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A B S T R A C T   

Familial Adenomatous Polyposis (FAP) is an autosomal dominant disorder caused by mutation of the APC gene 
presenting with numerous colorectal adenomatous polyps and a near 100% risk of colon cancer. Preliminary 
research findings from our group indicate that FAP patients experience significant deficits across many cognitive 
domains. In the current study, fMRI brain metrics in a FAP population and matched controls were used to further 
the mechanistic understanding of reported cognitive deficits. This research identified and characterized any 
possible differences in resting brain networks and associations between neural network changes and cognition 
from 34 participants (18 FAP patients, 16 healthy controls). Functional connectivity analysis was performed 
using FSL with independent component analysis (ICA) to identify functional networks. Significant differences 
between cases and controls were observed in 8 well-established resting state networks. With the addition of an 
aggregate cognitive measure as a covariate, these differences were virtually non-existent, indicating a strong 
correlation between cognition and brain activity at the network level. The data indicate robust and pervasive 
effects on functional neural network activity among FAP patients and these effects are likely involved in 
cognitive deficits associated with this disease.   

1. Introduction 

Familial Adenomatous Polyposis (FAP) is an autosomal dominant 
disorder caused by germline mutations in the APC (adenomatous pol-
yposis coli) gene. This disease presents at young age with multiple 
adenomatous polyps in the colorectum and leads to early-onset cancer. If 
left untreated, these patient develop colorectal on average by the fourth 
decade of life (Fearnhead et al., 2001). The prevalence of the disease is 
estimated to be 1 in 8000 persons (Bisgaard et al., 1994). 

Based on anecdotal clinical observations of behavioral and cognitive 
difficulties, researchers have recently become interested in examining 
cognitive function in FAP patients. A 2010 study by researchers at the 
Cleveland Clinic reported that though FAP patients have IQs parallel 
with the general population, hearing/language-dependent verbal scores 

were significantly lower than those without the mutation (O’Malley 
et al., 2010). Preliminary data in a small sample, sibling-paired pilot 
study suggested that siblings who are FAP positive are more likely to 
suffer from behavioral and emotional problems than their healthy sib-
lings (Azofra et al., 2016), and a prior study reported a high incidence of 
formal psychiatric diagnoses (especially anxiety diagnoses) in FAP ad-
olescents (Gjone et al., 2011). The most recent investigation of neuro-
cognitive function of FAP patients identified and characterized robust 
deficits in several cognitive measures (particularly long term retrieval 
and cognitive fluency), suggesting that APC protein plays a critical role 
in cognition (Cruz-Correa et al., 2020). 

The pilot study from 2016 identified no significant differences in 
brain morphology comparing healthy siblings to FAP sibling counter-
parts, and this was the first time an FAP population had been studied for 
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neuroanatomical differences using magnetic resonance imaging (MRI) 
(Azofra et al., 2016). Given lack of understanding of the neurological 
and neurocognitive effects of this disease, the objective of the current 
study was to develop a more robust understanding of how FAP affects 
brain function. The present study employed resting state functional MRI 
(fMRI) to investigate potential neural substrates for cognitive deficits in 
a homogenous Hispanic population. To our knowledge, this is the first 
study of FAP patients using resting-state fMRI, which is ideally suited to 
the study of neurocognitive differences and related mechanisms (Hawes 
et al., 2019; LaClair et al., 2019; Li and King, 2019; Picó-Pérez et al., 
2019; Sripada et al., 2019). 

2. Methods 

2.1. MRI data acquisition 

Magnetic resonance images were acquired using a GE Discovery 
MR750 3T Scanner (General Electric Healthcare, Chicago, Illinois). An 
axial resting-state functional magnetic resonance imaging scan was 
performed on 34 individuals, which included 18 with FAP and 16 
healthy controls (HC). The group consisted of 16 males and 18 females, 
(mean age of controls: 30.75; cases: 31.44 years). Axial fMRI scan time 
was approximately 6:15 (mm/ss). The scanner was equipped with a 
standard 8-channel head coil. Scan parameters: Frequency FOV (22.4), 
Slice thickness (3.5), Flip angle (90), Pixel size (3.5 × 3.5), Pulse 
(Gradient Echo EPI), Sequential Slice Order, Acquisition TR (2500 ms). 

