
© The Author(s) 2020. Published by Oxford University Press. Page 1 of 15
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2020, 1–15

doi: 10.1093/database/baaa034
Original article

Original article

A strategy for large-scale comparison of

evolutionary- and reaction-based classifications

of enzyme function

Gemma L. Holliday1,4,*, Shoshana D. Brown1, David Mischel1,

Benjamin J. Polacco1 and Patricia C. Babbitt1,2,3,*

1Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San
Francisco, 1700 4th Street, CA 94143, USA, 2Department of Pharmaceutical Chemistry, University of
California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA, 3Quantitative Biosciences
Institute, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA and
4Present Address: Medicines Discovery Catapult, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK

*Corresponding author: Email: gemma.l.holliday@gmail.comCorrespondence may also be addressed to Patricia C. Babbitt.
Email: babbitt@cgl.ucsf.edu

Citation details: Holliday,G. L.., Brown,S., Mischel,D. et al. A strategy for large-scale comparison of evolutionary- and
reaction-based classifications of enzyme function. Database (2020) Vol. 2020: article ID baaa034;
doi:10.1093/database/baaa034

Received 5 November 2019; Revised 18 March 2020; Accepted 27 April 2020

Abstract

Determining the molecular function of enzymes discovered by genome sequencing

represents a primary foundation for understanding many aspects of biology. Historically,

classification of enzyme reactions has used the enzyme nomenclature system developed

to describe the overall reactions performed by biochemically characterized enzymes, irre-

spective of their associated sequences. In contrast, functional classification and assign-

ment for the millions of protein sequences of unknown function now available is largely

done in two computational steps, first by similarity-based assignment of newly obtained

sequences to homologous groups, followed by transferring to them the known functions

of similar biochemically characterized homologs. Due to the fundamental differences

in their etiologies and practice, ‘how’ these chemistry- and evolution-centric functional

classification systems relate to each other has been difficult to explore on a large

scale. To investigate this issue in a new way, we integrated two published ontologies

that had previously described each of these classification systems independently. The

resulting infrastructure was then used to compare the functional assignments obtained

from each classification system for the well-studied and functionally diverse enolase

superfamily. Mapping these function assignments to protein structure and reaction sim-

ilarity networks shows a profound and complex disconnect between the homology- and

chemistry-based classification systems. This conclusion mirrors previous observations

suggesting that except for closely related sequences, facile annotation transfer from

small numbers of characterized enzymes to the huge number uncharacterized homologs
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to which they are related is problematic. Our extension of these comparisons to large

enzyme superfamilies in a computationally intelligent manner provides a foundation

for new directions in protein function prediction for the huge proportion of sequences

of unknown function represented in major databases. Interactive sequence, reaction,

substrate and product similarity networks computed for this work for the enolase and

two other superfamilies are freely available for download from the Structure Function

Linkage Database Archive (http://sfld.rbvi.ucsf.edu).

Key words: Enzyme classification systems, Evolution- versus reaction-based enzyme

classification, Enzyme function, Comparison of enzyme classification systems, Struc-

ture–function relationships, Structure–reaction relationships, Functional annotation

Introduction

Historically, examinations of enzyme chemistry and enzyme
evolution have been done using separate and distinct
approaches to organize, compare and disseminate each
type of data. This is because there is no easy way to
process relationships between an enzyme’s chemistry and
its cognate sequences and structures together, except
through small scale and focused studies in which enzyme
mechanism can be explicitly associated with the specific
sequence and structural features that enable catalysis.
While a large compendium of tools and data resources
for understanding the relationships between enzyme
sequences and their structures (bioinformatics) is well
established, the tools and resources to describe the
chemical relationships of enzymes (cheminformatics) are
less mature, complicating our ability to link the chemical
and the protein perspectives together in a computationally
useful way.

