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Cancer systems biology: a network modeling perspective
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Cancer is now appreciated as not only a highly heterogenous
pathology with respect to cell type and tissue origin but also as
a disease involving dysregulation of multiple pathways governing
fundamental cell processes such as death, proliferation, differen-
tiation and migration. Thus, the activities of molecular networks
that execute metabolic or cytoskeletal processes, or regulate these
by signal transduction, are altered in a complex manner by di-
verse genetic mutations in concert with the environmental con-
text. A major challenge therefore is how to develop actionable
understanding of this multivariate dysregulation, with respect
both to how it arises from diverse genetic mutations and to how
it may be ameliorated by prospective treatments. While high-
throughput experimental platform technologies ranging from ge-
nomic sequencing to transcriptomic, proteomic and metabolomic
profiling are now commonly used for molecular-level character-
ization of tumor cells and surrounding tissues, the resulting data
sets defy straightforward intuitive interpretation with respect to
potential therapeutic targets or the effects of perturbation. In this
review article, we will discuss how significant advances can be
obtained by applying computational modeling approaches to elu-
cidate the pathways most critically involved in tumor formation
and progression, impact of particular mutations on pathway op-
eration, consequences of altered cell behavior in tissue environ-
ments and effects of molecular therapeutics.

Introduction

The advent of genomic sequencing and copy number evaluation has
revealed that aspirations for understanding cancer in terms of mutation
of some limited number of oncogenes and tumor suppressor genes are
unlikely to be fulfilled; instead, even tumors of a particular tissue type
bear highly heterogenous sets of defects in dozens of different genes
(1–3). Similarly, RNA interference studies show that a large number
and wide spectrum of gene products contribute to tumor cell phenotype
(4,5). The processes affected closely correspond to defined ‘hallmarks’
of cancer, such as resistance to cell death, extension of replicative
potential, enhancement of invasiveness, and escape from immune sur-
veillance, among others (6,7). Thus, the relationship between genomic
information per se and malignant disease is more elusive than origi-
nally hoped, due to the broadly multivariate nature of the molecular-
level changes involved in any given cancer (8). Moreover, even when
a specific gene is identified to make a substantial contribution to pa-
thology, that determination does not easily lead to an effective avenue
for treatment because of the complex consequences propagated down
transcriptional, translational and posttranslational circuits (7,9).

Although the genomic mutations associated with any tumor are
many and diverse, a promising organizing principle is emerging: that
a recognizable cohort of key pathways governing cell phenotypic
behaviors can be identified as pathologically altered by the various
underlying genetic defects (10,11). This notion is encouraging for
elucidating therapeutic targets because a pathway (or multiple
pathways) can be targeted through any of numerous comprised
components—whether or not they in fact suffer from genetic defect—
rather than being restricted solely to mutated oncogenes or tumor sup-
pressor genes and needing to find a unique approach for each gene
product (7). An example of this is the class of mammalian target of
rapamycin inhibitors (including temsirolimus and everolimus) that are
being found effective for treatment of renal cell carcinoma; the pre-
dominant genetic defect in these tumors is loss of Von-Hippel Lindau
tumor suppressor (thus reducing degradation of the hypoxia-inducible
transcription factors HIF1/2/3) rather than any mutation related to the
mammalian target of rapamycin gene itself (12).

A pathway-centric approach remains incomplete, however, because
of the intricate cross talk among cell regulatory pathways (13). In-
deed, a given molecular component can be identified to be associated
with or interact with multiple signaling, transcriptional regulation,
metabolic and/or cytoskeletal process pathways (14). Pathways thus
cannot properly be considered to operate in isolation of one another,
as an alteration of one pathway can lead directly (via protein–protein
interactions) or indirectly (via transcriptional/translational influences)
to changes in others. Accordingly, cancer—along with other complex
diseases such as arthritis and diabetes—is most productively con-
ceived of and strategized for treatment as a dysregulation of a multi-
pathway network (15,16). Moreover, these networks connect to com-
ponents beyond the tumor cells themselves, including other cells in
the environment along with the extracellular milieu (17,18). This
perspective yields at least two consequences. First, experimental char-
acterization of the pathological dysregulation will need to be multi-
variate and quantitative. For instance, biomarkers in the form of single
molecular components or qualitative component lists will probably be
inadequate even for categorization of treatment outcomes. Second,
predictive or mechanistic understanding of the pathology will almost
certainly elude intuition unaided by computational analysis. Hence,
a network perspective on cancer strongly motivates the application of
computational modeling approaches (19–21). Methodologies for
computational analysis can vary widely depending on the question
being posed and the experimental data at hand, ranging from highly
abstracted models using correlative regression to highly specified
models using differential equations, with network component inter-
action and logic modeling techniques intermediate to these. A number
of reviews have provided discussion of which of these methods are
more or less appropriate for employment for various kinds of studies,
outlining their respective strengths and weaknesses with respect to
different applications (22–25).

