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SUMMARY
Proteomics is crucial in clinical research, yet the clinical application of proteomic data remains challenging.
Transforming proteomic mass spectrometry (MS) data into red, green, and blue color (MS-RGB) image for-
mats and applying deep learning (DL) techniques has shown great potential to enhance analysis efficiency.
However, current DL models often fail to extract subtle, crucial features fromMS-RGB data. To address this,
we developed ProteoNet, a deep learning framework that refines MS-RGB data analysis. ProteoNet incorpo-
rates semantic partitioning, adaptive average pooling, and weighted factors into the Convolutional Neural
Network (CNN) model, thus enhancing data analysis accuracy. Our experiments with proteomics data
from urine, blood, and tissue samples related to liver, kidney, and thyroid diseases demonstrate that
ProteoNet outperforms existing models in accuracy. ProteoNet also provides a direct conversion method
for MS-RGB data, enabling a seamless workflow.Moreover, its compatibility with various CNN architectures,
including lightweight models like MobileNetV2, underscores its scalability and clinical potential.
INTRODUCTION

Mass spectrometry (MS)-based proteomics, which can rapidly

profile thousands of proteins from minimal biofluid or tissue sam-

ples, hasgreatly advancedclinical diagnostics and treatment stra-

tegies.1–3 However, the complexity and volume of the resulting

proteomic data present substantial analytical challenges. Artificial

intelligence (AI), particularly machine learning (ML) and deep

learning (DL) models, has emerged as valuable tools to effectively

manage and interpret this intricate data.4–7 For instance, ML

models have enabled developments such as the KDClassifier,

which achieves over 95% accuracy in distinguishing between

various nephropathies 8 and protein-basedMLmodels for classi-

fying thyroid nodules.9 Nonetheless, applyingML in clinical prote-

omics faces challenges related to pre- and post-data processing,

including transforming MS data, normalizing data, and selecting

features. These steps can be labor-intensive, prone to errors,

andmay lead tobiasedorbiologically irrelevant results.1 Thishigh-

lights the necessity of integrating advanced AI techniques into the

clinical proteomics for more rapid and accurate diagnosis.

DL is an advanced branch of AI that focuses on constructing

deep neural networks with multiple interconnected layers.10 Un-

like ML models, DL frameworks utilize algorithms like gradient

descent to automatically adjust internal parameters based on

feedback from the loss function.11 This adaptive approach elim-
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inates the need for manually predefined attributes, thereby

simplifying the complexities involved in traditional feature extrac-

tion and selection processes.12 By training the model to autono-

mously learn and prioritize features from the data, DL not only

streamlines the analysis process but also enhances the model’s

ability to identify and exploit relevant patternswithin complex da-

tasets.13,14 This capability makes DL a particularly promising

candidate for clinical proteomics analysis.

Furthermore, recent advancements in DL have shown prom-

ising results in clinical proteomics. For example, using pre-

trained CNN models, researchers have been able to distinguish

tumor from normal samples in SWATH-MS (Sequential Window

Acquisition of all Theoretical Mass Spectra) data with remarkable

accuracy.15 Additionally, modified ResNet models have suc-

cessfully identified liver cancer and thyroid nodules from DIA-

MS data with high accuracy.16 These developments highlight

DL’s potential to learn directly from proteomic MS-RGB images

(mass spectrometry data converted to red, green, and blue color

images), reducing reliance on complex data processing pipe-

lines. However, proteomic MS-RGB images present the chal-

lenges due to their complex data structures and specific noise

patterns.17–19 Tailoring CNNmodels to effectively interpret these

images, while considering their chemical andmolecular informa-

tion, is essential. Although global average pooling layers in CNNs

can simplify models, theymight overlook subtle variations critical
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Overview of ProteoNet architecture and experimental setup

(A) The architechure of ProteoNet. In this model, the Convolutional Backbone can be replaced by any CNN-based structure. The output from the Backbone is

divided into N distinct regions and processed by N Average pooling for part features. Afterward, part classifiers and weighted-integration are employed for

guiding model to learning the feature of proteomic MS-RGB images.

(B) Overview of the experimental procedure used to evaluate the performance of ProteoNet.

iScience
Article

ll
OPEN ACCESS
in proteomic MS-RGB images.18 Hence, improving models to

capture these details is crucial for accurate analysis.

In response to these challenges, we introduce ProteoNet, a

CNN-based framework specifically designed to enhance the

analysis of proteomic MS-RGB data. ProteoNet starts with the

MSConvert tool,20 which transforms MS data into MS-RGB im-

ages, facilitating better visualization and data augmentation.

This framework uses an architecture that operates without a pre-

determined backbone, focusing instead on extracting semantic

feature maps from various data partitions. This design enables

the integration of learnable weighted factors throughout the

model, optimizing feature extraction and emphasizing discrimi-

native features in highly similar regions of MS-RGB data.

ProteoNet’s approach not only increases the efficiency of

feature extraction but also refines the analysis of high-similarity

areas in proteomic MS-RGB images, offering a significant

advance in the field of clinical diagnostics.

