data from various experiments. Curation includes storage,
retrieval, spreading around the world, filtering and inte-
grating the data. The engineering techniques for these jobs
are already known, but when that data is in the petabyte
scale, it becomes complicated. Algorithms and software tools
developed for the analysis of biological data also face the
problems of scalability when data becomes very big. However,
many big databases have been created around the world
for curation and analysis of biological data and their data
volume and performance are gradually improving. DNA Data
Bank of Japan [33] and GenBank [34] are big databases
of primary nucleotide sequences of many organisms which
are related to the bottom level (Genome) of the hierarchy
shown in Figure 1(a). PGDBj is a portal website for the
integration of plant genome-related databases [35]. Gene
expression omnibus (GEO) from NCBI is a data repository of
array- or sequence-based gene expression profiles. ATTED-II
is a database of coexpressed genes [36]. Information about
noncoding RNA (ncRNA) families and other structured
RNA elements can be found in Rfam database [37]. For the
sequences and annotations of microRNAs, a useful database
is miRBase [38]. GEO, ATTED-II, Rfam, and miRBase are
related to the transcriptome level of Figure 1(a). UniProt is
a comprehensive and freely accessible database of protein
sequences and functional information of proteins [39]. The
PROSITE database [40] consists of entries describing the pro-
tein families, domains, and functional sites as well as amino
acid patterns and profiles of them. BIND [41] and BioGRID
[42] are databases of protein-protein interactions. UniProt,
PROSITE, BIND, and BioGRID are related to the proteome
level of Figurel(a). A central archive of macromolecular
structural data is wwPDB [43]. The data accumulated in
wwPDB is freely and publicly available to the global com-
munity. There are four member sites of wwPDB as follows:
RCSB PDB (USA), PDBe (Europe), PDBj (Japan), and BMRB
(USA). NetPath [44] is a manually curated database of signal
transduction pathways in human. For metabolic pathways
KEGG is a rich and well known database. KNApSAcK is a
metabolomics database which was initially developed as a
species metabolite relational database [45] and afterwards
extended to KNApSAcK family databases containing infor-
mation about herbal medicines [46, 47] and metabolite
activities [3]. KEGG and KNApSAcK are mainly associated
with metabolome level of Figure 1(a). A comprehensive list of
the omics databases can be found by searching the internet
with the term “list of biological databases.”

6. Multivariate Analysis in Systems Biology

After capture and curation of data, the next step is analysis.
Algorithms for analyzing multivariate data developed for
other applications are currently used extensively in systems
biology. The well-known methods for handling multivariate
data are related to dimension reduction, clustering, clas-
sification, and regression. Often, dimension reduction is
done before applying other methods. Principal component
analysis (PCA) is the popular algorithm for dimension
reduction [48]. PCA is a mathematical process that converts
the values of a set of possibly-correlated variables into a
set of values of uncorrelated variables which are called
principal components. This transformation assigns the largest
possible variance to the first principal component and usually
the sum of variance of first few components approaches
the total variance of all the variables in the original data.
Therefore, variable reduction is performed by replacing all the
original variables by the first few components obtained from
PCA analysis.

Regression analysis is a process for estimating the rela-
tionships between dependent variables (response variable)
and independent (predictor) variables. Most regression anal-
ysis techniques estimate coefficients to establish a linear
relation between dependent and independent variables. Least
squares regression [49] and partial least squares (PLS) regres-
sion [50] are popular regression techniques. In multivariate
data analysis, classification is the problem of identifying
the category of a new observation from among a set of
categories. Support vector machine (SVM) is a popular algo-
rithm for classifying multivariate entities into two categories
[51]. A multivariate entity can be regarded as a point in
a multidimensional space. Usually an optimum hyperplane
is determined based on training data so that multivariate
entities of one category fall on one side of the hyperplane,
while the entities of the other category fall on the other side.
The concept of SVM can be extended to classify multivariate
entities into multiple categories. Another type of classifier is
the neural network [52], which is a naive way of electronically
simulating the function of the human brain. It is difficult to
make a single formal definition of all the methods considered
neural networks in the scientific literature. Usually, a neural
network consists of a layer of input nodes and a layer of
output nodes and several hidden layers of nodes. A neural
network can be trained to use it as a classifier of multivariate
entities. A multivariate data vector can be applied to the input
nodes and after mathematically processing values applied at
the input nodes by functions associated to the hidden nodes
some values are propagated to the output nodes, which are
utilized to determine the class of the input multivariate entity.
The functions associated to the hidden nodes are determined
or optimized based on the training data. The naive Bayes
classifier [53] is another popular supervised classification
technique applicable to multivariate data. This classification
algorithm is named after Thomas Bayes (1702-1761), who
proposed the Bayes theorem. However it is called naive
Bayes because it naively assumes that the features or variables
that describe a multivariate entity are mutually independent.
Naive Bayes classifier usually computes the probability that



