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Aeromonas are autochthonous bacteria of aquatic environments that are considered to
be emerging pathogens to humans, producing diarrhea, bacteremia, and wound
infections. Genetic identification shows that 95.4% of the strains associated with clinical
cases correspond to the species Aeromonas caviae (37.26%), Aeromonas dhakensis
(23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). However,
few studies have investigated the human immune response against some Aeromonas
spp. such as A. hydrophila, Aeromonas salmonicida, and A. veronii. The present study
aimed to increase the knowledge about the innate human immune response against six
Aeromonas species, using, for the first time, an in vitro infection model with the monocytic
human cell line THP-1, and to evaluate the intracellular survival, the cell damage, and the
expression of 11 immune-related genes (TLR4, TNF-a, CCL2, CCL20, JUN, RELA, BAX,
TP53, CASP3, NLRP3, and IL-1b). Transcriptional analysis showed an upregulated
expression of a variety of the monocytic immune-related genes, with a variable
response depending upon the Aeromonas species. The species that produced the
highest cell damage, independently of the strain origin, coincidentally induced a higher
expression of immune-related genes and corresponded to the more prevalent clinical
species A. dhakensis, A. veronii, and A. caviae. Additionally, monocytic cells showed an
overexpression of the apoptotic and pyroptotic genes involved in cell death after A.
dhakensis, A. caviae, and Aeromonas media infection. However, the apoptosis route
seemed to be the only way of producing cell damage and death in the case of the species
Aeromonas piscicola and Aeromonas jandaei, while A. veronii apparently only used the
pyroptosis route.

Keywords: Aeromonas spp., immune-related genes, monocytic cells, cell damage, intracellular survival
INTRODUCTION

The genus Aeromonas comprises species considered autochthonous of aquatic environments that
can also cause a wide spectrum of diseases in humans, mainly gastroenteritis, bacteremia/
septicemia, and wound infections. Aeromonas are considered emerging pathogens due to the
increase of their isolation as well as becoming renowned as a pathogen of serious public health
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concern (1–5). The infection occurs more frequently in children,
the elderly, and immunocompromised individuals, and cases of
bacteremia with fever, jaundice, abdominal pain or septic shock,
and extraintestinal infections involving meningitis, pneumonia,
keratitis, and osteomyelitis among others (1, 2, 4, 6, 7).
Aeromonas also were the microorganisms more isolated from
wound infections after natural disasters like the tsunami in
Thailand (2004), representing about 22.6% of all isolates in the
survivors (8).

According to a recent review, 95.4% of the strains associated
with clinical cases correspond to four species: Aeromonas caviae
(37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii
(21.54%), and Aeromonas hydrophila (13.07%) (5). However,
other species, i.e., Aeromonas media (2.27%) and Aeromonas
jandaei (0.43%), have also been involved with a lower frequency.
The virulence of Aeromonas spp. has been considered
multifactorial and associated with different toxins—aerolysin,
hemolysin, lipases, and enterotoxins—some of them delivered by
different types of secretion systems as well as produced through a
signal molecules such as N-acyl homoserine-lactone (AHLs) by a
phenomenon defined as quorum sensing, which results in the
colonization, invasion, and proliferation of the bacteria during
the infectious process (9–12). However, the development of the
infection depends on the immunity of the host, which is divided
into two types: innate and adaptive (13). The innate immune
response, that is, the one investigated in the present study, is
activated after recognition of bacteria structures, i.e., pathogen-
associated molecular patterns (PAMPs) by receptors named
pattern recognition receptors (PRRs), soluble and insoluble,
present and expressed in a variety of immune-related cells, like
neutrophils, monocytes, or macrophages (13–16). Toll-like
receptors (TLRs) are membrane PRRs that induce the
phagocytosis of the pathogen and activate the expression of
cytokines in the host, initiating the inflammatory response
(17). It has been demonstrated that TLR recognition such as
TLR2, TLR3, or TLR4, depending on the organisms, induces cell
death by apoptosis (18). Apoptosis is a caspase-dependent
process that induces nuclear condensation and the release of
cytoplasmic content from the host cell into the extracellular
environment, which prevents inflammation (19). Moreover,
other types of PRRs named the Nod-like receptors (NLRs) are
expressed in the cytosol and induce a different type of cell death
called pyroptosis, mediated by the activation of caspase-1 and by
the formation of multi-protein complexes called the
inflammasomes (14, 20). Pyroptosis can take place in many
cell types, including macrophages, dendritic cells, neutrophils,
and epithelial cells. This process is characterized by the activation
of different types of caspase enzymes and contributes to the
activation of pro-inflammatory cytokines, recruits more immune
cells, and finally activates an inflammatory cascade in the tissue
(14). In the last years, few studies have investigated the
expression of several innate immune-related genes against A.
hydrophila, A. veronii, and Aeromonas salmonicida in different
cell lines or animal models (mice and fish) (12, 21–24). The
majority of the studies has been performed with cell lines
obtained from animals, with the exception of two cell lines
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(T-84 and WLR-68) obtained from the human colon (12, 24).
However, human immune-related cell lines have, so far, not been
used as cell models in the Aeromonas studies.