Although extremely sparse compared to sequence data,
experimentally validated reaction annotations are heavily
leveraged for large-scale annotation transfer from biochem-
ically characterized enzymes to homologous sequences of
unknown function (unknowns; see, for example, (1–3)).
The most foundational source for naming experimentally
determined enzyme reactions is provided by the Enzyme
Commission (EC), which defines catalytic reactions using a
hierarchical set of four-digit numbers that run from least to
most specific descriptors (4, 5). (Importantly, for this work,
the third digit of the EC system designates an overall enzyme
reaction, while the fourth digit designates substrate speci-
ficity.) In addition to the enzyme nomenclature data, many
other resources now provide online access to more in-depth
types of information about enzyme chemistry, including
overall chemical transformations and functional features,
such as kinetic details and mechanisms of reactions. These
may also include some sequence features, e.g. active site
residues with descriptions of their functions. BRENDA
(6), SABIO-RK (7), KEGG (8,9), MetaCyc (10) and the

reaction-related information in UniProtKB (11) represent
varied examples.

Despite their value, several issues limit the potential
of chemistry-centric resources for linking the chemical
and evolutionary perspectives. First, while it provides
a systematic naming convention for enzyme reactions,
the EC classification system remains uninformed by the
evolutionary perspective (12). Second, as EC annotations
define a single reaction at a time, the EC system lacks
a sufficiently sophisticated conceptual infrastructure for
linking chemical data to large sequence superfamilies that
may represent many different reactions. Further limiting
the creation of large-scale resources describing enzyme
chemistry, the amount of available mechanistic information
remains tiny in comparison to the enormous volumes
of uncharacterized sequences. As a result, even as new
biological resources continue to emerge that relate enzyme
proteins and their reactions (13), the difference in the
size of each data type raises challenges for connecting
the large sequence space of enzymes with their chemical
capabilities.

However, new resources that more effectively include
both the chemical and evolutionary perspectives are emerg-
ing. These resources capture both small- and large-scale
information about enzyme reactions and associate these
data to the proteins that enable them (for examples see
(10, 14–16)). Related to these types of efforts, support for
large-scale functional analysis of enzyme domains described
in the CATH database (17) is now used to enhance the
information FunTree (18) provides through the addition of
similarity measures for enzyme reactions and their asso-
ciated metabolites (19). In another example, the Struc-
ture–Function Linkage Database (SFLD) (20) directly links
sequence and structural conservation patterns with their
roles in catalysis, providing a foundation for deeper integra-
tion of the protein- and chemistry-centric perspectives. Still,
for many protein-centric resources, including the SFLD, the
associated chemical context has been historically captured

http://sfld.rbvi.ucsf.edu
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only by simple descriptors using static images of overall
reactions.

Thus, additional work needs to be done to bridge the
conceptual disconnects between the protein- and reaction-
centric perspectives and to support direct comparison of
the two types of classification systems. To achieve this, a
formal way to link the two types of information together
in a computationally intelligent manner will be required.
Examples of new work aimed at addressing this challenge
are emerging including the creation of the Mechanism and
Catalytic Site Atlas (M-CSA) (21) and Biochem4j (22). The
former represents a merger of the Mechanism, Annotation
and Classification in Enzymes (MACiE) (23) database and
the Catalytic Site Atlas (CSA) (24). The integrated M-
CSA resource connects information about conserved cat-
alytic site residues with sets of homologous proteins with
which they can be associated. Using a different type of
approach, Biochem4j introduces a graph database frame-
work to connect chemical reaction, enzyme and taxonomic
data. Additionally, the advent of resources such as the Rhea
resource of biochemical reactions (25) is helping to address
the disconnect between the stand-alone EC system and
sequence similarity data. Rhea generates chemical entities
from the ChEBI ontology (26) and now provides reaction
data to UniProt. This collaboration also enables facile pro-
grammatic access to reaction data across the large suite
of tools and data resources available from EMBL-EBI web
services (27).

In this work, we present a new computational strategy
designed to enable more informative comparison of
enzyme function classification from the perspective of
the chemical reactions they catalyze with that of the
homologous proteins that enable them. Named MEERCat
(Mechanism and Evolution in Enzyme Reaction Catalysis),
our strategy links two ontologies previously developed
to support the independent classification of enzymes
from each perspective. Using the large and well-studied
enolase superfamily (28, 29) as a gold standard, this
retrospective analysis reveals a substantial disconnect
between the two classification systems and raises new
concerns for the facile transfer of biochemical function
from chemistry-based classifications of biochemically char-
acterized enzymes to their sequence homologs of unknown
function.

