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Mitochondrial dysfunction and activation of the inflammatory system are two of the most consistently reported findings in bipolar
disorder (BD). More specifically, altered levels of inflammatory cytokines and decreased levels of mitochondrial complex I subunits
have been found in the brain and periphery of patients with BD, which could lead to increased production ofmitochondrial reactive
oxygen species (ROS). Recent studies have shown that mitochondrial production of ROS and inflammation may be closely linked
through a redox sensor known as nod-like receptor pyrin domain-containing 3 (NLRP3). Upon sensing mitochondrial release of
ROS, NLRP3 assembles the NLRP3 inflammasome, which releases caspase 1 to begin the inflammatory cascade. In this review, we
discuss the potential role of the NLRP3 inflammasome as a link between complex I dysfunction and inflammation in BD and its
therapeutic implications.

1. Introduction

Bipolar disorder (BD) is the sixth leading cause of disability
worldwide (WHO) with a chronic course, where 25–50%
of patients with BD attempt suicide and 50–67% of the
patients experience at least one relapse [1]. Despite the urgent
need to develop more effective treatments for this disorder,
progress has been limited due to a lack of understanding of
its pathology.

A growing number of studies are demonstrating mito-
chondrial dysfunction, especially that of complex I and
inflammation in patients with BD [2–7]. For example, a
recent review examining microarray findings in BD reported
a decrease in complex I subunits that are responsible for
transportation of electrons in patients with BD, which could
result in increased leakage of electrons and production of
reactive oxygen species (ROS) [6]. Altered levels of inflam-
matory cytokines were also shown in the brain and periphery
of patients with BD, including IL-6, TNF𝛼, IFN-𝛾, and

IL-1𝛽, suggesting that activation of the inflammatory system
may also play a role in the pathophysiology of BD. Recent
studies suggest that mitochondrial production of ROS may
be linked to inflammatory activation [8, 9]. In fact, inhibition
of complex I and subsequent increase in ROS production
lead to increased levels of inflammatory factors such as IL-1𝛽,
caspase 1, and NF-𝜅B [9, 10].

A potential link between mitochondrial dysfunction and
inflammation may be the nod-like receptor pyrin domain-
containing 3 (NLRP3) inflammasome, which is a redox
sensor that can potentiate the activation of the inflammatory
cascade by releasing caspase 1. Indeed, complex I inhibition
resulted in the activation of the NLRP3 inflammasome,
and decreasing mitochondrial ROS production was able to
eliminate inflammasome activation [9, 11].Therefore, the aim
of this review is to explore the link between mitochondrial
generation of oxidative stress and inflammation in BD, with
a focus on the NLRP3 inflammasome.
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2. BD and Mitochondrial Dysfunction:
A Brief Overview

Mitochondria are energy producing organelles in the cell
that generate ATP by transporting electrons through electron
transport chain (ETC) complexes I-V.Moreover, they regulate
calcium levels and apoptotic processes. Mitochondria are
also the main producers of ROS [12]. Complex I, which is
responsible for oxidizing NADH and transferring electrons
to ubiquinone [13], contains four main subcomplexes: 𝛾, 𝛽,
𝛼-𝜆, and 𝜆 that regulate its activity and ROS generation [14].
The 𝛼-𝜆 and 𝜆 subcomplexes are located on the hydrophilic
arm of complex I, which is responsible for electron transfer,
and 𝛾 and 𝛽 subcomplexes are located at the hydrophobic
arm, which is responsible for proton pumping [13]. A recent
review of microarray studies revealed that patients with BD
have decreasedmRNA levels of iron-sulfur cluster containing
subunits in the hydrophilic portions that are specifically
involved in electron transfer, including NDUFV1, NDUFS1,
NDUFS8, and NDUFS7 [6, 15]. On the other hand, the same
review revealed that while patients with SCZ have some
alterations in mRNA levels of complex I subunits, they do
not have alterations in the subunits that are directly involved
in the electron transfer process [6, 16, 17]. In support of the
microarray findings, decreased protein levels of NDUFS7 and
complex I activity were also reported in patients with BD
[7, 18]. These findings suggest that patients with BD may be
more vulnerable to having increased levels of electron leakage
compared to the normal population or patients with SCZ [6].
Leaked electrons from complex I can react with molecular
oxygen to produce the superoxide anion, which can escape
the mitochondria to undergo a series of reactions to form
powerful ROS such as the hydroxyl radical [12]. Oxidative
damage to lipids, DNA, and proteins in patients with BD
is some of the most consistently reported alterations in BD,
which is in agreement with these findings [2, 3, 19].