The upregulation of the TLR4, which is a transmembrane
receptor that senses molecules such as the lipopolysaccharide
(LPS) present in the cell walls of Gram-negative bacteria, has
been detected in several studies after infecting a fish model with
different strains of A. hydrophila (21–23, 25, 26). The TLRs also
induce the activation of the nuclear factor NF-Kappa-B p65
subunit (RELA) protein, which is a protein involved with other
proteins such as RELB, REL, p105/p50 NF-kB1 and NF-kB2 in
the formation of the nuclear factor kappa-light-chain-enhancer
(NF-kB) (17). For instance, after an A. hydrophila fish infection,
the RELA protein was activated by the upregulation of the
expression levels of the TLR3, TLR4-1, TLR9, and TLR22 genes
and inducing the production of pro-inflammatory cytokines
(27). A previous study indicated that changes in the expression
of the JUN proto-oncogene, which is another transcription factor
that binds with the FOS proto-oncogene, could be involved in the
virulence of Aeromonas spp. in mice because pathogenic strains
induced upregulation of JUN and FOS genes (28). Both genes
form a complex resulting in the formation of the activator
protein-1 (AP-1), which is a transcription factor family
implicated in critical cell functions such as the inflammatory
response (29). Moreover, after A. hydrophila and A. salmonicida
infections in fish, the activation of the gene expression that
encodes pro-inflammatory cytokines like TNF-a and interleukin
8 (IL-8), as well as chemokines, i.e., the C-C motif ligand 20
(CCL20) involved in the recruitment of lymphocytes and
dendritic cells, was demonstrated (21, 23, 30, 31). However, the
C-C motif chemokine ligand 2 (CCL2) has not been studied in
Aeromonas, despite it being an interesting chemokine well
studied in infections produced by other bacteria like Vibrio
spp., where it plays a role in the recruitment of monocytes, T
cells such as CD4+ and CD8+, and dendritic cells (32).
Therefore, the chemokine CCL2 will be investigated as a novel
work. In relation to apoptosis, few studies demonstrated the
capacity of A. hydrophila, A. salmonicida, and A. veronii to
induce this process in different cell lines, and a fish infection
model has been reported (25, 26). The caspase 3 (CASP3) protein
is a member of the cysteine-aspartic acid protease family related
to apoptosis and is known as executioner caspase by
coordinating the destruction of cellular structures such as
DNA fragmentation (19). In a previous study, it was observed
that this gene was expressed during the apoptosis of head kidney-
derived macrophages from fish infected with A. hydrophila (33).
Another gene associated with apoptosis in Aeromonas is the
tumor protein P53 (TP53) as Lü et al. (34) demonstrated after
infecting a fish model with A. hydrophila. Previous studies
demonstrated that TP53 induces the activation of the BCL-2-
associated X protein (BAX), which belongs to the BCL-2 family,
which plays an important role in the apoptosis route by the
intrinsic pathway (27). However, the expression of the gene
encoding the BAX protein has not been studied in Aeromonas
and will be also investigated in the current study. As described
above, an alternative way to the cell death produced by apoptosis
July 2022 | Volume 13 | Article 875689
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is pyroptosis, which involves the formation of the inflammasome
(14, 35). The activation of the pyroptosis route has been
demonstrated by studying two proteins associated with the
inflammasome, i.e., pyrin domain containing 3 (NLRP3) and
IL-1b, after infections in mice and murine macrophages with A.
hydrophila and A. veronii, respectively (36, 37).

So far, in Aeromonas, the immune response studies have not
yet used the human monocytic cell line (THP-1), which was used
successfully in studies for the in vitro infections to investigate the
host–pathogen interactions in Vibrio vulnificus (32, 35).
Considering the latter and the fact that human monocytes act
as the first line of defense at the beginning of the infection
process (38), the THP-1 cells were selected as the host in the
present study. Moreover, no information exists so far about the
immune response generated against Aeromonas species, which
are frequently isolated in clinical cases such as A. dhakensis and
A. caviae. Additionally, whether the capacity to develop an
innate-immune response in the host cells is equal to the
environmental and clinical strains is another aspect that has
never been explored. Therefore, this study investigates
Aeromonas species that show different frequencies of
occurrence in clinical cases, using genetically identified strains
of clinical and environmental origin in order to clarify if there
exists a species-specific immune response that could explain
their differential prevalence in human infections.
MATERIALS AND METHODS