For this proof-of-concept report, the evolutionary
perspective was provided using the SFLD as a data
resource platform, as it already incorporated the evolution-
based ontology used for this study. Addition of the
chemistry-centric perspective was patterned after the
ontology developed for the MACiE database. Chemical
classification features from MACiE were added to the
SFLD to enable us to formally link reactions and ligands

to functionally diverse enzyme superfamilies curated by
the SFLD.

Functionally diverse enzyme superfamilies (29) are
composed of nonredundant sequences found in a multitude
of organisms. Each superfamily may contain many
thousands of such sequences. For example, the enolase
superfamily in the SFLD archive is comprised of over
50 000 sequences while the radical SAM superfamily
is comprised of over 100 000 nonredundant sequences
(30) (as of 2017 when the test set of data was collected
for this project). All of the member sequences in such
superfamilies conserve key structural and sequence features
associated with a fundamental chemical capability. In
the enolase superfamily, all of its varied reactions use a
conserved constellation of active site residues to initiate a
common partial reaction, abstraction of a proton alpha to
a carboxylate, that leads to the formation and stabilization
of an enolate anion intermediate (28). Additional reaction
steps then enable the different overall reactions of the
superfamily.

Functionally diverse superfamilies typically have domain
architectures and fold types that nature has repeatedly
retooled to catalyze many different enzyme reactions. For
example, the enolase superfamily belongs to the (β8/α8)
triosephosphate isomerase (TIM) barrel fold class, a struc-
tural scaffold in which key catalytic residues are located
around the center of a symmetrical active site ‘barrel’
where the substrate binds. The high representation of the
TIM barrel fold in many enzyme superfamilies has been
acknowledged as due in part to the relative ease at which
variations in this active site architecture can evolve (31).
This and other functionally diverse superfamilies repre-
sent useful models for the work described here as their
homologous members all have similar structures and some
conserved active site features, yet catalyze quite different
overall reactions. In such superfamilies, simple annotation
transfer of EC number from characterized members to
sequences of unknown function is prone to high levels of
misannotation (32).

The curated superfamily data and similarity networks
resulting from this work are freely available from the SFLD
archive (http://sfld.rbvi.ucsf.edu) along with links to doc-
umentation, tutorials and other help files. SFLD curation
for the enolase and radical S-adenosylmethionine (SAM)
superfamilies is also available from the InterPro Resource
(33). Although MEERCat lays out a first pass blueprint for
knowledge representation and integration of the ontologies
for relating protein-centric and chemistry-centric enzyme
classification systems, the SFLD itself is no longer being
actively developed or maintained. Thus, it will be the task of
future work to implement an active resource enabling new
comparisons using a MEERCat-like strategy.

http://sfld.rbvi.ucsf.edu
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Results and Discussion

Development of the MEERCat strategy

At its simplest, an enzyme can be described as a protein that
performs catalysis. From this chemistry-centric viewpoint,
substrates and products can be compared, as can catalytic
functions. These can be described in chemical terms for
such properties as overall and partial reactions with respect
to associated chemical changes (e.g. bonds formed, cleaved
and changed in order). From a protein-centric viewpoint,
features of proteins can be represented in an evolutionary
context in which sequences and structures can be compared
among homologous members of a superfamily to identify
conserved features likely to be associated with their specific
molecular functions. The strategy reported here captures
both protein- and chemistry-centric types of information
by linking together ontologies representing each. Biolog-
ical context, a third key context for describing proteins,
including enzymes, is captured by many other resources,
such as the Gene Ontology. This aspect of enzyme function
is beyond the scope of this work and will not be discussed
further.

Linking ontologies describing evolutionary and

chemical classification systems for enzymes

The two ontologies used in this study are the Enzyme
Structure–Function Ontology (ESFO) (34) and the Enzyme
Mechanism Ontology (EMO) (24). The ESFO describes
annotation transfer of catalytic function based on sequence
similarity. (See http://purl.bioontology.org/ontology/ESFO
for a list of terms in the ESFO.) The EMO describes catalytic
characteristics of enzyme function in terms of reactions and
their associated small molecules. (See http://purl.bioontolo
gy.org/ontology/EMO for the full list of the terms relating
to residue annotation.)