RESULTS

Effectiveness of ProteoNet framework
The ProteoNet framework comprises three main steps: LC-MS

Data Encoding, MS-RGB Data Pre-processing, and Model

Training/Inference, as illustrated in Figure 1. Themodel input con-
2 iScience 27, 111362, December 20, 2024
sists of augmented MS-RGB data, as shown in Figure 2. Detailed

steps can be found in the Star Methods section. To assess the

convergence status of a model, it is common to construct graph-

ical representations that track the loss function and validation ac-

curacy throughout training. These visualizations are crucial for

monitoring both training and validation phases, providing key in-

sights into the incremental convergence of the model. In our

study, we highlight the capability of the ProteoNet model to accu-

rately recognize proteomics MS-RGB images using a singular

approach. We employed a 5-fold cross-validation method for a

thorough evaluation, paying particular attention to the data from

one of these folds to detail the model’s effectiveness. This focus

enabled a detailed analysis of the model’s learning trajectory, evi-

dencedby a decrease in training loss and an increase in validation

accuracy in this fold. These trends, as illustrated in Figure 3, indi-

cate that ProteoNet achieved optimal classification efficiency and

effectively avoided overfitting or underfitting.

Furthermore, we conducted an extensive evaluation of the

ProteoNet framework’s diagnostic capabilities across different

proteomics datasets, which included urinary proteomics for kid-

ney diseases, blood proteomics for liver diseases, and tissue pro-

teomics for thyroid cancers, corresponding tomulti-class classifi-

cation challenges of four, two, and three classes, respectively.

Results, detailed in Table 1, show that on the kidney dataset,



Figure 2. Examples of data augmentation techniques

The original MS-RGB image is shown in the upper-left corner outside the red box, while the images inside the red box illustrate various data augmentation

methods applied.
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ProteoNet demonstrated high precision in diagnosing healthy

control (HC) individuals, diabetic nephropathy (DN) patients, and

IgA nephropathy (IgAN) patients, with precision rates exceeding

95%. However, the recall rates for DN and IgAN patients were

moderately lower, at 88.1% and 90.0% respectively, pointing to

some instances of missed diagnoses. Nonetheless, the F1 scores

for all categorieswere notably high, reaching 91.3%,which under-

scores ProteoNet’s accuracy and reliability in diagnosing a range

of kidney-related conditions from MS-RGB data.

Additionally, in the thyroid cancer dataset, ProteoNet

achieved more than 90% in precision, recall, and F1 scores for

identifying patients with papillary thyroid carcinoma (PTC) (Ta-

ble 1). However, the recall rate for follicular thyroid carcinoma

(FTC) patients was relatively low, suggesting a tendency to

misclassify these cases as other disease types. This indicates

a potential area for improvement in the ProteoNet model’s per-

formance on this specific dataset. In contrast, in the liver disease

dataset, ProteoNet performed exceptionally well, with all met-

rics—precision, recall, and F1 score—surpassing 90% (Table 1).

This performance highlights the model’s strong capability in bi-

nary classification tasks, emphasizing its robustness across

different diagnostic settings.

Overall, the results highlight the ProteoNet model’s robust

diagnostic capabilities across diverse proteomic datasets,

showcasing its precision in most cases, yet also pinpointing op-

portunities for improvement to further optimize its performance.
Comparing with other ML and DL models
In our comparative study using kidney dataset, we evaluated the

ProteoNet model against established machine learning models,

such as support vector machine (SVM), random forest (RF),

K-nearest neighbor (KNN), and XGBoost, as well as deep

learning models including ResNet-50 and Vision Transformer

(ViT). ProteoNet outperforms these models in accuracy, distin-

guishing diseases like membranous nephropathy (MN), DN,

IgAN, and identifying HC individuals with an accuracy of

95.1% (Table 2). This performance exceeds that of the leading

ML model, SVM, which achieved an accuracy of 94.1%, and is

significantly higher than ResNet-50 and ViT DLmodels, which re-

corded accuracies of 89.3% and 87.8%, respectively.

ProteoNet also demonstrates superior discriminative ability

across all four kidney phenotypes, maintaining F1 scores above

90.0%, which significantly outperforms the other models (Ta-

ble 2). While other models generally performed well in identifying

HC individuals, achieving F1 scores up to 100%, their effective-

ness declined when distinguishing between DN, MN, and IgAN

patients, with F1 scores dropping to around 70.0% in some

cases. Moreover, ProteoNet’s balanced performance was

evident in its precision and recall rates, both exceeding 90.0%,

underscoring its efficacy and reliability in diverse diagnostic

settings.

The 5-fold cross-validation average accuracies for all models

across three datasets are shown in Figure 4, where ProteoNet
iScience 27, 111362, December 20, 2024 3
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Figure 3. Training loss and validation accuracy trends across liver, thyroid, and kidney datasets

(A) Trends for liver diseases.