a multivariate entity belongs to a certain class given its fea-
tures. Usually a set of training data or well-defined probability
density functions are used to estimate different probabilities
required to classify a multivariate entity. Random forest [54]
is another classification method. The random forest is an
ensemble classifier which constructs multiple decision trees.
Each tree is constructed using a subset of training data and a
subset of variables. Class assignment is made by the number
of votes from all of the trees. Random forests can also be used
to rank the importance of the variables in a regression or
classification problem. Some other classification algorithms
are partial least squares discriminant analysis (PLS-DA) [55]
and soft independent modeling of class analogy (SIMCA)
[56].

Another multivariate technique common in systems biol-
ogy is clustering. This is the task of dividing a set of entities
or objects into several groups or clusters in such a way that
the objects in the same cluster are more similar in some
sense to each other than to those in other clusters. Clustering
and classification are related concepts, but in the case of
classification, the categories are known beforehand, whereas
in case of clustering, usually the categories are understood
after applying a clustering algorithm. Hierarchical cluster-
ing [57, 58] is the widely used algorithm for clustering
of multivariate data. Hierarchical clustering is subdivided
into 2 types: agglomerative methods and divisive methods.
Agglomerative methods proceed by a series of fusions of
the objects into groups eventually encompassing all objects
in a single group. On the other hand, the divisive method
separates the objects successively into finer groupings, even-
tually keeping each object in a single group. Hierarchical
clustering is a technique that organizes elements into a
tree. K-mean clustering [59] and self-organizing mapping
(SOM) [60, 61] are also important clustering algorithms
applicable to multivariate data. K-mean is one of the simplest
unsupervised clustering methods. One disadvantage of K-
mean clustering is that it is necessary to guess and set the
number of clusters in the targeted dataset before applying the
algorithm. In case of SOM, multidimensional data/input vec-
tors are mapped onto a two-dimensional array of nodes. Data
points assigned to a node or nearby nodes are considered
as a cluster.

Data assimilation can be referred to as state estima-
tion which is the process of combining a model with
observational data to estimate the state of a system. By
data assimilation, a quantity of interest is estimated by
combining observational data with the underlying dynam-
ical principles governing the system under investigation.
There are applications of data assimilations in systems
biology. The data assimilation technique was applied to
elucidate the dynamics of time-lagged gene-to-metabolite
networks of Escherichia coli [62]. State transitions in the
transcriptome of Bacillus subtilis and in both transcriptome
and metabolome of Arabidopsis thaliana were predicted
using a data assimilation technique called linear dynamical
system model [63].