Herein, we will present selected examples of recent research
contributions that are helping to establish the field of cancer systems
biology. These studies demonstrate the unique advances in under-
standing and prediction that can be gained by integration of compu-
tational modeling with quantitative experimental data on molecular
and cellular networks. Our examples emphasize systems at the level
of dynamic protein operations, such as phosphorylation, because it is
this level that most effectively integrates the convolution of genomic
information and environmental context. As illustrated in Figure 1,
environmental context strongly influences network operations
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regulating transcription, translation and posttranslational processes,
so that restricting experimental measurement information to DNA
sequence, mRNA expression or even protein expression will miss
important aspects of the molecular components and interactions
governing cell and tissue behavior. We organize this presentation
into five main categories, denoting the kinds of problems being
addressed by the various studies: identifying dysregulated pathways,
elucidating consequences of mutations on network activities, integrat-
ing network operation into cell behavioral functions, integrating
cell behavior into tissue-level processes and predicting effects of
molecular interventions.

Identifying dysregulated pathways

Historically, dysregulated pathways have been identified in cancers
based on reductionist studies surrounding an identified mutation. The
shift to examining dysregulated networks requires new techniques to
identify pathways within the context of the intact cellular network. An
especially compelling avenue for identifying affected pathways is the
use of interactomes, which define the molecular interactions in a cell.
Although still at an early developmental stage for human cells and
tissues, interactomes include protein–protein and protein–DNA asso-
ciations (26,27) and provide a framework for analysis of empirical
data of various types, such as transcriptomic, phosphoproteomic and
phenotypic assessments. The biochemical resolution of interactome
information has been recently enhanced by directly incorporating
phosphoproteomic data to indicate not only physical interactions
but also kinase–substrate interactions (28). A further exciting break-
through toward an increasingly powerful network framework for iden-
tifying pathways involved in responses to environmental conditions or
in governing phenotypic behaviors is offered by a recent development
of a Steiner tree computational algorithm, able to integrate protein–
protein and protein–DNA interactomes (29). The initial application of
this new methodology has been in yeast, demonstrating success in
linking genetic data (e.g. knockouts and knockdowns) with gene ex-
pression data and in gleaning new insights concerning network activ-
ities characterizing the yeast pheromone response. These techniques
promise to improve our ability to discern the complex networks im-
pacted by oncogenic changes in human cells.

Utilizing an internally assembled interactome and a compendium of
.200 transcriptional microarray profiles for normal and tumor-related
B cells, Mani et al. (30) investigated the pathways dysregulated in

human B cells for three kinds of non-Hodgkin’s lymphomas (follic-
ular, Burkett’s and mantle cell). A mutual information algorithm was
applied to identify interactions exhibiting gain-of-correlation or loss-
of-correlation with respect to tumor phenotype relative to normal.
Dysregulated interactions were defined as those exhibiting mutual
information (essentially, correlation) in all samples except for a par-
ticular phenotype (loss-of-correlation) or lack of mutual information
in all samples except for a particular phenotype (gain-of-correlation).
A fundamentally interesting finding was that �80% of the roughly
65 000 network interactions appeared to be unaffected in any of the
tumor phenotypes. That is, the interactions demonstrated similar mu-
tual information whether in tumor or normal cellular backgrounds; the
authors noted that this implies a network ‘backbone’ that operates
consistently across various cellular backgrounds. Nonetheless, hun-
dreds of interactions were discerned to be differentially correlated
with each of the particular tumor phenotypes, cutting across multiple
diverse pathways. A further important insight obtained was that dys-
regulated pathway interactions could arise even without mutation of
genes explicitly corresponding to the pathway components involved.