Superoxide anion and other ROS also play important
roles as signaling molecules in the cell through redox sen-
sors that undergo conformational changes, oligomerization,
and/or translocation upon detecting ROS or downstream
products of ROS release [20]. Nrf2, for example, migrates to
the nucleus upon sensing ROS production, and thioredoxin
undergoes a structural change upon being modified by ROS
[20]. Recent studies have demonstrated that mitochondria
may be a potent activator of the immune system through its
ability to generate ROS and its interaction with redox sensors
in the inflammatory system, such as NLRP3 [8, 9]. These
findings suggest that mitochondrial dysfunction in BD may
at least be partly responsible for cytokine activation in the
central nervous system (CNS) and periphery of patients with
BD.

3. BD and Inflammation

Alterations in the inflammatory pathway in patients with
BD have been reported since 1995, when Maes et al. [21]
found increased sIL-6R and sIL-2R levels in patients with
mania. Indeed, medical complications related to activation

of the inflammatory system such as cardiovascular diseases,
diabetes, and obesity are frequently diagnosed in patients
with BD [22–24]. Furthermore, patients with BD generally
have an earlier onset of cardiovascular diseases [22]. Such
findings have inspired themicroglial theory, which states that
proinflammatory cytokines produced as a result of microglial
activation result in disruption of neuroprotective functions,
leading to increased vulnerability in BD [23].

Majority of the studies examining inflammation in BD
have focused on peripheral samples such as plasma and
serum [25–47]. A summary of the findings discussed here
can be found in Tables 1, 2, 3, and 4. Multiple studies have
reported increased levels of sIL-2R, sIL-6R, TNF-𝛼, sTNFR1,
IL-1, ILl-12, and TGF-b in BD, while mixed results have been
reported for other inflammatory factors, including IL-4, IL-
2, IL-8, and IFN-𝛾 [25, 27, 30, 32, 38, 40, 42, 44–47]. In this
review, we will focus on TNF-𝛼 and IL-6 for the periphery
and the IL-1 pathway for the CNS, as these factors have been
consistently reported to be altered in patients with BD.

Despite the large number of studies examining inflam-
mation in BD, there is a lack of agreement regarding the
direction of alteration and the cytokines which are altered
[23]. However, TNF-𝛼 and related factors such as sTNFR1
(soluble tumor necrosis factor receptor-1) have been con-
sistently found to be elevated in the periphery of patients
with BD [26, 29, 32, 35, 37, 40–42, 44–47]. TNF-𝛼 is proin-
flammatory cytokine, which is produced mainly by activated
macrophages, CD4+ lymphocytes, and natural killer cells
[48, 49]. Upon binding to its receptors, TNFR1 and TNFR2,
TNF-𝛼 can trigger the activation of NF-𝜅B and MAPK
pathways [45, 50].

IL-6, which is a proinflammatory cytokine secreted by
T cells and macrophages, was also found to be increased in
peripheral samples from patients with BD in the majority
of studies that were examined in this review. Indeed, IL-6 is
one of the cytokines most commonly reported to be altered
in BD [29, 31, 32, 40, 42]. IL-6 can mediate fever and acute
phase responses. It can also cross the blood brain barrier and
trigger the activation of prostaglandin synthesis, which has
been implicated in BD [51].