Numerous researches have been conducted in systems
biology based on multivariate data analysis. We briefly dis-
cuss a few examples below.
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6.1. Application of BL-SOM. Batch learning self-organizing
map (BL-SOM) is a novel neural-network algorithm that
has been applied to efficiently and comprehensively analyze
codon usage in approximately 60,000 genes from 29 bacterial
species simultaneously [61]. In the original SOM method
[60], the initial weight vectors are set by random values, but
in BL-SOM the vectors are initialized by PCA, which is a
statistical method that performs linear mapping to extract
optimal features from an input distribution in the mean
squared error sense. This technique allows the resulting
SOM to be independent of input vectors. BL-SOM makes
it possible to cluster and visualize the genes of individual
species separately at a much higher resolution than can be
obtained with PCA because PCA works based on linear
mechanism while SOM can be trained to adapt non-linear
mechanisms. The organization of the SOM can be explained
by the genome G + C and tRNA compositions of the
individual species. This work further used SOM to examine
codon usage heterogeneity in the E. coli O157 genome, which
contains “O157-unique segments” (O-islands), and showed
that SOM is a powerful tool for characterization of horizon-
tally transferred genes. Another example of the application of
BL-SOM is the investigation of the enzyme sequence diversity
related to secondary metabolism [64]. Initially, a map was
constructed by using a big data matrix that consisted of the
frequencies of all possible dipeptides in the protein sequence
segments of plants and bacteria. The enzyme sequence
diversity of the secondary metabolic pathways was examined
by identifying clusters of segments associated with certain
enzyme groups in the resulting map. The extent of diversity
of fifteen secondary metabolic enzyme groups was discussed.
On the resulting map, six clusters were rich with fragments
of monoterpene, sesquiterpene, diterpene, and triterpene
synthases. Nine clusters are corresponding to eight types
of phenylpropanoids which are flavonoid and isoflavonoid
synthases. Five clusters were associated to acetyl-, O-methyl-
, and N-methyl transferases. As a whole these results show
sequence similarities between specific types of enzymes
related to secondary metabolic pathways.

6.2. Application of PLS-DA Model. PLS-DA is an example of a
multivariate model that has been applied in systems biology
a case study being our previous work on Indonesian herbal
medicines, popularly known as Jamu. These medicines are
prepared from a mixture of several plants. The plants are
chosen so that the Jamu has the desired efficacy. Thus, the
composition of the plants used in a Jamu formula determines
its efficacy. A model using partial least square discriminant
analysis (PLS-DA) has been developed to predict the efficacy
of Jamu based on the information of plants used in Jamu
formula [55]. In this analysis, among 3,138 Jamu medicines,
the efficacies of 2,248 Jamu medicines (71.6) were correctly
predicted. Hence, the efficacy in most Jamu medicines can
be predicted on the basis of the ingredient medicinal plants.
In addition, the regression coeflicients of the PLS-DA model,
which relates plant usage in Jamu as predictors and Jamu
efficacy as response, can be helpful in determining which
plants in the ingredients of Jamu are used as main ingredients,
which contribute primarily to the medicines’ efficacies, and
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which plants are used as supporting ingredients. Plants that
act as main ingredients will have a significant effect on
the developed model. Due to the absence of parametric
testing for the PLS-DA coeflicients, the evaluation for sig-
nificance is performed using permutation testing, in which
the distribution of coefficients under the null hypothesis is
generated via resampling of the existing data. The resampling
is performed by permuting the order of the responses (in
this case, Jamu efficacies) while maintaining the order of the
predictors (in this case, plant utilization as Jamu ingredients)
so that the existing relationship between the predictors and
the response is destroyed and a new data set is generated
under the null hypothesis; that is, plant utilization in Jamu
does not affect Jamu efficacy. If such resampling is performed
many times and the PLS-DA model is applied on the new
data generated from the resampling, the accumulation of the
PLS-DA coeflicients obtained from this process generates a
distribution, against which a P value can be calculated and
subsequently evaluated for significance. From the testing, it
was observed that 234 plants (50.3 among all 465 plants)
showed no significant status for all 9 efficacies; whereas the
other 231 plants have a significant status of which 189 plants
(40.6) are significant only for 1 efficacy, 38 plants (8.2) are
significant for 2 efficacies, and the other 4 plants (0.9) are
significant for 3 efficacies.