Chang et al. (31) pursued an analogous study of the NCI-60 cancer
cell line set (32), analyzing a combination of transcriptional profile
data with human protein–protein interactome information but using
a different computational method called statistical factor analysis.
This method undertakes a linear regression of gene expression data
with respect to particular gene signature vectors, determining score
coefficients relating the strengths of contribution of corresponding
vectors to a given set of transcriptional profiles. A major focus of this
study was elucidation of how important different effector pathways
downstream of RAS are in generating the expression profiles ex-
hibited by certain cancer cell lines. Subsets of cell lines bearing stron-
ger contributions of the extracellular signal-regulated kinase (ERK)
effector pathway or the AKT effector pathway were identified and
validated, at least in aggregate, by their comparative sensitivities to
ERK pathway inhibitors versus AKT pathway inhibitors.

Models that include influence and/or logic aspects of network
component interactions can also be constructed, with the advantage
of understanding propagation of pathway activities following
introduction of stimulatory or inhibitor cues. One example applica-
tion of this kind of approach was recently contributed by Heiser
et al. (33). The authors utilized Pathway Logic formalism to eluci-
date how the ERK pathway is activated downstream of ErbB family
receptors in breast cancer cell lines. A network comprising 286
signaling nodes and 396 interaction rules was constructed via liter-
ature curation, and disparities in network topologies across different
cell lines were identified from cell line-associated mRNA and/or
protein expression data for 191 of these components. The expres-
sion levels were discretized into ‘present’ or ‘absent’ categories,
thus yielding altered interaction rules among cell lines depending
on which components were deemed in one category or the other.
Across the 30 breast lines examined, roughly 40 components were
found to be disparately expressed (with respect to present versus
absent calls), resulting in .50% of the interaction rules varying
concomitantly. Clustering the cell lines with respect to network
features generated classification associated with pathway interac-
tions, leading to identification of novel points such as the presence
of PAK1 in association with strong activation of ERK. Explicit
calculations on network information flows can be conducted using
dynamic Boolean logic or fuzzy logic algorithms (34–37). To date,
these algorithms have been mainly applied to hand-curated net-
works, but the prospect for being founded on formal interactome
databases is clear. Indeed, a new contribution shows how a Boolean
logic model appropriate for an actual cell type and particular set of
contexts can be derived from combination of empirical data with
a prior interactome database (38). Bayesian networks, which de-
scribe pathway interactions (whether direct or indirect) in terms of
probabilistic influences of certain components upon other compo-
nents, have been demonstrated useful for understanding operation
of cell signaling networks but not yet applied to cancer biology
problems (39,40).
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Fig. 1. Schematic illustration of molecular processes governing cell and
tissue functional behavior, depicting how genetic alterations convolute with
environmental context to yield ultimate pathos/physiological phenotypes.
Environmental context influences transcriptional, translational and
posttranslational processes and moreover can modulate genomic information
(directly via DNA mutation or indirectly via epigenetic modulation). Thus,
the molecular-level characterization containing the greatest amount of
information concerning phenotypic behavior resides in the realm
comprehending both genomic and environmental effects: dynamic protein
network operations.
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We note that one alternative approach to using interactome infor-
mation is the definition of gene modules based on Gene Ontology
categories, which has been successfully applied to discerning types of
pharmacological agents effective in killing tumor cells representative
of cohorts classified by these modules (9). Another option not reliant on
an interactome framework is direct application of mutual information-
based algorithms, such as algorithm for the reconstructions of accurate
cellular networks (41) to relate transcription factor activity to gene ex-
pression profiles. This methodology has been successfully demonstrated
in work that ascertained how NOTCH1 and c-MYC work together to
regulate growth of T-cell leukemia cells (42).

Elucidating consequences of mutations

Oncogenic mutations affect cell behavior by changing the cellular
network (13). While these effects include obvious changes to proteins
immediately downstream, systems biology studies are beginning to
reveal how apparently small changes in the network have broad-
reaching effects (43). Here, we will profile recent studies of three of
the most common mutated pathways in cancer—p53, the ErbB family
of receptors and RAS. While many reports have focused on the iden-
tification of biomarkers for tumor detection, our focus is on how the
mutation changes the network and how this information could be used
to identify new targets or treatment strategies.