Bacterial Strains
The study was performed with 24 strains (10 clinical and 14
environmental) of six different species of which A. dhakensis, A.
media, A. jandaei, Aeromonas piscicola, and A. caviae have not
been studied until now, being the only exception A. veronii
(Table 1). The clinical strains were isolated from feces, sputum,
and wound human infections, while the environmental strains
were isolated from sick fish and water. All strains came from a
collection that was maintained in Tryptone Soya Broth (TSB)
(Becton Dickinson GmbH, Heidelberg, Germany) plus glycerol
(20%) at −80°C, and from there, they were grown in Tryptone
Soya Agar (TSA) (Becton Dickinson GmbH, Germany) at 37°C
for 24 h (similar growth rates). Their identity was previously
determined based on the housekeeping gene sequencing such as
rpoD (range between 498 and 596 bp) or gyrB (range between
413 and 523 bp) using primers and conditions previously
described (45). Prior to infection, bacteria were regrown at 37°
C in serum-free Dulbecco’s Modified Eagle’s Medium (DMEM;
PAA Laboratories GmbH, Munich, Germany) under shaking
conditions (100 rpm) for 18 h (32).

Virulence Gene Detection
The presence of different virulence-associated genes such as
aerolysin (aerA), hemolysin (hlyA), cytotoxic enterotoxin (act),
cytotonic enterotoxins (ast and alt), flagellin A (flaA) gene, Type
III secretion system genes (ascF and ascV), and shiga toxin (stx1)
was evaluated by PCR using specific primers and PCR conditions
described in previous studies (46, 47).
Frontiers in Immunology | www.frontiersin.org 3
Cell Lines and Conditions
The human monocytic cell line THP-1 (48) was selected for the
experiments because it is a valuable model for studying the innate
immune response against bacteria. This cell line wasmaintained as a
cell suspension in Roswell Park Memorial Institute Medium
(RPMI-1640, PAA Laboratories GmbH) supplemented with 10%
fetal bovine serum (FBS; PAA Laboratories GmbH, Munich,
Germany) plus 1% penicillin–streptomycin (P/S) solution (PAA
Laboratories GmbH, Munich, Germany) at 37°C and 5% CO2 (32).
Before the infection experiments, cells were seeded in tissue culture
plates containing DMEMwithout FBS and P/S at a concentration of
0.5 × 106 cells/ml to obtain 1 × 106 cells/ml after 3 h (32, 35).

Infection
Cell line THP-1 was infected with each of the 24 Aeromonas
strains (Table 1) using overnight cultures (18 h) in DMEM
without FBS and P/S, at a multiplicity of infection (MOI) of 10
and 20, i.e., the ratio between the number of bacteria and the
number of cells targeted (49). The control strain of V. vulnificus
(CECT 4999) was used at MOI 5, as done in a previous study
(32). The cultures were incubated at 37°C and 5% CO2.

Intracellular Survival
Infected monocytes at MOI 10 and 20 (initial dose) were
incubated at 37°C with 5% CO2 for 1 h, followed by
gentamicin treatment (50 µg/ml) for 1 h to kill extracellular
bacteria (time 0), and then the number of bacteria inside the
TABLE 1 | Strains used in the study.

Strain Origin Reference

Aeromonas dhakensis
CECT 5744T

GMV 704
128177
28B

Child feces with diarrhea
Cetacean infection (ulceration of skin)
Human feces
Human wound infection

(11)
This study
This study
This study

Aeromonas caviae
CECT 838T

ESV-378
E01980
D50233

Guinea pig
Fish gills
Human feces
Human feces

(39)
(40)
This study
This study

Aeromonas veronii
CECT 4257T

123384
AE6
01.1

Human sputum
Human feces
Lake water
Sick fish

(41)
This study
This study
This study

Aeromonas media
CECT 4232T

ESV-382
32679
ESV-360

Fisheries water
Fish gills
Human feces
Fish kidney

(42)
(40)
This study
(40)

Aeromonas jandaei
CECT 4228T

4300E
CECT 4813
AE214

Human feces
Lake water
Human feces
Lake water

(43)
This study
This study
This study

Aeromonas piscicola
CECT 7443T

AE169
CECT 7444
AE71

Sick fish
Baltic Sea
Rainbow trout
Lake water

(44)
This study
(11)
This study
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monocytes was determined (50). Incubation of infected
monocytes continued with the fresh DMEM and maintenance
dose of gentamicin (2 µg/ml) for an additional 4 h. After this, the
number of bacteria inside THP-1 was counted. Percent survival
was calculated using the number of bacteria after 4 h of
incubation and after gentamicin treatment (50 µg/ml) (50).
Results were expressed as the average of the results obtained
for all the strains of the same species.