The Enzyme Structure–Function Ontology The ESFO provides
the evolution-based framework specified in the SFLD
for classifying sequence and structure variations that
have produced the varied contemporary reactions known
for many functionally diverse superfamilies (35, 36). It
defines sequence–function relationships in the SFLD in
terms of an evolutionary hierarchy in which sequences are
classified from a top-down viewpoint (functionally diverse
superfamily > subgroup > family). Conceptually, the super-
family is the highest level of the hierarchy and includes
sequences deemed to be homologous but that can be
functionally diverse at all four levels of the EC system (29).
Within a superfamily, subgroups are defined as more gran-
ular subsets for which the sequences within any particular
subgroup are all more similar to each other than they are to
the sequences within a different subgroup. Each subgroup is

associated with conservation of additional protein features
not conserved in all members of the superfamily, with
each distinct subgroup likely arising by paralogous descent
from the common ancestor. Typically, conserved active site
features found in a specific subgroup can be associated with
some common functional and structural properties even
though their members may represent multiple different
overall reactions. (See the original definition of enolase
superfamily subgroupings for examples of how they differ
in sequence and their associated functional properties
(28).) These may include reactions classified as different
at least at the third digit of the EC system and sometimes
even at the first and second EC digits. Within subgroups,
reaction families are defined as proteins that catalyze the
same reaction using the same basic mechanism. Of these
hierarchical levels, only reaction families are considered
monofunctional (at the third level of the EC system).

The ESFO contains an additional formal concept, the
enzyme functional domain (EFD). The EFD is defined as
the smallest contiguous amino acid sequence (domain) that
is required for a specific function to be performed. It for-
mally links the evolutionary context with specific functional
properties defined in terms of a specific overall reaction.
Figure S1 provides a simple example. Note that the defi-
nition of the term ‘domain’ for the EFD differs from that
defined using sequence or structural information alone, e.g.
as defined by Pfam (37), in that it represents the complete
sequence required for that function to occur. As a result, the
EFD may contain multiple structural domains.

Information required for classification of superfamily
members into reaction families in the SFLD has typically
been obtained via manual curation of a ‘canonical’ family
protein with clear experimental evidence for catalysis of a
specific overall reaction. Using information derived from
the literature or from high-confidence resources such as
the SwissProt part of the UniProtKB, key criteria for
family membership, e.g. required catalytic residues, are then
defined using this protein. These functional residues are
stored at the EFD level and this information is propagated
upwards at each level of the hierarchy as far as can
be determined from their conservation in the associated
multiple sequence alignments (MSAs). In most cases, the
specific residue type is conserved throughout the hierarchy.
However, occasionally, the function a residue performs
is conserved while its specific type is not. Using this
information, experienced curators then add sequences of
unknowns to a reaction family based on their similarities
to the defined family profile (38).

The Enzyme Mechanism Ontology The chemistry-centric frame-
work implemented in the SFLD for this work uses the
EMO, previously developed for use with the CSA and

http://purl.bioontology.org/ontology/ESFO
http://purl.bioontology.org/ontology/EMO
http://purl.bioontology.org/ontology/EMO
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
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Figure 1. Ontology view of annotation for functional residues. Diamonds represent relationships; rectangles represent terms in the ontologies.

Purple nodes, annotation details from EMO; yellow nodes, annotation details from the EFSO; blue nodes, details of specific residue location and

type. EFDs shown in this figure are the same as those describing UniProtKB protein Q97U27 (EFD:51, gluconate dehydratase family) and UniProtKB

protein P11444 (EFD:94, mandelate racemase family) in Figure S1. Though each of the two EFDs shown has multiple functional residues, only one

is shown in the figure due to space constraints. The chosen residue has the same functional role in each EFD (and maps to the same position in the

MSAs for the subgroup and superfamily that include both EFDs), though the amino acid type differs (Asp at position 195 for EFD 94, Glu at position

197 for EFD 51).