p53

In response to DNA damage, a variety of pathways are activated in
the cell to arrest cell cycle progress, repair the damage or initiate
apoptosis in order to prevent generation of cells with mutations.
Accordingly, many tumors have alterations in their DNA damage
response pathways. A number of systems biology studies have fo-
cused on p53, the tumor suppressor mutated in at least half of all
cancers. In single cells, levels of p53 oscillate in response to stress,
which has been shown computationally to involve feedback circuits
in the DNA damage-signaling network. Batchelor et al. (44) used
a combination of dynamical systems modeling and quantitative sin-
gle-cell experiments to determine that the p53/MDM2-negative
feedback loop is critically involved in this phenomenon. Activation
of signaling kinases ATM and CHK2 activation downstream of DNA
damage drive p53 peaks, with WIP1-mediated feedback maintaining
coherence during ensuing cycles. In an ensuing contribution em-
ploying stochastic physicochemical modeling, p14ARF was identi-
fied as another key participant in the feedback (45). An important
further step was provided by Toettcher et al. (46) in connecting these
signals to effects on cell cycle control. By integrating the DNA
damage-signaling pathways with cell cycle regulatory pathways,
the authors were able to investigate the role of p53 in both initial
and long-term maintenance of cell cycle arrest. Initial arrest was
determined to be p53 independent; however, p53 was necessary to
maintain arrest, indicating its key role in preventing accumulation of
DNA damage and importance in tumor development. Moreover,
a novel prediction of pathological endo-reduplication behavior
enabled by defects in the p21 pathways was produced by the model
and validated by direct experimental test. Linking model predictions
to experimental tests is an important step to further the application of
systems biology to the study of oncogenic impact.

ErbB receptors

The ErbB family of receptor tyrosine kinases and components of the
downstream network are frequently mutated in cancer (47). The com-
plexity of the ErbB system, with four receptor isoforms and .12
ligands, makes it an ideal network to analyze by systems biology
methods (48). Not surprisingly, this system has been subject of nu-
merous studies applying modeling to quantitative experimental data,
with the most recent contributions incorporating multiple members of
the receptor family (49,50).

One common perturbation to the ErbB network found in breast,
lung and colon cancers is the overexpression of ErbB2 (HER2).
A mass-action model accounting for ErbB1–4 dimerization and sig-

naling to ERK and AKT determined that overexpression of ErbB2
shifts the cell to a higher percentage of ErbB1–2 heterodimers in place
of ErbB1 homodimers (51). This model suggests that since these
heterodimers do not undergo ligand-induced degradation, increase
of ErbB2 results in sustained signaling. Utilizing partial least squares
regression modeling applied to phosphoproteomic data from human
mammary epithelial cells expressing increasing levels of ErbB2,
Kumar et al. (52) identified nine phosphorylation events that serve
as a ‘network gauge’ to determine the impact of treatment prolifera-
tion or migration. The components of this gauge include some of the
usual suspects such as PI3K signals and endocytosis proteins, but it is
the quantitative integration of these signals, rather than any single
event, that enables prediction of cell behavior.

In addition to ErbB2 overexpression, mutations to ErbB1 [epider-
mal growth factor receptor (EGFR)] are frequently identified in
tumors. Phosphoproteomic analysis of cells expressing increasing
levels of the constitutively active EGFRvIII mutant demonstrated
that the active phosphorylation site of c-MET was highly responsive
to EGFRvIII level (53). This suggested that EGFRvIII cross-
activated c-MET; indeed, dual inhibition strategies against EGFR
and c-MET proved to be more effective in killing cells than single
treatments. Identifying cotreatment strategies such as these is one of
the promising applications of systems biology. Additionally, mod-
eling can help to explain clinical observations of why certain tumors
are more susceptible to treatment by targeted inhibitors. Deletion of
exon 19 and the point mutation L858R in EGFR are associated with
elevated phosphorylated AKT and sensitivity to the EGFR tyrosine
kinase inhibitor gefitinib. Using a mass-action model incorporating
receptor internalization and activation of ERK and AKT, slower
EGFR internalization was determined to be sufficient to explain
the signaling differences observed between wild-type EGFR and
these mutants (54). When receptor internalization was quantified,
mutant cell lines were indeed found to have slower rates. The model
suggests that delayed internalization leads to AKT addiction, which
is then inhibited by gefitinib treatment, providing an explanation for
the limited benefit for tumors with wild-type EGFR.