Cell Damage Assay (Lactate
Dehydrogenase Assay)
After the infection at MOI 10 and 20, supernatants were obtained
at different times (t = 3, 4, 5, and 6 h). Cell damage was
determined by quantifying the lactate dehydrogenase (LDH)
enzyme released into the culture media (supernatants), by
using the Cytox 96 Non-Radioactive Cytotoxicity Assay
(Promega, Madison, WI, USA), as described in the
manufacturer’s instructions. To perform a standard curve, a
bovine recombinant LDH (Sigma-Aldrich, St. Louis, MO,
USA) was used, and the LDH levels of the samples were
extrapolated from the curve (32). Results were expressed as the
average of the results obtained for the clinical and
environmental strains.

Analysis of the Expression of the Genes
Related to the Immune System
Eleven different genes implicated in the immune response
against pathogens were selected to quantify their transcription
levels by THP-1 cells in response to the infections produced with
the different strains of the Aeromonas spp. in relation to the non-
infected cells. The primers used to evaluate the expression of the
selected genes were those from Murciano et al. (32) and Zhao
et al. (51) and are listed in Table 2. The selected genes were those
that encode for TLR4, cytokines, and chemokines (TNF-a,
CCL2, and CCL20), apoptosis (TP53, BAX, and CASP3), and
pyroptosis (NLRP3 and IL-1b) as well as genes of the
transcription factors (JUN and RELA). After 4 h of infection at
MOI 20, THP-1 cells were washed twice with PBS, and the RNA
was isolated from the samples by using the GenElute™

Mammalian Total RNA Miniprep Kit (Sigma-Aldrich). RNA
quality and integrity were confirmed spectrophotometrically
using NanoDrop 2000, calculating the 260/280 and 260/230
ratios. The cDNA was transcribed from total RNA by using
the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). A real-time PCR was performed with
cDNA for quantification by using the Power SYBR® green
PCR Mastermix (Applied Biosystems®, Life Technologies,
Glasgow, UK) on a StepOnePlus™ Real-Time PCR System
(Applied Biosystems®). Threshold cycle (CT) values were
obtained to establish the relative RNA levels of the tested
genes, using the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene as a housekeeping gene of reference. The
relative gene expression was determined by using the delta-
delta Ct (2−DDCt) method that relays the signal from the real-
time PCR, as done in a previous study (32). Results corresponded
to the average of the results obtained for all the strains of the
Frontiers in Immunology | www.frontiersin.org 4
same species and were expressed as fold changes in relation to
the non-infected cells.

Analysis of the Expression of aerA and
act Genes
Two different genes implicated in the virulence, aerA and act,
were studied after THP-1 infections with one strain of each
Aeromonas species, with the exception of aerA with A. jandaei
infection due to the lack of this gene in all strains. The primers
used to evaluate the expression of the selected genes were those
from Lee et al. (47). After 3 h of infection at MOI 20, total RNA
was isolated from Aeromonas cultures using TRIzol® Reagent
(Invitrogen, Carlsbad, CA, USA) as previously described (52).
RNA quality and integrity were confirmed using NanoDrop
2000, calculating the 260/280 and 260/230 ratios. The cDNA
was transcribed from RNA using iScript cDNA Synthesis Kit
(Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to the
manufacturer’s instructions. Quantitative Real-Time PCR was
performed in triplicate using Real-Power SYBR® green PCR
Mastermix (Applied Biosystems®, Waltham, MA, USA) on a
StepOnePlus™ Real-Time PCR System (Applied Biosystems).
Threshold cycle (CT) values were obtained to establish the
relative RNA levels of the tested genes, using 16S rRNA gene
as a housekeeping gene and then calculated with the
2−DDCt method.

Statistical Analysis
All the experiments were performed in triplicate, and the
statistical significance was determined by using Student’s two-
tailed t-test and two-way ANOVA at p < 0.05 using the
GraphPad Prism 6.0 (GraphPad Software, CA, USA).
TABLE 2 | Primers used to target gene expression (32) (51).