2.2. Participants 

Inclusion criteria for cases included genetically confirmed FAP 
(based on a mutation on the APC gene performed by commercial labo-
ratory testing), age ≥ 10 years, able to assent (children) and consent 
(adults) to participate in this study, and able to complete all neuro-
cognitive testing. Inclusion criteria for controls included no known 
family history of FAP, negative clinical diagnosis of FAP based on co-
lonoscopy (for adults), and willingness to undergo neurocognitive 
testing. Participants were all Spanish-speaking individuals from Puerto 
Rico. As education and age are correlated with IQ, cases were matched 
to non-FAP control individuals with regards to age (± three years), 
gender, and education (less than high school, at least high school, 
bachelors-degree or post-graduate education). Exclusion criteria for 

both cases and controls included previous diagnosis of any major psy-
chiatric condition given the potential impact of these conditions on 
neurocognitive functioning, visual or hearing impairments, and inability 
to sign/assent/consent study participation or complete the neuro-
cognitive tests. The Patient Health Questionnaire (PHQ9) and General 
Anxiety Disorder 7 (GAD-7) were used to screen subjects for depression 
and anxiety, respectively, and there were no group differences in 
depression or anxiety symptomology. 

Participants signed informed consent (or assent for children) prior to 
participation in the study and were evaluated at the Puerto Rico Clinical 
and Translational Research Consortium at the University of Puerto Rico 
(UPR) Medical Sciences Campus. The research protocol was approved by 
the Institutional Review Board of the UPR Medical Sciences Campus. 

2.3. Independent component analysis (ICA) 

Independent component analysis is a tool often used to separate a 
specific signal or “blind signal separation” from a host of signals . In this 
study, ICA was employed to parse out the specific signals generated by 
fMRI and identify potential noise artifacts. Based on established prac-
tices in previous studies using the FMRIB software library (FSL) and ICA, 
a total number of 30 ICs were extracted to avoid overfitting and 
underfitting of the dataset . Group-level ICA was performed using well- 
defined resting state networks (RSNs) (Smith et al., 2009) (Fig. 1). 

2.4. Data preprocessing 

Raw fMRI images were processed using FSL (Fig. 2). Slice timing 
correction was implemented in a bottom/up order. Within FSL, ICA was 
used to visualize significant components. Motion was corrected for by 
omitting any components that displayed rapid changes in both time 
series and power spectra after an initial pass using FSL’s MELODIC ICA 
tool with a subsequent second correction being done manually, 
removing any components that showed noise based on the recommen-
dations of Griffanti et al. (2016). Images were then concatenated and 
dual regressed. FSL’s “randomize” function was implemented with a 
threshold of z > 2.3 (p < 0.05) and 10,000 permutations were run to 
ensure significance held at the 0.05 level (n = 10,000, 
0.0500 ± 0.0044). A matrix was designed within the tool to display any 
differences in rsFC when comparing control patients to cases (Con-
trol > Case, Case < Control). The networks presented in this paper were 

Fig. 1. fMRI analysis workflow using Independent Component Analysis.  
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Fig. 2. Network connectivity maps, displaying clusters resembling 8 established brain networks, of significant group differences between FAP and control subjects 
projected onto MNI-152 standard space (thresholded by statistical z scores > 2.3, p < 0.05, Smith et al., 2019, left). Upon introduction of the omnibus cognitive 
covariate into the general linear model, differences in network cluster activation were no longer present (right). 
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chosen based on commonly seen resting state networks (RSNs) in pre-
vious studies that detailed network differences in populations with 
cognitive impairments. 

2.5. Cognitive measures 

Based on the cognitive assessments employed in the proof-of-concept 
paper (Cruz-Correa et al., 2020), an omnibus cognitive measure was 
created by averaging the nine cognitive domains from the Batería III 
Woodcock Mũnez. These measures consisted of: Cognitive Efficiency, 
Working Memory, Long-Term Retrieval, and Executive Function, Verbal 
Ability, Processing Speed, Phonemic Awareness, Cognitive Fluency, and 
Thinking Ability. This omnibus score was then averaged between groups 
and introduced as a covariate into the GLM matrix of the fMRI data. The 
FAP group had an average cognitive score of 78.50 (SD 12.04, N = 18) 
and the mean for the healthy controls was 96 (SD 8.58, N = 16, Table 1). 
A single new regressor for cognition was added to the general linear 
model (GLM). The cognitive score was mean centered in the model by 
subtracting the overall mean cognitive score from each individual 
cognitive score. This was done across all subjects and not within group 
to adjust for cognition. This results in the removal of the overall mean so 
that the connectivity differences are adjusted for any cognitive differ-
ences between the groups. 