Oncogenic RAS

Downstream of various receptor tyrosine kinases, members of the
RAS family of GTPases are frequently mutated in human cancers.
RAS mutations in tumors are primarily point mutations in one isoform
and result in insensitivity to GTPase-activating proteins that increase
GTP hydrolysis. These mutations result in increased levels of active
RAS–GTP in cells, whereas additional non-mutant RAS isoforms are
subject to ligand-induced activation (55). The RAS pathway has been
modeled downstream of various receptors (50,51,56), and the RAS
activation–deactivation cycle has been analyzed quantitatively (55).
However, these contributions have not addressed the effects of RAS
mutation on downstream effectors, which are not as straightforward as
simply enhanced effector activities. Two recent systems biology stud-
ies have focused on this issue and have demonstrated that oncogenic
RAS impacts multiple targets in complex ways. In the first study, an
inducible H-RASG12V construct was activated and rapid induction of
two phosphatases, DUSP1 and DUSP6, was observed (57). To exam-
ine this behavior, multiple model structures were characterized to see
which model structure best explained the experimental data. The best-
fit model incorporated ultrasensitive activation of ERK in response to
RAS activation, ERK induction of DUSP6 and not DUSP1 and feed-
back from DUSP6 against phosphorylated ERK. Additionally, we
have recently reported the impact of mutations to two different iso-
forms of RAS, K-RAS and N-RAS, on the response of colon carci-
noma cell lines to tumor necrosis factor a (TNFa) (58). Using
a quantitative phosphoproteomic data set, we determined that
K-RAS-mutant cells have decreased activation of ERK due to
a depressed TNFa-induced release of autocrine transforming growth
factor-a and that N-RAS-mutant cells do not induce DUSP5 as ro-
bustly as either wild-type or K-RAS-mutant cells, resulting in sus-
tained activation of ERK. Studies such as these demonstrate how
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small perturbations impact the cell network by affecting positive and
negative feedback mechanisms.

Integrating network operations into cell behavior

The process of developing from a single cell with an oncogenic profile
to a metastatic cancer is exceedingly complex and multivariate. How-
ever, there are several key processes common to most cancers, in-
cluding excessive proliferation, resistance to apoptosis, angiogenesis
and metastasis (6). Systems biology modeling techniques promise to
improve our understanding of each of these processes and ultimately,
how they interact to drive tumor progression.

Excessive proliferation is perhaps the phenotype most associated
with cancer progression. The ErbB-signaling network plays an im-
portant role in dysregulated proliferation in many tumors and has been
extensively modeled (59). Recent models have highlighted the impor-
tant multivariate characteristics of the ErbB-signaling network in pro-
liferation as the ErbB signal transduction network interacts with
a variety of other signaling pathways. Modeling approaches have
proven useful in identifying dominant mechanisms of pathway cross
talk. For example, a mass-action kinetic model examining the cross
talk between the ErbB network and insulin signaling indicated a role
for GAB1 in the synergism between treatment with epidermal growth
factor and insulin (60). Additionally, identifying multi-pathway inter-
actions may provide insight into potential new therapeutic targets.
Sahin et al. (61) developed a Boolean model from the literature link-
ing ErbB1–3 to phosphorylated retinoblastoma protein (a surrogate
for cell cycle progression) in breast cancer resistant to ErbB2-targeted
inhibitors. Following refinement, the model was able to predict a va-
riety of new conditions that resulted from knocking down proteins in
the network. Importantly, simulations indicated that inhibiting ErbB
receptors would be insufficient to halt cell cycle progression in re-
sistant cells and suggested c-MYC as a potential alternative target.

In normal development, apoptosis provides a counterpart to pro-
liferation by removing damaged or unnecessary cells. To evade re-
striction of tumor growth, cancer cells have devised multiple
mechanisms to provide sustained pro-growth stimuli or to counteract
apoptosis. Apoptosis can be induced by stress and the mitochondrial
pathway (intrinsic) or through activation of death receptors (extrinsic)
(62). In the intrinsic pathways, stimuli such as DNA damage activate
the apoptotic machinery. To model this process, one approach has
been to develop mass-action models that decompose the intrinsic
apoptotic pathway into subsections of the molecular network for anal-
ysis (63). Using such models to examine the impact of DNA damage
on p53 phosphorylation suggested that transient DNA damage leads to
a level of phosphorylated p53 that will induce cell cycle arrest,
whereas sustained damage will induce apoptosis.