Gene Sequence (5′–3′)

GAPDH Forward CATGAGAAGTATGACAACAGCCT
Reverse AGTCCTTCCACGATACCAAAGT

TLR4 Forward AGTTGATCTACCAAGCCTTGAGT
Reverse GCTGGTTGTCCCAAAATCACTTT

JUN Forward TGCCTCCAAGTGCCGAAAAA
Reverse TGACTTTCTGTTTAAGCTGTGCC

RELA Forward ATGTGGAGATCATTGAGCAGC
Reverse CCTGGTCCTGTGTAGCCATT

TNF-a Forward GAGGCCAAGCCCTGGTATG
Reverse CGGGCCGATTGATCTCAGC

CCL2 Forward CCCCAGTCACCTGCTGTTAT
Reverse TGGAATCCTGAACCCACTTC

CCL20 Forward GCAAGCAACTTTGACTGCT
Reverse ATTTGCGCACACAGACAACT

CASP3 Forward GAAATTGTGGAATTGATGCGTGA
Reverse CTACAACGATCCCCTCTGAAAAA

BAX Forward CCCGAGAGGTCTTTTTCCGAG
Reverse CCAGCCCATGATGGTTCTGAT

TP53 Forward CAGCACATGACGGAGGTTGT
Reverse TCATCCAAATACTCCACACGC

NLRP3 Forward CGTGAGTCCCATTAAGATGGAGT
Reverse CCCGACAGTGGATATAGAACAGA

IL-1B Forward TTCGACACATGGGATAACGAGG
Reverse TTTTTGCTGTGAGTCCCGGAG
July 2022 | Volume 13 | Article 875689
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RESULTS

Presence of Virulence Factors
The presence of virulence-associated genes in these Aeromonas
strains was screened by PCR. The distribution of the genes is
summarized in Table 3. The most frequent virulence gene detected
was alt (66.66%), followed by aerA, ascV, and flaA (45.83%); hlyA,
ascF, and ast (41.66%); and act (37.5%). The less frequent virulence
genes were aexT and aexU (20.83%). In contrast, stx gene was not
detected in any of the 24 strains. In relation to the species as shown in
Table 3, the results showed that A. veronii strains had a higher
number of positive strains (25) for different genes, followed by A.
dhakensis (23),A.piscicola (18), andA. caviae (15),whileA.media (9)
and A. jandaei (5) had a smaller number of positive strains.

Intracellular Survival
As shown in Figure 1, independently of the MOI, the most
prevalent clinical species (A. dhakensis, A. veronii, and A.
caviae) showed, in general, a higher intracellular survival than
the less prevalent species (A. media, A. jandaei, and A. piscicola).
Additionally, at MOI 20, the intracellular survival of Aeromonas
spp. was significantly higher (p < 0.05) than at MOI 10 except for
the species A. jandaei and A. veronii (Figure 1).

Cell Damage Caused by
Aeromonas Species
The ability of Aeromonas to induce cell damage in THP-1 cells
measured as the release of LDH to the cell culture supernatant is
shown in Figures 2, 3. The six Aeromonas species caused
significantly higher cell damage (p < 0.05) when compared with
thenon-infected cells, and thiswas higher after the infection atMOI
20 (Figure 2). AllAeromonas strains, independently of the species,
were able to induce at MOI 10 and 20 significant degrees of cell
damage that increasedwith time (p< 0.05). The clinical strains of all
the species were able to induce a higher degree (p < 0.05) of THP-1
cell damage than the environmental strains (Figure 3). In addition,
the more prevalent clinical species, A. dhakensis, A. caviae, and A.
veronii, caused significantly higher cell damage than the rest,
independently of the exposure time (p < 0.05) (Figure 2).

Monocytic Cell Line (THP-1) Gene
Expression After Aeromonas spp. Infection
Genes Involved in Pathogen Recognition
After the Aeromonas infection, the transcriptional level of TLR4
gene encoding TLR4 showed significant differences (p < 0.05) in
Frontiers in Immunology | www.frontiersin.org 5
comparison with the expression of this gene in the non-infected
cells, but this only occurred after infection with A. dhakensis, A.
caviae, and A. veronii (Figure 4).

Genes for Cytokines and Chemokines
All Aeromonas strains, independently of the origin and the
species, induced the THP-1 monocytic cells to express the
genes that encode the cytokine TNF-a and the chemokines
(CCL2 and CCL20), with a significant difference (p < 0.05) in
the transcription pattern in relation to the non-infected cells
(Figure 4). However, the expression levels of TNF-a gene were
higher in response to the infections produced by A. dhakensis,
followed by A. caviae and A. veronii (p < 0.05). The expression
level of the pro-inflammatory cytokine IL-8 was below the
detection limit for all species (Figure S1).

In the case of chemokines, the transcriptional levels of CCL2
and CCL20 genes were upregulated after infection with all strains
in comparison with the non-infected cells, but a higher
expression was observed for CCL20 gene and especially for
infections produced with A. dhakensis and A. caviae than with
the other species (p < 0.05) (Figure 4). The transcriptional levels
of CCL2 and CCL20 genes after A. veronii infection showed no
significant differences with A. media or A. piscicola. However, all
species showed a significantly higher expression of chemokines
(p < 0.05) than A. jandaei (Figure 4).