(B) Trends for thyroid cancers.

(C) Trends for kidney diseases. A lower training loss (black) indicates better model fitting, while a higher validation accuracy (blue) suggests better generalization.

The solid line represents the ProteoNet model, and the dashed line represents the ResNet-50 baseline.
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consistently led, with scores of 96.4%, 86.6%, and 95.1% on

each dataset, respectively. These results were superior to

those achieved by both the traditional ML models and

advanced deep learning models. This outstanding performance

of ProteoNet can be attributed to its robust feature extraction

mechanism, which integrates a CNN-based architecture with

techniques like semantic partition, adaptive average pooling,

and optimized weighting factors. This configuration enhances

its capability to effectively analyze MS-RGB data, contrasting

with ML methods that depend heavily on database searching

and prior knowledge. ProteoNet, which refines 1D features

directly from loss function adjustments and a fully connected

layer, is highly effective in clearly defining sample boundaries

and accurately classifying disease subtypes. These features

make ProteoNet exceptionally capable of managing complex

MS-RGB data and effectively addressing challenges related

to high regional similarity.
Accuracy evaluation of models
A confusion matrix is a key visualization tool used for assessing

the accuracy of the classification models. Our analysis, using the

kidney dataset, indicated that all models effectively identified HC

individuals from patients with MN, IgAN, and DN diseases
Table 1. Average accuracy of ProteoNet from 5-fold cross-

validation

Dataset Disease status Precision Recall F1 score

MS-RGB: Kidney

disease

HC individuals 98.9% 100% 99.4%

DN patients 95.8% 88.1% 91.3%

MN patients 90.9% 98.3% 94.3%

IgAN patients 95.0% 90.0% 92.3%

MS-RGB: Thyroid

cancer

HC individuals 79.5% 85.4% 82.1%

FTC patients 84.0% 73.7% 75.5%

PTC patients 93.3% 93.2% 92.9%

MS-RGB: Liver

disease

HC individuals 98.4% 96.6% 97.4%

FLC patients 93.4% 95.6% 93.8%
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(Figure 5). This indicates a strong capability of the models in

identifying general kidney disease presence.

However, when it comes to distinguishing between MN, IgAN,

and DN patients, ML models such as SVM, RF, KNN, and

XGBoost showed limited effectiveness. The accuracy for

classifying these specific disease subtypes was around 80%

(Figures 5A–5D). The KNN model, in particular, exhibited lower

accuracy, about 70%, in differentiating bothMN and DN patients

(Figure 5D). The ViT model showed around 80% effectiveness in

differentiating both DN and MN patient types, slightly outper-

forming the KNN model but still less effective compared to other

models (Figure 5E). In contrast, the adoption of CNN-based DL

approaches, such as ResNet-50 and our ProteoNet, has signifi-

cantly improved predictive accuracy (Figures 5F and 5G).

ProteoNet, in particular, exhibited remarkable performance, mis-

classifying only 4% of IgAN samples as MN patients, while

achieving an impressive 100% accuracy in distinguishing other

disease subtypes (Figure 5G).

Overall, these results highlight the superior efficacy of CNN-

based approaches, particularly in proteomics MS-RGB image

analysis, for disease diagnosis compared to traditional ML

and transformer methods. Our ProteoNet model stands out

with its high precision, especially in differentiating between

IgAN and MN, while maintaining excellent overall accuracy for

other disease subtypes. This demonstrates the advantages

and potential of advanced CNN models like ProteoNet in clin-

ical settings. The enhancements provided by the inclusion of

semantic partition, adaptive average pooling, and weighting

factors in ProteoNet significantly improve upon the standard

ResNet-50 model, showcasing the effectiveness of these

modifications.

Visual proof of image feature capture
Deep learning models are often perceived as a ‘‘black boxes’’.

To demystify their decision-making processes, we introduced

the visualization method of class activation maps (CAM).

CAM is a specially designed visual tool that reveals how CNN

networks make decisions in classification tasks.21 It substitutes

the fully connected layer at the end of a convolutional neural



Table 2. Average accuracy of all classifier models from 5-fold cross-validation on the kidney dataset