A novel mass-action model of tumor necrosis related apoptosis-
inducing ligand-induced (extrinsic) apoptosis and mitochondrial outer
membrane permeabilization in single cells has recently been em-
ployed to examine several mechanistic questions about the regulation
of cell death in the HeLa cancer model (64,65). Model parameters
were fit to experimental data from tumor necrosis related apoptosis-
inducing ligand dose-response curves and small interfering RNA/
overexpression perturbations to the network. A particularly striking
result of the model is the impact of compartmentalization—once the
steady changes in the cell network lead to mitochondrial compartment
opening, there is a drastic release of SMAC down the concentration
gradient and an all-or-nothing decision for apoptosis results (64).
Additional work demonstrated that XIAP- and proteasome-dependent
degradation of effector caspases is required to prevent caspase activity
before the cell has committed to apoptosis by mitochondrial outer
membrane permeabilization (65). This suggests that if this control
is overridden, caspases may be activated and cause damage to target
substrates, while the cell is in an ‘undead’ state. The developed model
was also used to address the causes of cell-to-cell variation in timing
of TRAIL-induced death (66). Using experimental measures of the
mean and variation of five key proteins in the model, simulation
results closely match the time-to-death variation observed. Combined

with other experimental observations, this suggests that cell-to-cell
variation is a result of changes in protein concentrations rather than
genetic or stochastic mechanisms.

It is important to remember that for a tumor to develop, it is the
balance between apoptosis and proliferation that matters. In models of
single colonic crypts composed of stem cells, differentiated cells and
transit cells, increased proliferation, decreased differentiation or de-
creased apoptosis all lead to a net increase in cell number (67). Al-
ternatively, it has been argued that resistance to apoptosis may
actually decrease the ability for a tumor to expand as it would reduce
the number of cell divisions before a tumor reached a critical size and
lower the probability of forming the mutant combinations necessary
for expansion from that stage (68). At the molecular level, recent
experimental studies have demonstrated several mechanisms by which
cells respond to both pro-death and pro-proliferative stimuli (69). Using
principal components analysis to examine HT-29 apoptosis in response
to TNFa, insulin or epidermal growth factor, a series of pro-survival and
pro-death autocrine loops were revealed as a result of treatment with
TNFa (70). These molecular balancing mechanisms help to explain
why cytotoxic ligands are unable to kill all cells, which will be essential
to consider when administering targeted chemotherapeutics.

Integrating cell functions into tissue processes

An ultimate challenge is the development of models that incorporate
the behavior of the entire tumor. In the early-stages of tumor de-
velopment, cancer cells are clustered together into an avascular
structure, which has been modeled in vitro with multi-cellular sphe-
roids (71) and in silico with mathematical balances of proliferating
and dying cells that are coupled to physical constraints such as
nutrient diffusion. In general, these models are limited to describing
tumor morphology and distribution of necrotic cells (72). More
recently, multiscale modeling was used to analyze avascular multi-
cellular tumors (73). This model incorporated proliferation, diffu-
sion and consumption of nutrients, diffusion and production of
wastes, adhesion and cell–environmental interactions. A notable
improvement over previous models that relied on probabilities for
cellular decisions was the inclusion of a Boolean logic model for the
G1 to S progression, which incorporated molecular components such
as transforming growth factor-b, p27, p21 and cyclins. Model sim-
ulations closely matched in vitro spheroid morphology, size and cell
cycle distribution over a 20 day period (73). Further refinement of
detailed models such as this should allow investigators to test the
impact of molecular interventions on early-stage tumors.

As a tumor increases in size, the center core becomes necrotic and
the tumor needs to develop its own vasculature to continue to grow.
Therefore, targeting tumor angiogenesis is an attractive strategy to
treat cancer (74). Computational models are beginning to provide
tools to address how the tumor microenvironment and growth factor
signaling regulate these events. Although numerous models for an-
giogenesis have been proffered, the complexity of the system presents
a challenge regarding how to connect the behavior of the blood ves-
sels to the tumor and how to incorporate molecular control mecha-
nisms. Two recent models link the behavior of the tumor, growing
blood vessel and cellular microenvironment. Macklin et al. (75) mod-
eled tumor growth in response to the altered oxygen profile resulting
from new vascular growth. In this model, mechanical forces directed
blood vessel growth, and simulations demonstrated that when heter-
ogenous oxygen profiles were formed from the new vessels, tumor
cell proliferation was heterogenous resulting in invasive tumor mor-
phologies. In the second model, blood vessel growth was modeled as
a response to local gradients in angiogenic factors such as VEGF (76).
By changing the various rules, these model forms can mimic different
environmental or genetic conditions; however, they do not allow for
the direct test of molecular interventions on angiogenesis.