Genes of Transcription Factors
The THP-1 cells responded by upregulating the JUN transcription
factor after infection with all the Aeromonas spp. (p < 0.05).
However, the upregulation was not significantly different from the
non-infected cells in the case of A. media and A. veronii (Figure 4).
RELA gene was also overexpressed (p < 0.05) in relation to the non-
infected cells but at a lower level than JUN gene.

Genes Involved in Apoptosis
The transcriptional level of BAX, TP53, and CASP3 apoptosis genes
increased after infection with all Aeromonas species (p < 0.05), with
the exception of A. veronii, which showed a very low expression
(Figure 4). The expression of BAX gene showed no significant
differences in relation to the non-infected cells after A. dhakensis, A.
piscicola, and A. jandaei infections (Figure 4). The BAX, TP53, and
CASP3 apoptosis genes showed a higher expression (p < 0.05) after
infection with the species A. dhakensis, A. caviae, and A. media in
comparison with the other species (Figure 4).
TABLE 3 | Distribution of virulence factors in Aeromonas strains.

Species ascF ascV aerA hlyA flaA act ast alt aexT aexU stx1

Aeromonas dhakensis 2 (50) 2 (50) 4 (100) 2 (50) 2 (50) 2 (50) 3 (75) 4 (100) 1 (25) 1 (25) 0 (0)
Aeromonas caviae 2 (50) 1 (25) 1 (25) 2 (50) 3 (75) 0 (0) 2 (50) 3 (75) 1 (25) 1 (25) 0 (0)
Aeromonas veronii 3 (75) 3 (75) 3 (75) 3 (75) 2 (50) 3 (75) 1 (25) 3 (75) 2 (50) 2 (50) 0 (0)
Aeromonas media 2 (50) 1 (25) 0 (0) 1 (25) 2 (50) 0 (0) 1 (25) 2 (50) 0 (0) 0 (0) 0 (0)
Aeromonas jandaei 0 (0) 1 (25) 2 (50) 0 (0) 0 (0) 1 (25) 0 (0) 1 (25) 0 (0) 0 (0) 0 (0)
Aeromonas piscicola 1 (25) 2 (50) 1 (25) 1 (25) 2 (50) 3 (75) 3 (75) 3 (75) 1 (25) 1 (25) 0 (0)
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Genes Related to the Inflammasome and Pyroptosis
NLRP3 and IL1-b genes, which are related to pyroptosis, i.e., cell-
death mediated by the formation of the inflammasome, were
upregulated in THP-1 cells in response to A. dhakensis, A. caviae,
A. media, and A. veronii infections (p < 0.05), while the gene
expression was very low after infection with A. piscicola and A.
jandaei and showed no significant differences in relation with the
expression in the non-infected cells (Figure 4). The upregulation of
NLRP3 and IL-1bgenes showedan eightfold increase (p<0.05)when
THP-1 cells were infected with A. veronii strains. No significant
differences in the level of the IL-1b gene expression were observed
when comparing the infection with A. dhakensis, A. caviae, and A.
media. However, significant differences in the overexpression of the
NLRP3 genewere detected (p < 0.05) for the three species (Figure 4).

Virulence-Associated Gene Expression
Gene expression of act and aerA gene is shown in Figure 5. The
results showed a higher expression of both genes inA. veronii (1.01
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and 0.98), followed byA. dhakensis (0.95 and 0.96), and significant
differences with the other species after 3 h of monocyte infection (p
< 0.05). The less transcriptional level of act gene was in A. jandaei
(0.64) and of aerA gene in A. piscicola (0.69).