ID Disease status Precision Recall F1 score Accuracy

Support vector machine (SVM) HC individuals 100% 98.6% 99.3% 94.1%

DN patients 85.8% 82.4% 83.8%

MN patients 92.0% 91.3% 91.4%

IgAN patients 91.2% 94.0% 92.1%

Random forest (RF) HC individuals 100% 94.8% 99.4% 87.4%

DN patients 77.3% 84.8% 80.2%

MN patients 81.6% 71.1% 76.1%

IgAN patients 78.6% 87.8% 82.3%

K-Nearest Neighbor (KNN) HC individuals 100% 98.2% 99.1% 85.5%

DN patients 82.6% 65.5% 71.3%

MN patients 86.5% 75.0% 78.8%

IgAN patients 69.4% 88.7% 78.3%

XGBoost HC individuals 100% 100% 100% 88.8%

DN patients 82.9% 85.3% 82.3%

MN patients 82.1% 79.4% 78.5%

IgAN patients 87.4% 88.0% 87.0%

ResNet-50 HC individuals 100% 100% 100% 89.3%

DN patients 95.0% 80.0% 86.3%

MN patients 80.6% 91.8% 85.5%

IgAN patients 87.3% 82.0% 84.1%

Vision Transformer (ViT) HC individuals 100% 100% 100% 87.8%

DN patients 88.3% 74.3% 80.1%

MN patients 87.8% 79.8% 82.2%

IgAN patients 76.3% 88% 80.5%

ProteoNet HC individuals 98.9% 100% 99.4% 95.1%

DN patients 95.8% 88.1% 91.3%

MN patients 90.9% 98.3% 94.3%

IgAN patients 95.0% 90.0% 92.3%
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network with a fully convolutional layer and projects the weights

of the output layer backward onto the convolutional layer fea-

tures. This enables the effective localization of critical regions

within an image that contribute to the classification task. In

CAM visualizations, brighter areas represent regions with

higher activation levels for a specific class, indicating the

important areas the neural network focuses on during

classification.

In our analysis, we observed that the baseline ResNet-50

model utilized limited discriminative information when analyzing

proteomics MS-RGB data, concentrating primarily on a few key

areas (Figure 6A). In contrast, our enhancements to the ResNet-

50 backbone in the ProteoNet model significantly increased the

number of crucial discriminative regions considered during the

analysis (Figure 6B). The ProteoNet model more effectively uti-

lizes information from various parts of the data, leading to a

more comprehensive analysis.

Furthermore, we discovered notable differences in the key

discriminative regions selected by the ResNet-50 model when

processing images of the same disease category, such as HC in-

dividuals and IgAN patients (Figure 6A). However, the ProteoNet

model demonstrates higher consistency and similarity in the
selection of discriminative features for classification. This con-

sistency underlines the model’s enhanced ability in distinguish-

ing between different kidney disease subtypes, indicating its

effectiveness in MS-RGB data analysis.

The effectiveness of partition number
As described in the network design, the partition parameter ‘‘N’’

in ProteoNet is deliberately set as a hyperparameter. In this sec-

tion, we explore how the model’s performance varies with

different values of ‘‘N’’.

As illustrated in Figure 7, the model achieves its highest accu-

racy when ‘‘N’’ is set to 5, followed by 7, and then 3. This finding

highlights that an increase in the number of model partitions

does not necessarily lead to improved performance. The decline

in performance with a higher number of partitions can be largely

attributed to the excessive granularity that results, causing the

model to focus too much on details of individual blocks and

reducing the effectiveness of weighting. Conversely, with ‘‘N’’

set to 3, the reduced number of part divisions means the model

is less capable of capturing subtle variations within each part,

leading to decreased accuracy. Nonetheless, on the whole,

regardless of the number of partitions, there is still a noticeable
iScience 27, 111362, December 20, 2024 5



Figure 4. Average accuracy comparison of

5-fold cross-validation across three disease

types

The average accuracy is shown for each model

across kidney diseases (yellow), liver diseases

(blue), and thyroid cancers (red). Liver diseases

involve binary classification, thyroid cancers are a

three-class problem, and kidney diseases present

a four-class classification challenge All data are

presented as mean ± standard error (SE) from

5-fold cross-validation.

iScience
Article

ll
OPEN ACCESS
improvement in accuracy relative to the baseline ResNet-50

model.

The generalization of ProteoNet framework
In our methodology, we highlight the adaptability of ProteoNet

with different CNN-based backbone networks. Instead of con-

ducting extensive experiments with various classical models

like VGG22 and AlexNet,23 which are similar in parameter volume

to ResNet-50, we chose to focus on MobileNetV2.24 Our selec-

tion of MobileNetV2 is primarily motivated by its compact and

lightweight architecture, making it highly suitable for applications

in mobile and embedded devices where computational re-

sources are often limited. This choice underscores our commit-

ment to developing solutions that are not only efficient and accu-
Figure 5. Confusion matrices for machine learning and deep learning

The figure displays the confusion matrices for KNN, SVM, RF, and XGBoost mac

ProteoNet deep learning models.
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rate but also practical for real-world scenarios where resource

constraints are a significant consideration.