As an alternative approach, another recent model linked the cancer
cell cycle to sensing of environmental conditions such as oxygen
levels, with the assumption that suboptimal oxygen levels result in
the production of VEGF (77). In contrast to more phenomenological
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models, the impact of VEGF on endothelial cell proliferation and
migration was determined by the pharmacological Emax model and
additional pro- and anti-angiogenic molecules were included. Simu-
lations of the effect of endostatin induced by gene therapy indicated
there is a critical rate of production needed; below this rate, longer
treatment times were predicted to ‘rebound’ more quickly, whereas
above this rate, the time to rebound increased with the duration of
treatment (77). Expansion of the molecular components of multiscale
models of angiogenesis will be essential to utilize them to determine
drug targets and optimal treatment regimens.

An alternative method for a tumor to continue its growth is for cells
to leave the primary tumor and implant in other tissues—the metas-
tases that result from this process are responsible for the majority of
cancer deaths. It is becoming increasingly apparent that metastasis is
more than a random process, with additional mutations required for
cancer cells to leave the primary tumor and metastatic cells demon-
strating ‘preferences’ for target organs (78). Similar to angiogenesis,
models of tumor invasion and metastasis must incorporate multiple
scales and are primarily constructed using approximations of cellular
signaling. For example, in one virtual tumor model, cells respond to
microenvironmental changes (e.g. oxygen level, cell proximity) and
decide to proliferate or die (79). At the same time, cells undergo
random inheritable mutations that change the ‘phenotype’ of the cell
(e.g. the likelihood to proliferate). Changes to the microenvironment
to incorporate harsher conditions such as hypoxia or heterogenous
matrix led to selection for cells with more aggressive traits and in-
vasion tumor shapes. The impact of the matrix on cancer cell invasion
is supported by a recent model of invadopodia, the cellular extensions
believed to degrade extracellular matrix as tumor cells invade (80). In
this model a single cancer cell sits on top of a matrix, which is
modeled from known dimensions and characteristics of extracellular
matrix proteins. A series of rules describe how invadopodia invade
and interact with the extracellular matrix. The simulations suggested
that dense matrix (such as basement membrane) forms an effective
barrier to prevent invadopodia penetration and matrix degradation,
whereas looser matrices (such as stroma) have gaps sufficient to allow
invadopodia penetration and matrix degradation.

In order to metastasize to distant organs, cancer cells must invade
into the blood or lymph to be transported to other parts of the body.
The first stage in this process is for the cancer cell to invade
the endothelial layer. To model this process, a multiscale model of
transendothelial migration was developed, incorporating both endo-
thelial cells, cancer cells and the cadherin interactions between the
distinct cells (81). In the simulated invasion, cancer cells attach to
endothelial cells by N-cadherins, and the endothelial layer is con-
nected by VE-cadherin bonds, which the cancer cell must break in
order to squeeze through. The model follows protein concentrations
within each cell through a series of ordinary differential equations,
cell–cell forces by a modified Hertz model and cell movement accord-
ing to Langevin equations. As cancer cells contact endothelial cells,
a N-cadherin bond forms between the cells, leading to competition for
b-catenin and dissolution of the existing VE-cadherin bonds. The
observed behaviors are similar to experimental results that noted the
loss of N-cadherin slows transendothelial migration (82).

Ultimately, models such as these must be built upon to balance
multiple signaling pathways and phenotypic processes in order to
be used for identification of drug targets. A novel multiscale model
of non-small-cell lung cancer provides an example of how such a pro-
cess can be implemented. In an early version, ErbB activation of ERK
and PLCc in each cell in a tumor was modeled by a series of ordinary
differential equations (83). Phosphorylated ERK and PLCc are used
as readouts for proliferation and migration, respectively, and cells
migrated or proliferated in a virtual two-dimensional space. In this
early version, overexpression of ErbB1 led to a migration dominant
phenotype and accelerated tumor expansion. Building on this initial
work, the group expanded the virtual space and tumor to three dimen-
sions and added transforming growth factor-b activation of RAS to
each cell’s signaling module (84). By comparing the results of simu-
lations with single and cotreatments, the expanded model demon-

strated conditions where targeting a single pathway would be
ineffective in deterring tumor expansion.