3. Results 

3.1. Resting state 

Differences in resting state data were seen in approximately 8 well- 
established networks identified in previous works (Smith et al., 2009). 
The Left Frontoparietal Network (LFPN), Visual Medial Network, 
Default Mode Network (DMN), Task-Positive Network (TPN), Salience 
Network, Lateral Visual Network, Executive Control Network (ECN), 
and Auditory Network were all noted as the most identifiable networks 
where significant differences were present (Fig. 2, left). rsfMRI data was 
coregistered to the standard MNI152 template for visualization (Mon-
treal Neurological Institute) (Fonov et al., 2011). Additionally, a sec-
ondary analysis of the FAP group revealed no significant differences 
when accounting for genotype-phenotype severity using “attenuated” 
and “classic” FAP as covariate groupings (Cruz-Correa and Giardiello, 
2003; Cruz-Correa et al., 2020). 

3.2. Cognition as a covariate 

Group differences between all nine of the cognitive variables were 
statistically significant both independently and when combined to form 
the aggregate score used in the rsfMRI analysis (p < 0.05). When 
adjusting for cognition as a covariate to the rsfMRI data, significant 
differences were virtually eliminated, with only indications of minor 
differences throughout the components (Fig. 2, right). This suggests a 
high correlation between cognitive functioning and rsfMRI findings. 

4. Discussion 

The present study represents the first report of significant differences 

in resting state functional connectivity in FAP patients, with robust al-
terations in 8 brain networks which mediate cognition and sensory 
perception, compared to healthy controls. These neural network alter-
ations were strongly linked to previously reported cognitive deficiency 
in FAP patients (Cruz-Correa et al., 2020). Observed differences in 
neural network cluster activation between FAP cases and healthy con-
trols were correlated to cognition. Although this study cannot determine 
causality, these results indicate a strong association between cognition 
and brain-wide network activation. In combination with these cognitive 
deficits, the present data suggest that dysfunction in the APC protein 
affects functional neural connectivity in a broad range of cognitive and, 
perhaps, sensory brain networks and regions. Potential implications of 
the network specific findings and how they relate to previous literature 
in APC relevant topics, including depression, schizophrenia, autism, 
sensory perception and general cognition, are pertinent here. 

The LFPN has been implicated as a network potentially involved in 
aphasias and in certain stroke patient’s decrease in language function 
(Zhu et al., 2014). The LFPN component identified in our analysis was 
primarily comprised of activation in the superior temporal gyrus, middle 
temporal gyrus, and precentral gyrus. Cognitive processing speed has 
been specifically linked to lateralization in FP networks (Chechlacz 
et al., 2015). From an evolutionary and developmental perspective, 
specific and minor neuroanatomical changes in frontoparietal networks 
have substantial effects on cognition (Vendetti and Bunge, 2014), and 
developmental alterations of frontoparietal connectivity predict symp-
tom load in high functional autism patients (Lin et al., 2019). It will be 
valuable to follow cognitive aging in FAP patients, as cognitive pro-
cessing networks, including frontoparietal, are particularly susceptible 
to age related decline (Nashiro et al., 2017). 

The Medial Visual Network (MVN) is essential for performing both 
simple and higher order visual tasks (Heine et al., 2012). This network 
presents as activity localized in a bi-temporal manner in the most 
anterior portion of the brain, centralized in the striatum (Castellazzi 
et al., 2014; Coppen et al., 2018). Decreased connectivity in the MVN in 
schizophrenia and bipolar patients are associated with cognitive deficits 
(Jimenez et al., 2019). Furthermore, congenital hypertrophy of the 
retinal pigment epithelium, which could affect connectivity patterns in 
visual networks, has been observed in FAP (Laghmari and Lezrek, 2014; 
Traboulsi, 2005), although this was not examined in the present study. 
Decreased connectivity with the MVN was reported in temporal lobe 
epilepsy patients with cognitive deficits (Yang et al., 2018). It is postu-
lated that connectivity alterations in the MVN adversely affect the 
processing of visual stimuli in FAP patients, resulting in decreases in 
processing speed and cognitive efficiency. 