As shown in Figure 8, the data clearly demonstrates that

ProteoNet, when integrated with the MobileNetV2 backbone,

achieves a remarkable improvement in performance metrics,

such as accuracy, precision, recall, and F1 scores, all of

which are significantly enhanced compared to the baseline

MobileNetV2 model. Notably, this enhancement in perfor-

mance does not come at the cost of increased computational

burden. In fact, the switch to the MobileNetV2 backbone has

led to a dramatic reduction in both the computational workload,

measured in floating point operations per second (FLOPS), and

the model size. These reductions are substantial, with compu-

tational workload decreasing by (6.24–0.32)/6.24 = 94.8% and
models

hine learning models, as well as for Vision Transformer (ViT), ResNet-50, and
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Figure 6. Class activation map comparison between ResNet-50 and ProteoNet for kidney disease subtypes

The red-highlighted regions indicate areas of higher importance identified by the model, suggesting the presence of distinct discriminative information. The

kidney disease subtypes include HC (healthy controls), MN (membranous nephropathy), IgAN (IgA nephropathy), and DN (diabetic nephropathy).
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model size by (26.15–5.16)/26.15 = 80.26%, while maintaining

an impressive accuracy rate consistently above 92.2% (Ta-

ble 3). In the case of employing the same backbone architec-

ture, a significant improvement in accuracy has been observed

with a minimal increase in computational overhead (z400 K in

ResNet-50 and z62.72 K in MobileNetV2) (Table 3). This bal-
Figure 7. Correlation between number of partitions (N) and accuracy

in ProteoNet for kidney disease data

This graph illustrates that, for the dataset analyzed in this study, an increase in

the number of partitions within ProteoNet does not uniformly lead to enhanced

accuracy. Data are presented as mean ± SE from 5-fold cross-validation.
ance of high efficiency and reduced resource demands high-

lights ProteoNet’s suitability for deployment in portable de-

vices. It offers a compelling solution for scenarios where high

accuracy is required but computational resources and storage

space are limited, reaffirming our focus on practical, real-world

applications.
DISCUSSION

Proteomics is essential for the accurate diagnosis of diseases,

the discovery of biomarkers, and understanding disease mech-

anisms.25,26 Despite its significant potential, the application of

proteomics in clinical settings is often hindered by complex

and time-intensive data processing.15 To overcome these chal-

lenges, we developed the ProteoNet framework, which rapidly

converts MS data into MS-RGB images and utilizes the power

of CNNs for image recognition, significantly speeding up the

analysis process and enhancing its precision.

Although CNN models like ResNet and MobileNetV2 have

achieved notable success in image classification, they often

employ global pooling strategies that can miss subtle yet

crucial features in MS-RGB images, potentially compromising

the accuracy of diagnostics.24,27 ProteoNet addresses these

limitations by incorporating semantic partitioning, adaptive

average pooling, and weighted factors into its architecture.

This integration enhances the model’s focus on critical

image regions, significantly improving diagnostic precision

by allowing detailed analysis of essential areas within the

MS-RGB images.
iScience 27, 111362, December 20, 2024 7



Figure 8. Performance evaluation of

ProteoNet with MobileNetV2 on kidney dis-

eases

All values are represented as the mean ± SE from

5-fold cross-validation.
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The semantic partitioning approach in ProteoNet effectively

segments significant regions for targeted analysis, reducing

computational complexity and increasing the efficiency of data

processing. However, this technique may introduce decision-

making noise, particularly when images display uniform patterns

across the segmented areas. To mitigate this, ProteoNet em-

ploys a learnable weighted factor that dynamically adjusts the

significance of each partitioned segment during classification,

thereby enhancing themodel’s adaptability and improving accu-

racy throughout the training process.

The effectiveness of ProteoNet has been demonstrated with

urinary, blood, and tissue proteomics data from kidney dis-

eases, liver diseases, and thyroid cancers, covering a range

of classifications. Compared to deep learning models like

ResNet-50 and ViT transformer, and ML models, such as
Table 3. Computational and storage requirements comparison betw

Backbone Network

Model Performance

FLOPS (K) Y

ProteoNet-ResNet-50 6244453.38

ResNet-50 6244051.97

ProteoNet-MobileNetv2 319081.73

MobileNetv2 319019.01

Note: Floating Point Operations Per Second (FLOPS) quantifies the comput

indicates reduced computational load. Model size refers to the storage spac

is needed.
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SVM, RF, KNN, and XGBoost, ProteoNet has shown superior

classification performance. Additionally, its ability to analyze

and optimize high-level semantic feature maps makes it not

only compatible with robust models like ResNet-50 but also

adaptable to more compact architectures like MobileNetV2.

This versatility underlines its potential suitability for deployment

in mobile and embedded devices, where computational re-

sources are limited, thus significantly enhancing its practical

value for real-world applications.

Limitations of the study
Although our research focused on designing model structures

for regional high similarity in MS-RGB data, there is still room

for improvement in key feature extraction. Furthermore, valida-

tion on more disease phenotypes is necessary. Future research
een ProteoNet, ResNet-50, and MobileNetV2

Model Size (M) Y Accuracy (%) [

26.15 95.1

23.52 89.3

5.16 92.2

3.51 91.1

ational performance of a deep learning model, with a lower FLOPS value

e required by the model, where a smaller value means less storage space
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should aim to refine ProteoNet’s features, extend its application

across a broader spectrum of diseases, and continually improve

its performance. This ongoing development will help establish

ProteoNet as a critical tool in clinical diagnostics, enhancing

the capability of healthcare professionals to make rapid and

accurate diagnoses.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

proteomic data of kidney diseases A urinary proteomic data8 https://doi.org/10.31491/APT.2021.09.064

proteomic data of thyroid cancers A thyroid proteomic data9 https://doi.org/10.1038/s41421-022-00442-x

proteomic data of liver diseases A liver proteomic data27 https://doi.org/10.15252/msb.20188793