Predicting effects of molecular interventions

Importantly, computational network models have begun to identify
novel targets in regulatory networks with the goal of more effectively
treating tumors. Schoeberl et al. developed a mass-action kinetic
model of ErbB1–3 incorporating ligand binding (betacellulin and
heregulin1-b), receptor dimerization, internalization, degradation, re-
cycling and downstream signaling through PI3K to phosphorylated
AKT (85). Sensitivity analysis of the model revealed a dominant role
of ErbB3 in the level of phosphorylated AKT, and in silico tests of
a monoclonal antibody against ErbB3 demonstrated its effectiveness
at decreasing phosphorylated AKT over a range of ErbB1/2 levels.
Based on the predictions of their systems biology model, the group
developed MM-121, a fully human IgG2 monoclonal antibody against
ErbB3, and found that, as in the model, blockade of ErbB3 was
effective in blocking phosphorylation of AKT (85). Additionally,
when mice implanted with ACHN xenografts were treated with
MM-121, tumor growth was slowed even after the end of the treat-
ment period and MM-121 has entered Phase I Trials. This study is
particularly provocative as the model suggested targeting the kinase-
dead ErbB3 rather than a mutated or overexpressed protein, indicating
that excessive growth may be dependent on the multivariate receptor
and ligand environment rather than a single oncogenic change.

However, this work—like most systems modeling efforts aimed at
predicting effects of therapeutic perturbations of cell regulatory
networks—restricts its attention to predicting molecular-level pro-
cesses (in this particular case, AKT phosphorylation). What is vital,
of course, is to predict effects of these perturbations on cell phenotypic
functions at the very least; predicting effects of integrated tissue prop-
erties would be an even more distant goal. The most difficult problem
is connecting molecular-level network activities to cell-level func-
tional behavior, even in absence of therapeutic perturbations. Rela-
tional modeling methods, such as partial least squares regression,
currently represent one of the most effective approaches for this goal.
This approach was tested directly by Kumar et al. (86), who used
partial least -squares regression modeling to predict how modulation
of key kinase pathways such as ERK, AKT and p38 by pharmacolog-
ical inhibitors alters migration behavior of ErbB2-overexpressing
mammary epithelial cell migration in response to epidermal growth
factor and Heregulin. The most important insight gained from this
contribution was that while a quantitative combination of five phos-
phorylation sites on four key proteins could successfully interpret the
effects of kinase inhibitors on cell phenotypic behavior across multiple
treatment conditions, no individual signal could predict the phenotypic
behavior by itself. This finding emphasizes that signal-to-response
relationships will in general require multiple signaling pathways to
be included in the model and that attempts to predict how cells will
behave on the basis of alterations (whether genetic or therapeutic) to
a single component or pathway will most probably be in vain.

A major issue to emphasize as we conclude this discussion is the
challenge posed by the gap between in vitro studies and in vivo. This,
of course, is a crucial problem for the entire cancer biology field, not
merely the systems biology approach. We submit that a systems per-
spective, in which multiple variables are considered integratively in
explicit manner, is at least as likely or more so to find some significant
success in bridging this gap than a focus restricted to intuitive pre-
dictions based on individual component effects. A compelling dem-
onstration of this notion has recently been provided by Jiang et al.
(87). These authors showed that assessment of both ATM and p53
together is required in order to move from cell culture experiments to
organism studies, with the goal of predicting the efficacy of a DNA-
damaging chemotherapeutic agent on destruction of lymphoma tu-
mors in mice and survival of human breast cancer patients. While this
particular effort did not incorporate formal mathematical analysis,
a schematic logic model (involving DNA-PK and Chk2 along with
ATM and p53) was found helpful in explicating the integrative
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network operation. Extension of this kind of perspective to an in-
creased number of components and wider set of pathways will be
facilitated by the kinds of computational approaches we have noted,
in order to enable understanding and prediction beyond even skilled
intuition. We emphasize the work by Schoeberl et al. (85) again here
as a promising example of employing computational modeling for
effective prediction of novel and non-intuitive cancer therapeutic drug
targets, in this case ErbB3, demonstrating promising translation from
in vitro studies to in vivo validation.
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