The Default Mode Network (DMN), used as a standard network in 
most neuroimaging studies, with its activity observed across a wide 
variety of tasks and pathologies (Haatveit et al., 2016), was also iden-
tified in our ICA analysis of FAP patients. This network is associated with 
autobiographical thought, including moments of self-reflection, and 
often deactivates when subjects are actively completing functional 
paradigms (Smith et al., 2009). Gray matter volume in regions typically 
showing activation resembling the DMN is predictive of the progression 
of mild cognitive impairment (MCI) to Alzheimer’s disease (AD)(Eyler 
et al., 2019; Petrella et al., 2011; Wang et al., 2013). Late life depression 
is also associated with alterations in DMN connectivity (Alexopoulos 
et al., 2012), and the beneficial effects of mindfulness based cognitive 
therapy on depression symptoms (included cognitive deficits) are 
correlated with changes in DMN connectivity (Cernasov et al., 2019). In 
schizophrenia, deficits in typical activation of the prefrontal cortex 
(PFC) are related to specific components of the DMN (Hu et al., 2017), 
suggesting that future internetwork and whole brain connectivity ana-
lyses in FAP would be valuable (Pan et al., 2018; Varangis et al., 2019). 

The Task Positive Network (TPN) is generally comprised of two 
bilateral crescent-like clusters spanning the dorsolateral prefrontal cor-
tex and sensorimotor areas around the temporoparietal junction (Cor-
betta et al., 2002; Fox et al., 2005; Grady et al., 2010). This network is 

Table 1 
Demographic characterization and cognitive data of study population.   

FAP (n = 18) Controls 
(n = 16) 

Male 8 8 
Female 10 8 
Age (years) 31.44 (SD 14.6 ) 30.75 (SD 

15.22 ) 
Cognitive Score (Batería III Woodcock 

Mũnez) 
78.50 (SD 
12.04 ) 

96 (SD 8.58 )  

R.J. Cali et al.                                                                                                                                                                                                                                   



IBRO Neuroscience Reports 11 (2021) 137–143

141

most active during attention demanding tasks and exhibits correlated 
fluctuations in activity with task accuracy. The TPN is commonly paired 
with the DMN as it is generally anticorrelated with the DMN activation, 
however, the DMN has similarly been shown to be active in specific tasks 
as well (Haatveit et al., 2016). Changes in TPN interaction with the DMN 
have been implicated in adverse cognitive patterns in depression, such 
as rumination (Hamilton et al., 2011). In a study of the performance of 
young and old participants in visual cognitive tasks, changes linked to 
decreased neurocognitive efficiency were observed in both the DMN and 
TPN (Grady et al., 2010). The TPN is also altered in patients with mild 
cognitive impairments (MCI) supporting the hypothesis that increased 
TPN activity may be a compensatory response to neurodegeneration 
(Melrose et al., 2018). Changes in the TPN and/or how it interacts with 
the DMN may mediate attention related aspects of cognitive deficits in 
FAP patients. 

The major regions of the salience network (SN) include the amyg-
dala, substantia nigra, thalamus, and hypothalamus (Seeley et al., 
2007). This network plays a role in processing of rewards, cognitive 
control, and behavior (Ham et al., 2013). The SN is activated in the 
presence of particularly salient stimuli, and this network may be 
correlated with feelings of anxiety when assessed pre-MRI scan (Seeley 
et al., 2007). Typical internetwork connectivity patterns with the SN are 
disrupted in MCI, and the degree of disruption is associated with the 
degree of overall cognitive deficit (Chand et al., 2017). Similar to studies 
of the TPN, this role of SN in cognition was not limited to MCI, and the 
SN may be another region with a key role in age related cognitive 
changes (La Corte et al., 2016). Hyperconnectivity within the SN may be 
a defining feature of autism spectrum disorders (Uddin et al., 2013), and 
atypical connectivity between the DMN and SN suggest similar neural 
mechanisms in ASD and schizophrenia (Chen et al., 2017). While 
additional longitudinal data are needed, FAP mediated changes in the 
SN may be the result of abnormal neurodevelopmental and/or prema-
ture age-related alterations. 

The lateral visual network (LVN) has been attributed to helping to 
facilitate sensorimotor processes (Castellazzi et al., 2014). It commonly 
presents as activation in the occipito-temporal and parietal regions and 
is associated with the observation of highly appealing visual stimuli 
(Belfi et al., 2019). A study of late life depression, which often involves 
cognitive deficits, reported significant alterations in visual networks 
(Eyre et al., 2016). In addition, both major depression and schizophrenia 
patients exhibit differences in visual network connectivity compared to 
healthy controls (Wu et al., 2017). Hence, FAP related changes in both 
the lateral and medial visual networks may adversely affect the pro-
cessing and response to visual stimuli. 