MACiE databases. The EMO was designed to enable rep-
resentation and comparisons of chemical characteristics in
terms of the reactions and the small molecules on which
they work. It has been used to facilitate annotation transfer
among other resources, including the UniProtKB. It pro-
vides a formal description of functional residues, including
the identity and role a residue plays in a specific reaction
and its position in the sequence. The annotation captured
by the MEERCat strategy describes the complete transfor-
mation required to restore an enzyme to its initial state, e.g.
a proton shuttle in which a residue acts as both a general
base and general acid. This representation may differ from
how a specific residue is often described in the literature
and in the SFLD, i.e. in a mono-directional manner, only as
a general base.

Prior to the work described here, enzyme reactions were
provided in the SFLD only as static .gif images and SMILES
(simplified molecular-input line-entry system) strings (39).
Following the EMO, enhanced annotation of functional
residues could be added to the SFLD using the EFD to link
the ESFO and EMO. By using these two ontologies together,
we could formally incorporate conserved chemical compo-
nents into the SFLD architecture in a way that enabled the
direct comparison of evolution- and reaction-based enzyme
classifications. In contrast to the top-down organization
of enzyme superfamilies specified by the ESFO, however,

the EMO classifies sequence–function relationships starting
from a specific protein, such as is used by MACiE. As
the EFD includes in its definition the functional (catalytic)
residues that are critical for the function of specific enzymes
in a reaction family, it is the only level at which an overall
chemical transformation can be definitively mapped with
the ESFO (Figure 1).

Formal representation of conserved chemical

components

A key design concept of the original SFLD that distinguishes
it from other databases that describe relationships only
between sequences and/or structures is its inclusion of a
conserved chemical feature associated with all members
of a superfamily (40). This concept motivated creation of
the SFLD to enable explicit analysis of structure–function
relationships in functionally diverse enzyme superfamilies.
The strategy reported here added to the simple mapping
of reaction information in the original SFLD. The formal
representation of these chemical relationships that resulted
is both computationally tractable for large-scale analy-
sis and richer and more sophisticated than that initially
conceptualized in the SFLD design.

Molecular representation of chemical molecules can be
described in many different ways in order to capture reac-
tions in a computer readable format (41). The approach

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
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Figure 2. Representation of overall reaction. A screenshot of the default reaction view available in the SFLD archive following incorporation of the

EMO into the SFLD resource is shown. The muconate cycloisomerase (EC 5.5.1.1) reaction (enolase superfamily) is shown as an example.

used in this work stores a list of molecule identifiers to
capture substrates and products and relate these back to
information gathered from external databases, primarily
the ChEBI database. (These identifiers were also used in the
creation of chemical similarity networks, described in the
sections below and in Methods.)

The full schema for reaction representation implemented
in the SFLD using our strategy is shown in Figure S2. Details
of the annotation relationships linked through the EFD
for two members of the enolase superfamily are shown
in Figure S3. In some superfamilies, chemically different
amino acid residues may be used to perform the same func-
tion, e.g. the conserved chemical component may reflect
a general chemical strategy, such as stabilization of an
oxyanion hole, rather than a specific partial reaction (42).

Overall reaction information added to the SFLD

Information about overall chemical transformations (reac-
tions) is represented as a collection of molecules stored as
the starting state (substrate(s)) and final state (product(s))
of the transformation. Figure 2 provides an example of new
information that was added to the SFLD for this work. The
addition of these reaction-centric views produces a much
enhanced representation of enzyme structure–function rela-
tionships than was previously available. The ‘Browse by

Reaction’ page (Figure 3), available from the menu bar on
the home page of the SFLD Archive, allows users to browse
curated reactions by their annotation fields.

In the example shown in Figure 2, links to EC number,
IntEnz (43), KEGG, BioCyc and BRENDA are provided.
The full reaction entry shown uses arrows to depict reaction
directionality as reversible, which is the default option, or as
forward or backward as appropriate. For reactions in which
the directionality is unknown, the arrow is replaced with a
question mark. This is all handled with a directionality tag
in the reaction annotation. For cases in which a reaction
represents more than one mechanism (reaction scheme),
each overall reaction is treated as unique. An overall reac-
tion is only annotated once, even if that reaction is seen
in multiple reaction schemes (mechanisms). For example,
the reaction scheme shown in Figure 2 formally links the
reaction to the two EFDs that represent two families that
catalyze the same reaction but use different mechanisms
(44). Multiple mechanisms for the same reaction can also
be exhibited in different superfamilies.