MS-RGB: Kidney diseases This paper https://drive.google.com/file/d/

1vwe9UpybCOmZKiQNtAoYu90AFGdN_

93H/view?usp=drive_link

MS-RGB: Thyroid cancer This paper https://drive.google.com/file/d/

1APegDokyOHrEa1qgLdphLj3rh3Od43Tx/

view?usp=drive_link

MS-RGB: Liver diseases This paper https://drive.google.com/file/d/

1bj3LSZqbJpLAQeU1tnmgccTZADknn0e2/

view?usp=drive_link

Software and algorithms

MSConvert Adusumilli et al.20 https://proteowizard.sourceforge.io/

SVM classifier Chang et al.28 https://scikit-learn.org/stable/auto_

examples/svm/index.html

RF Breiman et al.29 https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.

RandomForestClassifier.html

KNN Cover et al.30 https://scikit-learn.org/stable/modules/

generated/sklearn.neighbors.KNeighborsClassifier.html

XGBoost Chen et al.31 https://xgboost.readthedocs.io/en/stable/

ResNet-50 He et al.27 https://huggingface.co/microsoft/resnet-50

Vision Transformer Dehghani et al.32 https://huggingface.co/docs/transformers/model_doc/vit

Scikit-Learn Fabian et al.33 https://scikit-learn.org

Custom computer code This paper https://github.com/whisperH/ProteoNet

Pytorch Version 1.7.1 https://pytorch.org/

Python Version 3.6.0 https://www.python.org/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study is computational science research and does not utilize experimental models typical of the life sciences. All original data

were obtained from published literature, with references listed in the key resources table.

METHOD DETAILS

Overview of ProteoNet
In clinical proteomics, distinguishing between disease subgroups relies on detecting variations in protein expression profiles. These

variations are reflected in MS-RGB data as a series of spectral signals showing changes in specific regions, while other areas of the

spectrum often display notable similarities. Thus, accurately analyzing these crucial signal regions is essential for effective clinical

diagnostics or classification. To address this needed, we introduce ProteoNet, an innovative CNN-based architecture designed to

enable detailed analysis of small and specific feature regions within proteomic MS-RGB data. The structure of this model is detailed

in the Figure 1.

(1) Backbone network of ProteoNet

In computer vision, CNNmodels have emerged as key tools for processing visual data due to their profound capability to automat-

ically learn and extract multi-layer features from visual inputs. They have been widely used in various AI applications for image
iScience 27, 111362, December 20, 2024 e1
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recognition.34 A typical CNN architecture includes several key components: 1)Convolutional Layers: Often considered the core of a

CNN, these layers use small filters to extract local features from an image, aiding in pattern recognition across various sizes and lo-

cations. 2) Pooling Layers: Positioned after the convolutional layers, they reduce the spatial size of the feature maps, cutting down

computational complexity while retaining key information. 3) Fully Connected Layers: These layers come into play after the image

has been processed by the convolutional and pooling layers, serving critical roles in classification or regression tasks by making de-

cisions based on the features extracted. 4) Activation Functions: Functions such as ReLU introduce non-linearity into the network,

which is crucial for handling complex data relationships.

Recent advancements in CNN have seen models like ResNet27 and VGG22 become the go-to choices for image analysis due to

their advanced feature extraction capabilities. Among these, the ResNet-50 architecture stands out for its accuracy and adaptability

across diverse datasets, making it an optimal choice for complex tasks. Within our ProteoNet framework, we have integrated the

ResNet-50 architecture as the backbone network to harness its efficient processing of complex image features and robust perfor-

mance with large datasets. This integration significantly boosts ProteoNet’s capabilities in image recognition.35 By processing MS-

RGB data through ResNet-50, a function denoted as hð$; qÞwith parameters q, we convert them into 3D (Width3 Height3 Channel)

Tensor T, which contain rich semantic information vital for our sophisticated analytical applications. The formula is as follows:

T = hð$; qÞ

(2) Semantic partition and weighted factors

In typical CNN architectures, a global average pooling layer is used to generalize feature extraction by calculating the average

values of all semantic features, simplifying model complexity.36 While effective, this method may smooth out subtle, yet crucial, dif-

ferences within theMS-RGB data. In clinical proteomics, where these differences can represent important biomarkers or distinctions

in protein profiles, preserving fine-grained details is essential for accurate clinical diagnosis.18,37

To overcome these challenges, ProteoNet incorporates two strategies: firstly, the use of multiple semantic partitions to provide more

detailed and discriminative features, and secondly, the application of weighted feature integration to mitigate the impact of noise and

disturbances. For multiple semantic partitions, the Tensor T is proposed to divide into N regions, aiming at enhancing the prominent

differences in the proteomics MS images by optimizing the semantic features in each specific region. Specifically, T is divided along

the width axis into row vectors, and then all these row vectors are averaged into a single stripe, resulting in a part-level column vector.