DISCUSSION

The TLRs are a class of PRR proteins that play a key role in the cell
innate immune response to infection. In this study, the TLR4 gene
expression inTHP-1 cells in response to the infections produced by
differentAeromonas strains ofA.media,A. piscicola, andA. jandaei
was shown to be upregulated, but the expression was not
significantly higher than in the non-infected cells. The TLR4 is a
transmembrane receptor that recognizes a particular type of
molecules from many pathogens, in the case of Aeromonas, the
LPS, and induces the inflammatory response, producing pro-
inflammatory cytokines (17, 27, 53). Previous studies with other
microorganisms, including SARS-CoV-2, showed that
FIGURE 2 | Detected THP-1 cell damage induced by the six different Aeromonas spp. at multiplicity of infection (MOI) 20 and at different exposure times in relation
to the non-infected cells, measured by the release of lactate dehydrogenase (LDH) enzyme. Asterisks indicate statistical significance *p < 0.05.
FIGURE 1 | Intracellular survival expressed as the average of the strains of each Aeromonas species after 4 h of THP-1 monocytic cell line infection at multiplicities
of infection (MOI) 10 and 20. Asterisks indicate statistical significance *p < 0.05.
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FIGURE 4 | Gene expression profile of THP-1 cells in relation to the non-infected cells induced by the different studied Aeromonas spp. at multiplicity of infection
(MOI) 20 determined by RT-qPCR. Transcript levels of the genes were normalized to the expression of GAPDH gene. Expression fold change with respect to the
non-infected cells was calculated using the comparative DDCt method. Asterisks indicate statistical significance *p < 0.05.
FIGURE 3 | Observed THP-1 cell damage induced by clinical and environmental strains of Aeromonas spp. at different exposure times and multiplicities of infection
(MOIs). Asterisks indicate statistical significance *p < 0.05.
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overstimulation of the TLR4 could be detrimental leading to a
hyperinflammation process called cytokine storm (54). The
upregulation of the TLR4 gene was demonstrated after A.
hydrophila infection in catfish (27). Similarly, Srivastava et al. (55)
demonstrated the activation of the TLR4 signaling pathway in
zebrafish afterA. hydrophila infection. These results suggest thatA.
hydrophila activates the TLR4 to trigger an anti-inflammatory
response to facilitate their survival and pathogenesis. However,
otherTLRproteins suchasTLR5orTLR21hadbeendescribedafter
A.hydrophila infectionbyZhang et al. (27) usingfish as an infection
model. For this reason, it is also possible that other TLRs, not
evaluated in the present study, could be more related to the
activation of the immune response after the Aeromonas infection
with the species tested in our work. Another explanation could be
related to the activation of different TLRs depending on the infected
cell type studied as occurs in V. vulnificus between monocytes and
endothelial cells (32).

Our results showed that the expression of the pro-inflammatory
cytokine geneTNF-awas upregulated in the THP-1monocytic cell
line after infection with all the Aeromonas strains as also occurred
for the THP-1 afterV. vulnificus infection (32). Similar results were
found after A. hydrophila infections of macrophages, yellowtail
leukocytes, and grass carp intestinal cells (25, 56, 57). The TNF-a
cytokine is involved in the inflammation, and in the absence of this
protein, the host defense would be impaired (58). The
overexpression of the TNF-a gene in the THP-1 monocytic cell
line against infections produced by the six Aeromonas spp. tested
confirms that this cytokine participates in the immunological
response against Aeromonas infections. However, unlike results
from previous studies that demonstrated the upregulated
expression of the IL-8 cytokine gene, which induces chemotaxis
inneutrophils and stimulate the phagocytosis, inmacrophages or in
a fish model after infection with Aeromonas (59–61), no
upregulation of IL-8 gene in THP-1 monocytic cells could be
observed in our study. An explanation of this could be associated
with the varying or specific immune response of the tested infected
host cell (59, 62) as it was demonstrated to occur when different cell
lines were infected with V. vulnificus (32). In the case of the
chemokine genes CCL2, which recruits monocytes, memory T
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cells, and dendritic cells, and CCL20 chemotactic for lymphocytes
and neutrophils, our data showed an upregulation of their
expression in the THP-1 cells after Aeromonas infection.
Chemokines are involved in the chemotaxis of the cells of the
immune system such as monocytes/macrophages (CCL2, CCL3,
CCL5, CCL7, CCL8, CCL13, CCL17, and CCL22), neutrophils
(CXC chemokines), eosinophils (CCL11, CCL24, CCL26, CCL5,
CCL7, CCL13, and CCL3), and T cells (CCL2, CCL1, CCL22, and
CCL17), among others, participating therefore in their recruitment
and the inflammation intracellular signaling control mechanisms
(63). In fact, a previous study demonstrated a higher transcriptional
level of the chemokine genes (CCL2 and CCL20) after infection of
THP-1 cells with V. vulnificus, confirming that monocytes played
an equally important role as other immune-related cells to control
the infection process (32, 35). The overexpression of CCL2 and
CCL20 genes in the THP-1 monocytic cells after infection with all
Aeromonas spp. suggests thatmonocytes play a role in inducing the
recruitment of other immune-related cells.

In addition, after Aeromonas infection, the THP-1 cells
showed an overexpression of RELA and JUN genes that encode
for crucial proteins, i.e., RELA and JUN, for NF-kB activation,
responsible for the expression of cytokines, which contribute to
an effective immune response (29, 64, 65). Previous studies in a
fish model of infection with A. hydrophila demonstrated the
expression of RELA gene and the NF-kB pathway that could
result in the production of several cytokines such as TNF-a, IL-
1b, IL-12, IL-8, IL-6, and IFN (27, 60). In addition, the data
obtained by Hayes et al. (28) suggested that JUN could be
involved in the different mechanisms of virulence caused by
Aeromonas spp. in epithelial colorectal adenocarcinoma (Caco-
2) cells. Our results suggested that the overexpression of the
genes that encode the transcriptional factors RELA and JUN
increased the immune response against these six Aeromonas
spp., inducing the production of cytokines and chemokines.