This proof-of-concept study added reactions for only a
limited set of superfamilies curated in the SFLD (the enolase,
radical SAM and haloacid dehalogenase superfamilies (45)).
The listing of available reaction pages that are provided
is accessible from the ‘Browse by Reaction’ link on the
menu bar of the SFLD Archive. Figure 3 provides a screen

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
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Figure 3. Screenshot of the first 18 reactions listed in the SFLD. The information available from this web page includes the assigned name of each

reaction, reaction type, links to the EC number and identifiers for relevant outside resources, directionality (forward, backward and reversible) and

counts of the number of substrates, products, reaction schemes and functional domains assigned by curators. (The complete reaction list includes

some reactions curated using MEERCat but for which the associated protein-centric data is not curated in the public SFLD archive.) The left-most

column represents the number of the unique SFLD reaction identifiers for each reaction in the downloadable TSV file of all the reactions available

in the SFLD Archive.

shot of the first 18 of these. The reaction pages added to
the SFLD include other new types of information as well.
These include reaction name and reaction type. In nearly
all cases, this is the biologically relevant cognate reaction,
but the reaction could also be annotated as generic, i.e. the
substrates and products contain a generic R group. Other
information includes EC number, directionality (mostly
reversible) and substrate and product counts. Counts are
also included for the number of available reaction schemes
and functional domains associated with each named reac-
tion. Where a fully defined EC number was available when
the test set of reactions was gathered in 2017, links are
provided to ExplorEnz. [Note that although a new primary
(first digit) class was added to the EC system in 2018, none
of those enzymes are included in the enolase superfamily.
We have not evaluated whether there are other reactions in
the SFLD that would be affected by the addition of Class
7.] The number of overall reactions available for each of
these superfamilies can also be found on the superfamily
summary page accessible from the ‘Browse by Superfamily’
link on the SFLD Archive menu bar and from the EFD and
family pages.

Combining sequence, structure and chemical

similarity to generate a more complete picture of

enzyme structure–function relationships

Protein similarity networks (46) in which protein sequences
or structures are used as nodes and pairwise similarities are
used as edges were previously computed for core superfam-

ilies at all levels of the SFLD hierarchy. The addition of
reaction data in a chemical format to the SFLD provides
the new information required for computing chemical sim-
ilarity networks as well. As described in Methods, reaction
or associated small molecule features were used as nodes
in these networks and their pairwise similarities were used
as edges. The formal addition of this chemical context
allowed us to compare chemical similarity-based networks
with networks depicting evolution-based similarity. For this
proof-of-concept study, we compared the evolution- and
chemistry-based functional classifications using the enolase
superfamily for retrospective analysis. The next section
describes the results of these comparisons. As the number
of representative structures in the SFLD for the enolase
superfamily (170 structures) tracks with the number of its
known chemical reactions (33 reactions) at a more similar
scale than do the number of sequences (48 847 unique
sequences), structure similarity networks are provided in
this paper to illustrate evolutionary relationships. Sequence
similarity networks at all levels of the SFLD hierarchy are
provided for download from the SFLD archive.

Differences between evolutionary-based and the

chemistry-based classification of enzymes

complicate functional annotation

Comparison of the structure and chemical similarity
networks for the enolase superfamily reveals profound
differences between the evolutionary- and chemistry-based
classification systems (Figure 4). The structure similarity
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Figure 4. Similarity networks for the enolase superfamily colored by SFLD subgroup. Network visualization uses the organic layout provided by the