The Executive Control Network (ECN) is comprised of fronto- 
localized activation, with regions including the anterior cingulate and 
paracingulate (Zhao et al., 2019). This network is important in facili-
tating executive function. One study examining cirrhotic patients (liver 
disease) showed that patients performed significantly worse than con-
trols on a Stroop Task and performance was significantly correlated with 
disrupted ECN connectivity (Yang et al., 2018). Similarly, this network 
has recently been implicated in studies of major depressive disorder, 
with increased activation to specific network-related areas (Zhao et al., 
2019). A lack of segregation between ECN and DMN activation was 
correlated with decreased processing speed in a longitudinal study of 
healthy older adults (Ng et al., 2016). As individuals age, the functional 
specialization of these two networks is attenuated. Decreased network 
segregation is implicated in major depression, where connectivity with 
the ECN and between the ECN and DMN is disrupted compared to 
non-depressed controls, potentially representing compensatory cogni-
tive mechanisms (Albert et al., 2019). Although none of the present 
study subjects were diagnosed with depression or anxiety and levels 
were similar across the groups, depression and/or anxiety symptomol-
ogy should be carefully considered in subsequent investigations. Future 
studies of the mechanisms mediating cognitive deficits in FAP patients 
should focus on the role of the ECN, its functional connections with the 

DMN, and potential moderating factors, such as depression and anxiety. 
The auditory network presents as activation in the insula, auditory 

cortices, cingulate, and occipital cortices (Maudoux et al., 2012), and is 
primarily responsible for processing and parsing auditory stimuli. This 
network has been investigated for its potential involvement in process-
ing fearful stimuli, with emotional “hubs” being associated with its ac-
tivity (Koelsch et al., 2018). Auditory deficits have been reported in FAP 
patients in the absence of significant differences in IQ (O’Malley et al., 
2010), although another investigation did not observe significant im-
pairments (Jones et al., 2010). The APC protein is essential for cellular 
processes related to cochlear sensitivity, and since these are common 
cellular processes, it is suggested that APC mediates synaptic maturation 
in wide variety of tissues (Hickman et al., 2015). It is possible that 
auditory deficits in FAP patients could be mechanistically mediated by 
effects at the ear and/or auditory processing nuclei. 

5. Limitations 

Main limitations of this study include the use of an aggregate 
cognitive score due to small sample size, the presence of only one im-
aging time point, and the lack of structural and task-based functional 
data. While the use of an aggregate cognitive score precludes associa-
tions between specific types of cognition and network connectivity 
changes, this was justified based on the consistency across cognitive 
scores, the small sample size, and the focus on general conclusions 
strongly supported by the imaging data. In addition, the authors did not 
feel justified in assigning specific types of cognition to individual resting 
state networks. Future studies would benefit from additional longitu-
dinal data points and the inclusion of structural MRI data to investigate 
the etiology of these cognitive deficits in FAP patients in early through 
late life. Although structural changes are likely given the role of APC in 
neurodevelopment and structural-functional relationships in cognition, 
the current manuscript can only speculate on these changes due to the 
focus on functional data. Alternatively, the alterations in connectivity 
with FAP could be mediated by changes in concentrations of neuro-
chemicals and/or their receptors. Diffusion tensor and magnetic reso-
nance spectroscopy MRI in combination with specific cognitive tasks 
aimed at assessing learning and memory, executive function, and 
cognitive interference, could be used to comprehensively evaluate these 
mechanistic hypotheses. 

6. Conclusion 

Resting state functional connectivity in FAP patients is substantially 
disrupted in a broad range of networks critical to cognition and visual 
and auditory stimuli processing. These alterations in connectivity are 
strongly associated with overall cognitive deficits in these individuals. 
Taken together, the APC gene appears to play a critical role in neuro-
cognitive function and sensory processing and could negatively affect 
development through changes in neural connectivity. Future studies 
should characterize changes in neurocognition and auditory and visual 
sensation and processing throughout the lifespan to characterize the 
progression of related deficits in FAP patients. Investigation of the role 
of the APC protein in other neurodegenerative disorders, such as autism 
and schizophrenia, is warranted. 
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