7. Network Analysis in Systems Biology

For system-level understanding, initially the elements of a
system are connected based on their mutual relation and a
network is formed. Global network properties such as average
path length, clustering coefficient, and degree distribution
[65] are determined to assess the overall characteristics of
the network such as how they are formed, what model they
fit, how robust they are, and how tightly the elements are
connected. There are numerous algorithms for finding clus-
ters in a network. As a flexible notion the densely connected
regions of a network are called clusters. Also, there are precise
definitions of network clusters such as k-core, k-plex, and
n-clan [66-68]. In recent years network theory has been
substantially applied in systems biology. Construction and
analysis of biological networks have become highly popular
among omics researchers. In the following section we discuss
some of the applications of networks and network algorithms
in systems biology.

71. Function Prediction. Functions of many omics molecules
or entities, for example, genes, mRNAs, proteins, and also
metabolites, are still unknown. A system-level approach of
predicting functions of an unknown entity is performed
by constructing a network of that entity and other known
and unknown entities. Usually, after constructing a network,
some suitable clustering method is applied. There are versatile
graph clustering methods such as based on density and
periphery [69], random walk [70], betweenness centrality
[71], and so on. Usually the entities belonging to the same
cluster are considered to have similar function based on the
hypothesis “guilt by association” and therefore if the majority
of the members of a cluster have some known function,

then the unknown members are also assumed to have that
function.

7.2. Protein Complex Detection. Protein molecules may act
individually, but in most cases to perform a biological task
they form complexes by binding with one or more other
protein molecules. High throughput experiments such as
yeast two hybrid system (Y2H) [23, 24] and affinity purifi-
cation coupled to MS (AP-MS) [25] are used to determine
the global set of interacting protein pairs. Such protein pairs
can be represented as a network which is known as a PPI
network. Usually it is assumed that a set of proteins in a
densely connected region in a PPI network correspond to a
protein complex. A good number of researches have been
conducted to computationally detect protein complexes by
applying clustering algorithms to PPI networks [72-76]. In
those studies it was shown that real protein complexes of yeast
substantially matched with computationally detected protein
complexes.

7.3. Prediction of Interaction. The presence of statistically sig-
nificant complementary domain pairs in interacting protein
pairs determined in the context of a PPI network indicates
that certain domains facilitate protein binding [77, 78]. Thus
the presence of complementary domains in two new proteins
implies the possibility that they might interact inside the cell.
Thus, PPI networks of one or more species can be used to first
determine complementary domain pairs and then to predict
interactions between new protein pairs corresponding to a
species.

7.4. Analyzing Evolution. PathBLAST [79] is a network align-
ment and search tool for comparing protein interaction
networks across species to identify protein pathways and
complexes that have been conserved by evolution. The basic
method searches for high-scoring alignments between pairs
of protein interaction paths, for which proteins of the first
path are paired with putative orthologs occurring in the same
order in the second path.

75. Information Integration. Networks can be constructed
by combining different types of information, thus being
helpful for integrated analysis of different omics molecules
based on their relations. An integrative network of C. elegans
embryogenesis genes based on three types of data (protein-
protein interaction, expression profiling similarity, and phe-
notyping profiling similarity) was studied in [80]. This study
showed that gene pairs connected by interactions supported
by multiple data are more likely to belong to the same GO
category. For example in [81] gene expression profiles and
mass spectrometry profiles are merged by using appropriate
normalization of the data and a combined network of genes
and metabolites has been constructed which helped find
related genes and metabolites. A very large network of more
than 60,000 interactions was reported [82] by integrating
transcription factor binding, PPI, and protein phosphoryla-
tion data of yeast. This network was found to contain 7 types
of 3-molecule motifs involving kinases out of which 5 types
were overrepresented.



7.6. Determination of Important Entities. It is easy to realize
that in the context of a network all nodes are not equally
important. For example, a node with very high degree
is obviously more important compared to a node having
degree 1 or 2. There is an important relation between vertex
degree and functional importance of the vertices in biological
networks [83]. It has been reported that in PPI networks the
removal of highly connected proteins is more likely to have
more lethal effect [84]. The importance of a node in a network
is precisely and mathematically determined by the centrality
measures, for example, degree centrality, closeness centrality,
betweenness centrality, eigenvector centrality, and so forth.
In [85] a list and definitions of 17 types of different centrality
measures are presented.