Following this partitioning, multiple convolutional layers equipped with ReLU22 activation are utilized. This process integrates the chan-

nel information and simultaneously reduces computational complexity. Finally, eachpart-level columnvector, particularly the i-th part, is

input into a classifier with parameters4i, denoting asgið$;4iÞ. Training for q and4 in themodel to guidemodels to focus onextracting the

more significant features. Therefore, the i-th part with backbone network can be summarized as equation:

fð$; q;4iÞ = sðgiðT ;4iÞÞ
Where s is softmax function.

The semantic partition architecture, developed to enhance localized signal information, faces a challenge when proteomics image

data from diverse parts exhibit uniform band patterns in specific regions. In such case, the partition architecture risks introducing

noise and may contribute to model overfitting. To mitigate this, our ProteoNet incorporates a learnable Weighted factor. This factor

is crucial in determining the role of each semantic part in classifying proteomics image data: a higher weight indicates a greater rele-

vance for classification, whereas a lower weight suggests a reduced or negligible contribution. Considering the dynamic and adapt-

able nature of deep learning models, the Weighted factor is designed as an end-to-end learnable parameter, enabling automatic

adjustment during training. Consequently, the revised Equation, incorporating the i-th Weighted factor, is reformulated as follows:

fð$; q;4Þ =
XN

i = 0

sðgiðT ;4iÞÞ

And finally, the training of the parametersw, q and f in the network is optimized by a focal loss function, which can be represented as:

Lc = �
X

ðx;yÞ˛D

að1 � fcÞg logðfcÞ

Where fc is the predicted probability of c class in equation. a serves as a balancing factor to adjust the weights of positive and negative

classes and is typically set as learnable parameters in this paper. ð1 � fcÞg term referred to as the ‘focusing parameter’, which helps

decrease theweight of easily classified samples while increasing the weight of challenging ones. Typically, g is set to 2 in this paper. x is

the set of proteomics MS-RGB images, y indicates the label set of the corresponding MS-RGB image and D is the sample space.

Data source and MS-RGB image conversion
Next, we evaluated the performance of ProteoNet using three clinical proteomic datasets, specifically focusing on kidney diseases,8

liver diseases38 and thyroid cancers.9 The kidney dataset comprises urinary proteomic MS data from 50 patients with IgA
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nephropathy (IgAN), 49 with membranous nephropathy (MN), 35 with diabetic nephropathy (DN), and 72 healthy controls (HC). The

liver dataset includes serum proteomicMS profiles from 48 patients with either Non-alcoholic Fatty Liver disease or Cirrhosis disease

(FLC) and 118 healthy controls (HC). The thyroid dataset contains tissue proteomic MS profiles from 61 patients with Follicular Thy-

roid Carcinoma (FTC), 72 with Papillary Thyroid Carcinoma (PTC), and 82 healthy controls (HC).

To covert the proteomic MS data into MS-RGB format, we employed ProteoWizard, an open-source software commonly used in

proteomics. Specifically, we develop a code snippet that directly utilizes the MSConvert toolkit within the ProteoWizard software,

transforming theMSdata into high-resolution, 3-channelMS-RGB images, each 2048 x 2048 pixels in size.20 The conversion process

involved setting the mass-to-charge (m/z) display range from 200 to 2000. We used the maximum intensity value from each bin for

visualization, applying a blue-red-yellow gradient heatmap to represent different intensity levels.

The proteomicMS files for kidney diseases, liver diseases and thyroid cancers are deposited in the ProteomeXchange Consortium

with the IDs PXD018996, PXD011839, PXD036554 and PXD036554, respectively.

Data augmentation of MS-RGB data
Numerous studies have shown that a diverse dataset can significantly improve model training, reduce overfitting, and enhance

generalization capabilities. Given the limited size of our evaluation dataset, we conducted data augmentation on our MS-RGB

data. This technique is widely employed in machine learning and deep learning to increase the size of the dataset and enhance

the diversity of the samples. Specifically, we employed 19 distinct data augmentation techniques, which include Random Resize

and Crop, Random Flipping, ColorJitter, AutoContrast, Equalize, Invert, Rotation, Brightness, Sharpness, Shear, Normalization,

Cutout, among others, to enhance MS-RGB data diversity.39 These techniques were applied in pairs throughout the training phase

to ensure a diverse dataset. Conversely, during the testing and validation phases, datamanipulation was confined to center cropping

and normalization only. The effects of these augmentations are illustrated in the Figure 2.

Evaluation of ProteoNet framework
To evaluate our ProteoNet model, we conducted performance assessments on the MS-RGB data for kidney diseases, thyroid can-

cers, and liver diseases, addressing four-class, three-class, and binary classification problems, respectively. During the testing and

inference stages, the final outcome was determined by averaging the results from a 5-fold cross-validation process. This process

involves evaluating the model’s performance over five separate iterations of cross-validation, and then calculating the average of

these evaluations. Such an approach helps to reduce the variability caused by data partitioning process and stochastic elements,

thereby providing a more stable and dependable performance estimation.