To our knowledge, only three studies have examined
inflammation in the CNS in BD [50, 52, 53]. Dean et al. [50]
focused on TNF-𝛼 related factors and pathways in different
brain areas (BA24 and BA46) using postmortem brain.
Increased concentration of tmTNF-𝛼 was observed in BA24
for BD, but not in BA46. TNFR2 was found to be decreased
in BD subjects [50]. Rao and colleagues [52] focused on
the IL-1 pathway and markers of microglial activation using
postmortem prefrontal cortex from patients with BD. Higher
protein and mRNA levels of IL-1𝛽, IL-1R, and MyD88 and
microglial/astrocyte markers GFAP and iNOS were found in
patients with BD [52]. This was in contrast to Dean et al.
[50] who could not detect IL-1𝛽 in their samples [50].
Findings from Söderlund and others [53] were consistent
with Rao et al.’s study [52], showing elevated IL-1𝛽 levels in
the cerebral spinal fluid (CSF) of patients with BD compared
to healthy controls. Also, patients who recently had manic or
hypomanic episodes showed elevated IL-1𝛽 levels compared
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Table 2: Characteristics of studies examining inflammatory cytokines in the central nervous system of patients with BD.

Author name Article
year Sample size Sample Technique used Cytokines examined

Rao et al. [52] 2010 10 BD, 10 control
Postmortem frontal
cortex BA 24 and BA

46

Western plot, RT PCR,
immunohistochemistry

NMDA receptors, NR-1 and
NR-3A, IL-1𝛽, IL-1R,

MyD88, NF-kB (p50, p65),
GFAP, iNOS, c-fos and
CD11b, TNF𝛼, neuronal

nNOS,

Söderlund et al.
[53] 2011

BD euthymic patients,
r type I (𝑛 = 15) or
type II (𝑛 = 15)

CSF
An immunoassay-based
protein array multiplex

system
IL-1b, IL-6,

Dean et al. [50] 2013 10 MDD, 10 BD, 19
SZ, 30 control

Postmortem CNS
tissue, BA24 and

BA46
Western plot, RT PCR

tmTNF-a, sTNF-a, TNF
mRNA, TNFR1, TNFR2,
IL-1beta, synaptophysin,
PSD95, GFAP43, GFAP41,

CD11b and pro-IL1B

to those who did not [53]. Alterations in cytokine balance
in the brain can lead to changes in neurotransmitter levels
including dopamine [54, 55], causemicroglial activation [56],
and activate apoptotic processes [3, 57], all of which have been
reported in patients with BD [3, 52, 58].

Interestingly, there has been a lack of agreement between
the results found in peripheral samples and the CNS. For
example, while TNF-𝛼 levels are not reported to differ
between patients with BD and nonpsychiatric controls in
the CNS, its levels are consistently reported to be altered in
patients with BD using peripheral samples [29, 32, 35, 37, 40,
42, 47, 50, 52]. Moreover, while increased levels of cytokines
in the IL-1 pathway have been reported in the central
nervous system, studies examining peripheral samples have
not reported alterations in this pathway [23, 40, 42, 47, 52, 53].
The difference between cytokine pathways activated in the
periphery and the CNS in BD may be due to the presence of
diseases that affect the periphery to a greater extent than the
CNS, such as atherosclerosis [24].The different immune cells
that reside in the brain and outside of the blood brain barrier
may also be underlying the differences in cytokine profile.
On the other hand, the fact that inflammatory activation is
found both in the CNS and periphery of patients with BD
suggests that the same underlying factor may be causing their
activation. Decreased expression of complex I subunits and
subsequent generation of mitochondrial ROS may underlie
activation of central and peripheral immune cells through the
NLRP3 inflammasome [9] (Figure 1).