7.7. Disease Diagnosis. Biological networks can be utilized to
identify biomarkers for disease diagnosis. Even a subnetwork
also might be a biomarker. Protein network and mRNA
profiles can be integrated to identify subnetwork biomarkers,
that is, highly connected genes of a subnetwork whose sum of
expression can be a marker of a disease state. There are several
network-based approaches for identifying disease genes and
protein interaction subnetworks which are disease signatures
[86-88]. The application of a network analysis to metabolic
PET (positron emission tomography) data obtained from
patients with Parkinson’s disease resulted in the identification
and validation of two distinct spatial covariance patterns
associated with the motor and cognitive manifestations of the
disease [89].

7.8. Drug Development. Complicated diseases such as cancer,
Alzheimer, mental disorder, and heart diseases are very
complex and caused by multiple molecular abnormalities.
The drug discovery process of these diseases needs to target
not a single molecule but entire molecular pathways of var-
ious cellular omics networks. Recently biological networks,
for example, PPI networks and gene expression networks,
are extensively used to find drug targets [90-92]. In [93],
a method for drug target identification was proposed by
combining information about drug therapeutic similarity,
chemical similarity, and protein-protein interaction network
using linear regression.

7.9. Prediction of Drug-Drug Interactions. Understanding
drug-drug interaction is important for drug development
and drug administration. A drug interaction is a situation
in which a substance (usually a drug) affects the activity of
another drug when both are administered together. Drug-
drug interaction is a significant cause of adverse drug reac-
tion, especially in population on multiple medications. Drug-
drug interaction can be categorized into three types: phar-
maceutical, pharmacokinetic (PK), and pharmacodynamic
(PD). A prediction method of pharmacodynamic drug-drug
interaction through protein-protein interaction networks is
proposed in [94]. This work introduced a metric called “S-
score” that measures the strength of network connection
between drug targets. Thus drug-drug interaction was deter-
mined by assessing the interaction between the drug targets
in the context of the whole PPI network.
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710. Comparison of Biological Mechanisms. Different types
of biological networks, for example, PPI networks, gene
regulatory networks, and metabolic pathways, and so forth,
are system-level representations of biological mechanisms.
Interesting results were obtained by comparing biological
networks with random networks of the same size [69, 95]
or biological networks derived under different contexts [96].
Usually such comparisons are performed in the context of
global network properties like degree distribution, average
path length, and clustering coeflicient, and so forth. Though
global level degree distribution of PPI networks of many
species follows power law, subtle differences between PPI
networks of different species can be found by using other con-
cepts. Not only PPI network but also other types of biological
networks of different species can be compared to decipher
the differences in mechanisms to explain phenotypes and
other useful matters. A distance measure called relative
graphlet frequency distance is presented in [97] which is
based on the frequency of undirected induced subgraphs of
size three to five. This measure was used to compare PPI
networks of E. coli and yeast with different artificial networks
[98]. Another concept of comparing two networks especially
regulatory networks is on the basis of network motifs which
are reoccurring patterns in complex networks and thus in
some sense similar to the motifs in gene or protein sequences.
It is shown in [99] that three highly overrepresented network
motifs are present in the transcriptional interaction network
of E. coli.

8. Conclusions

To understand a living organism as a system we first
need to understand a cell as a system. This means we
need to comprehensively understand the functions of each
gene/protein/metabolite and how they work as an individual
or in a group. The advancement in molecular biological
experiments is producing huge piles of data related to genome
and RNA sequence, protein and metabolite abundance,
protein-protein interaction, gene expression, and so on.
It is important to handle these huge data efficiently and
scientifically to understand the cell as a system and to develop
new applications in biotechnology and biomedical fields.
This, in turn, necessitates the usage of high speed computers
and integrating knowledge from other branches of science,
for example, statistics, mathematics, physics, chemistry, and
so on. The data we need to handle is of old formats, but the
present challenge is that it has grown very big and needs
the integration of different data types. This can be done by
developing efficient scaling techniques for the current soft-
ware tools and statistical and mathematical models for data
handling. The application of network theory and algorithms
can facilitate analyzing and integrating big data.
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