NLRP3 and IL-1b genes related to the pyroptosis cell death
mediated by the inflammasome and with an important role that
triggers the immune response were clearly upregulated after A.
veronii infection. The results of McCoy et al. (36) demonstrated
that A. hydrophila induces an inflammatory response via NLRP3
A B

FIGURE 5 | Fold change of the act gene expression profile of six Aeromonas strains (one strain for each species) (A) and the aerA gene with the exception of
A. jandaei (B) after 3 h of THP-1 infection, analyzed by RT-qPCR and normalized to the reference gene 16S rRNA. Asterisks indicate a significant difference (*p > 0.05).
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inflammasome, triggers the activation of caspase-1 (CASP1), and
releases IL-1b, producing pyroptosis. Additionally, another study
suggested that NLRP3 and NLRC4 inflammasomes are involved
in host defense against A. veronii infection in mice, triggering the
activation of CASP1 with the consequent release of IL-1b and
pyroptosis, through the action of the aerolysin and the Type 3
Secretion System (T3SS) (37). However, the expression of NLRP3
and IL-1b genes after A. jandaei and A. piscicola infection of the
THP-1 cells was very low and no different from the expression of
the THP-1 cells without infection. An explanation for this could
be the selection of a different pathway of cell death by these two
species because the gene expression analysis showed an
upregulation of the genes related to apoptosis (BAX, TP53, and
CASP3). However, there was a very low expression of these genes
after A. veronii infection. For example, in the early stage of
infection, Shigella prevents caspase-4-dependent pyroptotic cell
death by delivering the T3SS effector OspC3 (48). However, this
affirmation could be related to the presence of virulence factors
in each strain, such as T3SS, being therefore strain-dependent.
Our results showed a similar expression of BAX, TP53, and
CASP3 genes after infection with all A. veronii strains (Figures
S1-S4). However, in future studies, it would be interesting to
analyze the genome of these strains. In the case of infections with
A. dhakensis, A. caviae, and A. media, the THP-1 cells
overexpressed the BAX, TP53, and CASP3 genes related to the
apoptosis and also those related to pyroptosis. Further studies
with a higher number of strains using additional inflammasome
genes, like PYCARD, IL-16, or IL-18, are necessary to confirm the
hypothesis related to the different pathways of cell death.

The expression of immune-related genes in the present study
showed that the selected species caused a different immune
response, characterized by a species-specific activation pattern.
Independently of the immune-related gene studied in this work,
generally, the expression was higher in the most prevalent
clinical species A. dhakensis, A. caviae, and A. veronii (5). An
explanation of this could be associated with the cytokine storm,
described as a systemic inflammatory response syndrome that
increases the severity of the infections (66–68), and in this case,
these species could induce this mechanism and the consequence
could be their higher virulence and therefore prevalence in
clinical cases. This is the first time that a hypothesis is
provided to explain the different frequencies of occurrence of
the Aeromonas species associated with clinical cases.

This study showed that all strains of Aeromonas induce the
THP-1 cell damage, independently of the species (data not shown),
bymeasuring the LDH in the supernatant. Epple et al. (69) used this
technique to quantify the cell damage in epithelial colon cells,
demonstrating the pathogenicity ofA. hydrophila.The LDH release
can be induced by lysing the cells by apoptosis or pyroptosis. Our
results demonstrated that this cell damage could be related to both
pathways, dependingon the species, as previous studies suspect (36,
37). In addition, the most prevalent clinical species were shown to
produce higher cell damage than the less prevalent, and this result
agrees with their higher intracellular survival. Also, clinical strains
of Aeromonas spp. produced higher cell damage than
environmental strains. In the cytokine storm physiological
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reaction in humans, the innate immune system causes an
uncontrolled and excessive release of pro-inflammatory cytokines
(67). Taking into account the expression results, it could be
indicated that a cytokine storm that induces a strong immune
responsewould causemore cell damage, aswell as an increase in the
intracellular survival of the most prevalent clinical species A.
dhakensis, A. caviae, and A. veronii in the THP-1 host cells.
However, the presence/absence, as well as the expression levels of
the virulence factors, is not associated with differences between
species, since although the most prevalent species in the clinic such
as A. veronii or A. dhakensis showed a large number of these, A.
piscicola also showed inour study a large amountof virulence genes.
In addition, no differences were observed between the species at the
expression level of the aerA and act genes. These results coincide
with those previously described in which no correlation was found
between the presence/expression of virulence factors inAeromonas
and infection in humans (47, 70).

This is the first study that evaluates the immune response after
Aeromonas infection using the human monocytic cell THP-1.
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