4. The NLRP3 Inflammasome

Recently, studies have shown that oxidative stress and mito-
chondrial dysfunction have important roles in regulating
immune cells of the CNS and the periphery [59]. NLRP3 is
a pattern recognition receptor in the inflammatory system
that was shown to act as a redox sensor [9]. Cytosolic
and membrane-associated pattern recognition receptors can
detect danger signals induced by physical and psychological

Caspase 1
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Mitochondria

NLRP3

NLRP3
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IL-1𝛽
IL-18

Mito

Mito ∙O2

−

∙O2

−

R
R

N
AC

H
T

N
AC

H
T

Figure 1: Mitochondrial complex I dysfunction in patients with
BD could lead to increased release of superoxide anions, resulting
in greater reactive oxygen species (ROS) production. This release
of ROS causes a conformational change in NLRP3 such that the
pyrin domain (PYD) becomes available recruit ASC.The combining
of NLRP3 and ASC that allows for the recruitment of caspase 1
(csp1) through ASC’s CARD domain, causing the formation of the
NLRP3 inflammasome. The inflammasome then migrates to the
mitochondria, allowing it to be close to the site of damage. Activated
NLRP3 inflammasome releases caspase 1 into the cytosol, which
then cleaves and activates two downstream cytokines, Il-1beta and
Il-18, causing them to be released into the extracellular space. These
two cytokines cause the activation of downstream pathways, which
may differ depending on the type of immune cell. Indeed, NLRP3
inflammasome activation may underlie the different patterns of
cytokine activation observed in the brain and peripheral samples of
patients with BD, where alterations in cytokines pertaining to the
IL-1 pathway have been reported for the brain, while a more general
pattern of cytokine activation involving IL-6 and TNF-alpha has
been reported in the periphery. Cytokine activation in the periphery
can lead to various immune disorders, including cardiovascular
disease and diabetes, while, in the brain, it could lead to alterations
in neurotransmitters and neurodegeneration.
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Table 4: Summary of findings from studies examining cytokine
alterations in the central nerve system of patients with bipolar
disorder.

Outcome 𝑁 studies BD vs. controls References
NR-1 (mRNA and
Protein) 1 + [52]

NR-2A (mRNA
and Protein) 1 + [52]

IL-1𝛽 (mRNA and
Protein) 3 + [50, 52, 53]

IL-1R (mRNA and
Protein) 1 + [52]

MyD88 (mRNA
and Protein) 1 + [52]

GFAP (mRNA and
Protein) 2 + [50, 52]

iNOS (mRNA and
Protein) 1 + [52]

TNF𝛼 2 + [50, 52]
IL-6 1 − [53]
tmTNFa 1 + (at BA 24) [50]
Astrocyte 1 + [52]
Microglia markers 1 + [52]
TNFR2 1 − [50]

stress [60]. Membrane associated pattern recognition recep-
tors include toll-like receptors that recognize pathogen asso-
ciated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs), which then leads to the release
of proinflammatory cytokines such as IL-1𝛽, TNF-𝛼, and IL-6
[61]. Cytosolic pattern recognition receptors include NOD-
like receptors, RIG-like receptors, and DNA sensors [62].
NLRP3 is the most widely studied receptor in the NOD-like
receptor family [61]. NLRP3 contains a pyrin domain, a C-
terminal leucine-rich domain, and a central nucleotide bind-
ing domain [61, 63]. NLRP3 is implicated in a wide variety of
inflammatory conditions as it is activated by many different
triggers including microbial infection, lipopolysaccharide,
tissue damage, ATP, nigericin, and monosodium urate [64,
65]. When NLRP3 is inactive, it resides in the cytoplasm with
its leucine-rich domain bound to the central nucleotide bind-
ing domain, preventing oligomerization [64]. Upon activa-
tion, NLRP3 migrates to the mitochondria associated endo-
plasmic reticulum membranes and the mitochondria [9].
This was demonstrated by increased colocalization between
NLRP3 and mitotracker, which is a fluorescent marker for
the mitochondria, and increased levels of NLRP3 in the
mitochondrial fraction as well as mitochondria-associated
membranes following NLRP3-inflammasome activation [9].
Since ROS are highly reactive and can only travel short
distances, it would be ideal for NLRP3 to be localized
the mitochondria where ROS is released [9, 66]. However,
more studies are needed to test the generalizability of these
findings in different systems and in humans. Activation
of NLRP3 also causes NLRP3 oligomerization and recruit-
ment of apoptosis-associated speck-like protein containing