In our study, the effectiveness of the ProteoNet classification was evaluated using several metrics: accuracy, precision, recall and

F1 score. Accuracy here refers to themodel’s capability to correctly identify various classes, defined as the ratio of correctly identified

samples to the overall number of samples. Additionally, precision in this context was used to measure the fraction of correctly pre-

dicted instances of a specific class against all predictions made for that class. On the other hand, recall measures the proportion of

correctly identified items relative to the total number of items that should have been classified. These performance metrics can be

formally defined as equation to:

Accuracy =
TP+TN

TP+FN+FP+TN
3 100%

Precision =
TP

TP+FP
3 100%

Recall =
TP

TP+FN
3 100%

F1 =
23Precision3Recall

Precision+Recall
Implementation details
We utilize the ResNet-50 pretrained on ImageNet as the feature extractor.40 The batch size is set to 32, total epoch is set to 100. And

the optimizer is Adam, the learning rate is set to 0.0001 initially, with a decay rate of 0.1 and the step decay schedule in 30, 60 and 90.

All the input images of experiments and comparisons are resized to 2243 2243 3. In addition, the number of partitions is set as 5 in

this paper. In addition, during the discussion phase, we also addressed the sensitivity of the model’s performance to the number of

partitions. Afterward, the whole architecture is implemented with PyTorch 1.7.1 and trained on a single NVIDIA RTXGPU. The source

code employed in the current research can be accessed on the GitHub page: https://github.com/whisperH/ProteoNet

ML and DL methods for comparison
To assess the efficacy of ProteoNet, we conducted a comparative analysis using a variety of methods. This included traditional ma-

chine learning algorithms as well as advanced deep learning models such as ResNet-50 and Vision Transformer. For the machine

learning component, proteomic MS data from kidney diseases, liver diseases and thyroid cancers were processed using
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MaxQuant software to generate quantitative protein expression data.41 The result datasets comprised 1812 proteins across 206

samples for kidney diseases, 5628 proteins across 329 samples for liver diseases, and 2333 proteins across 150 samples for thyroid

cancers. Before model construction, the data were subjected to quantile normalization and log2 transformation. Additionally, any

missing values were filled using the minimum observed values in the dataset. These processed matrices were then used as input

for several machine learning classifiers: Support Vector Machine (SVM),28 Random Forest (RF),29 K-Nearest Neighbors (KNN),30

and Extreme Gradient Boosting (XGBoost).31 For the deep learning models, the MS-RGB data were directly used as input for model

analysis.

To ensure accuracy and reliability of our models, we set specific parameters for each classifier. For the SVM classifier, a linear

kernel was employed, and the penalty parameter was set at 0.1. In the RF model, the maximum number of features was limited

to 20, with a forest comprising 100 trees. The KNN classifier was configuredwithK set to 5 and used the Euclideanmetric for distance

calculation. Meanwhile, the XGBoost model was set up with a learning rate of 0.01, a maximum tree depth of 5, and a total of 100

trees. For both the ResNet-50 and Vision Transformer models, the model parameters follow the standard architecture as released

by the original authors.27,32 And twomodels conducted for 100 epochs and a batch size of 32. The ResNet-50 utilized the Adam opti-

mizer with a learning rate set at 0.001, and the Vision Transformer was optimized by AdamW with a learning rate of 0.000125. The

performance of these models was evaluated using 5-fold cross-validation, averaging the results for a comprehensive metric. This

analysis was conducted using Python 3.7 and the Scikit-Learn library, ensuring a robust implementation of these ML models.33

QUANTIFICATION AND STATISTICAL ANALYSIS

The metrics analysis for calculating accuracy, precision, recall, and F1 score was conducted using mmpretrain (formerly mmclassi-

fication, https://github.com/open-mmlab/mmclassification) or Python (version 3.6, https://www.python.org/).

ADDITIONAL RESOURCES

This study did not create or expand any websites or resources, and it does not involve clinical experiments.
e4 iScience 27, 111362, December 20, 2024

https://github.com/open-mmlab/mmclassification
https://www.python.org/

	ISCI111362_proof_v27i12.pdf
	ProteoNet: A CNN-based framework for analyzing proteomics MS-RGB images
	Introduction
	Results
	Effectiveness of ProteoNet framework
	Comparing with other ML and DL models
	Accuracy evaluation of models
	Visual proof of image feature capture
	The effectiveness of partition number
	The generalization of ProteoNet framework

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Method details
	Overview of ProteoNet
	Data source and MS-RGB image conversion
	Data augmentation of MS-RGB data
	Evaluation of ProteoNet framework
	Implementation details
	ML and DL methods for comparison

	Quantification and statistical analysis
	Additional resources