a CARD (ASC) through pyrin-pyrin domain interaction
[9]. Procaspase 1 is also recruited through a CARD-CARD
interaction between ASC and procaspase 1, completing the
process of NLRP3 inflammasome assembly and activation
[63]. NLRP3 inflammasome then releases caspase 1, also
known as IL-1𝛽 converting enzyme. Caspase 1 cleaves pro-
IL-1𝛽 and pro-IL-18 to their mature biologically active forms
[67]. IL-1𝛽 is then released from the cells and binds to
the IL-1 type-I receptor, a plasma membrane receptor, and
IL-1 receptor-accessory protein to trigger the inflammatory
cascade involving downstream signaling molecules such as
MYD88 and NF-𝜅B [68]. This leads to increased expression
and activation of other inflammatory mediators such as IL-6,
TNF-𝛼, and prostaglandin E2 [69, 70].

5. Mitochondrial Dysfunction and
the NLRP3 Inflammasome

Since many different PAMPs and DAMPs can activate
NLRP3, it is unlikely that its ligand binding site recognizes
all the molecules known to trigger the assembly of the
NLRP3 inflammasome [71]. Mitochondrial dysfunction and
subsequent production of ROS have received much attention
as the common pathway by which different PAMPs and
DAMPs trigger inflammasome activation [8, 9, 11, 72]. For
example, addition of rotenone, a complex I inhibitor, induces
a dose-dependent increase in IL-1𝛽 secretion [73], while
in Nlrp3 KO mice, the addition of a mitochondrial ETC
inhibitor fails to increase IL-1𝛽 and caspase 1 release [9]. Fur-
thermore, inhibiting liposome-induced mitochondrial ROS
release was followed by a decrease in the level of NLRP3-
inflammasome activation [11]. While the exact pathway
by which mitochondrial ROS leads to NLRP3 inflamma-
some activation and assembly remains elusive, two possible
mechanisms have been proposed: thioredoxin-interacting
protein- (TXNIP-) NLRP3 interaction and mitochondrial
DNA (mtDNA) release [9, 65].

TXNIP is a tumor suppressor gene and its primary role
is to inhibit the redox protein thioredoxin to suppress cell
proliferation [9, 74]. Mitochondrial ROS production causes
the dissociation between TXNIP and thioredoxin in the
mitochondria, causingmigration of TXNIP to the cytoplasm,
which allows it to directly bind and activate cytoplasmic
NLRP3 [74]. Zhou et al. (2011) showed that inflammation
stimulating substances such as monosodium urate (MSU),
silica, and ATP produce significantly less caspase 1 and
IL-1𝛽 in TXNIP deficient mice, indicating decreased level
of NLRP3-inflammasome activation [9]. In addition, in a
high glucose concentration environment, islet cells from
Txnip−/− and Nlrp3−/− mice showed reduced level of IL-1𝛽
secretion compared to wild-type mice [9]. TXNIP was also
observed to be increased in patients with type II diabetes by
a number of different studies [75–77]. Patients with BD are
three times more likely to be diagnosed with type II diabetes
compared to the general population [78], suggesting that
NLRP3 inflammasome activation mediated by TXNIP could
be underlying increased peripheral andCNS inflammation in
patients with BD.
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Another potential mediator between mitochondrial ROS
and NLRP3 inflammasome assembly is mtDNA. The role
of mtDNA release from the mitochondria to the cytoplasm
in NLRP3-inflammasome activation has been suggested fol-
lowing the observation that mtDNA directly binds and acti-
vates the NLRP3-inflammasome [10, 79]. Opening of mito-
chondrial membrane permeability transition pores (MPTs),
which allows for mtDNA to escape the mitochondria, is
often preceded by mitochondrial ROS production [80]. Also,
adding ATP and lipopolysaccharide, which are two well-
known stimulators of the NLRP3-inflammasome, increases
mitochondrial ROS production and oxidized mtDNA levels
in NLRP3 immunoprecipitates [79]. Importantly, it was also
found that adding NLRP3 stimuli into cells lacking mtDNA
(p0 cells) does not result in IL-1𝛽 secretion [79], and that the
addition of mito-TEMPO, a mitochondrial-ROS scavenger,
to bone marrow derived macrophages inhibits IL-1𝛽 and IL-
18 secretion in a dose-dependent manner [81, 82]. Further-
more, preventing the opening of MPTs through the addition
of cyclosporine A and thereby preventing mtDNA release
inhibit LPS- and ATP-induced IL-1𝛽 secretion [10].

While the exact mechanism for how mitochondrial dys-
function triggers the assembly of the NLRP3 inflammasome
remains to be elucidated, recent studies suggest that release
of mitochondrial ROS plays a significant role in this pathway,
either through activation of an intermediate redox sensor,
such as TXNIP, or by activating apoptotic pathways causing
the opening of MPTs [9, 10]. These findings suggest that
amelioration of mitochondrial ROS production may aid in
decreasing NLRP3-inflammasome activation, which could
contribute to decreasing cytokine release in patients with BD.

6. Perspectives

With the discovery of immunological alterations in BD,
much attention has been given to the possibility of imple-
menting anti-inflammatory agents to treat symptom severity
and cognitive decline [24]. An anti-inflammatory drug that
was examined in patients with BD is celecoxib, which is
a cyclooxygenase-2 inhibitor. Studies performed on rats
showed that celecoxib can decrease IL-1𝛽 concentration in
the hypothalamus, prefrontal cortex, and the hippocampus
[83, 84]. Celecoxib was also shown to have a significant
antidepressant effect in patientswith BD, suggesting that anti-
inflammatory medications targeting IL-1𝛽 may be helpful
for patients with BD [85]. Aspirin (acetylsalicylic acid),
which also inhibits the activity of cyclooxygenase 2 as well
as cyclooxygenase 1, is also receiving much attention as a
potential treatment option for bipolar depression [86, 87].
Cyclooxygenase enzymes are involved in the arachidonic acid
cascade, which can lead to the activation of neuroinflamma-
tion pathways [88, 89]. Indeed, low-dose aspirin was found to
decrease medication events (change in type of drug, increase
in dose, or the number of prescribed drugs) in patients
with BD, suggesting that aspirin may aid in stabilizing the
symptoms [87].

Since NLRP3 inflammasome is strongly linked to
mitochondrial dysfunction and subsequent production of

ROS, improving mitochondrial function may contribute
to decreasing inflammation in BD. A potential treatment
is melatonin, which is a well-established antioxidant and
an anti-inflammatory agent that was also demonstrated
to target and accumulate in the mitochondria, improve
mitochondrial respiration, and inhibit lipopolysaccharide-
induced cytokine release [90, 91]. Interestingly, melatonin
was found to be decreased in patients with BD, which may
underlie disruptions in sleep patterns frequently observed
in these patients. These findings suggest that melatonin
may aid in decreasing mitochondrial ROS production and
subsequent NLRP3 inflammasome activation in BD.

7. Conclusion

Mitochondrial complex I dysfunction and chronic inflamma-
tion are two of themost consistent findings in BD [2, 3].Mito-
chondria are potent activators of the immune system, and
this may occur in part through the NLRP3 inflammasome,
which is assembled and activated following mitochondrial
release of ROS [9]. Since complex I dysfunction in BD
could lead to increased production of mitochondrial ROS,
NLRP3 inflammasome mediated activation of the inflam-
matory system may underlie increased cytokine release in
the CNS and periphery of patients with BD. Future studies
examining the role of the NLRP3 inflammasome in BD will
contribute to elucidating the link between two prominent
pathophysiological alterations in this disorder, which may
reveal pathways that can be used for the development of
novel therapeutic interventions that can target both systems
to improve symptomatology and cognitive functioning.
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