Cytoscape software (66). In this layout, edges are drawn between nodes if the similarity score is ≥ a statistical significance threshold pertinent to

the comparison metric; edge lengths correlate with the degree of connectivity. (A) Structure similarity network computed from all-by-all pairwise

comparisons of 170 nonredundant structures using the TM-Align algorithm. Edges represent pairwise structural alignments with a TMScore of

at least 0.85 (main network) or at least 0.73 (inset). (A TM-Align score of 0.5 is considered statistically significant (72).) Nodes with similarity

scores below these thresholds appear as disconnected from main clusters. Each circular node corresponds to a representative structure of the

superfamily and is colored according to the SFLD subgroup to which it is assigned based on a careful curation protocol (34). Subgroups are muconate

cycloisomerase (MLE), methylaspartate ammonia lyase (MAL), glucarate dehydratase (GlucD), mannonate dehydratase (ManD), enolase (Enol),

galactarate dehydratase (GalD) and mandelate racemase (MR). Although all members of the superfamily share conserved active site machinery

associated with the conserved fundamental partial reaction they all catalyze (28), they perform different overall chemical reactions using different

substrates. Within the superfamily, while some subgroups are monofunctional and others include multiple reactions, each is named for a single

experimentally characterized ‘founder’ reaction assigned to it by SFLD curators. For example, the MR subgroup includes the mandelate racemase

reaction as well as many acid sugar dehydratases. The other subgroup containing several different overall reactions, the MLE subgroup, contains

a reaction of the same name as well reactions that include dipeptide epimerases, n-acyl amino acid racemases and others. (B) Reaction similarity

network computed from all-by-all pairwise comparisons of 33 overall superfamily reactions. Each square node represents a superfamily reaction

colored according to the SFLD subgroup of the enzymes that catalyze it. Edges represent pairwise reaction center similarity scores of at least 0.17. The

starred node designates a reaction found in both the MR and GalD subgroups, with three distinct families catalyzing the dehydration of galactarate

(73–75). Labeled nodes designate reaction families discussed in the text or figures. The circle distinguishes enzymes from the MLE (syn) sub-

subgroup, the members of which differ in substrate specificity rather than in overall reaction. (C) Substrate similarity network. Each hexagonal node

corresponds to a known substrate involved in a reaction catalyzed by an enolase superfamily enzyme colored by the subgroup of the corresponding

enzyme. Edges represent Tanimoto scores of at least 0.54. The starred node designates a substrate found in both the MR and GalD subgroups.

network colored by the enolase superfamily subgroups
defined from the evolutionary perspective is shown in
Figure 4A. (The corresponding sequence similarity network
is provided in Figure S4. It shows subgroup clustering
relationships that are largely similar to those in the structure
similarity network, although the sequence similarity
network has much broader coverage of superfamily
members than does the structure-based network.) The
reaction similarity network calculated using the reaction
center as the similarity metric (47) is shown in Figure 4B

(see Methods for other chemical similarity metrics used
for this work), while the substrate similarity network was
calculated using a small molecule similarity metric is shown
in Figure 4C. As with Figure 4A, Figures 4B and 4C are
colored by subgroup designation to allow comparison of
the evolutionary and chemical classification systems using
the same annotation mappings. As the substrate similarity
network provided in Figure 4C and the product similarity
network (calculated but not shown) shows a subgroup
clustering pattern that is similar to that of Figure 4B,

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
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only observations for Figure 4B are discussed further in
this paper. The substrate and product similarity networks
produced in this work are available for download from the
SFLD Archive, however.

The structure similarity network (Figure 4A) confirms
that structures from the same SFLD subgroup largely cluster
together, as expected, since these subgroups are defined
based on sequence, structural and active site similarity.
Most of these subgroups are presumed to be monofunc-
tional, i.e. enolase (Enol), and the acid sugar dehydratase
subgroups glucarate dehydratase (GlucD), mannonate
dehydratase (Man D) and galactarate dehydratase 2 (Gal
D). The nodes representing the mandelate racemase (MR)
and muconate cycloisomerase (MLE) subgroups also form
cogent clusters in Figure 4A, although both of the latter
are known to include multiple different overall reactions.
Figure S5 shows the reactions and associated EC numbers
of enzymes that span the main reaction types identified
in the SFLD for the enolase superfamily. Figure S6 shows
the structure similarity network mapped with annotations
at the individual (monofunctional) family level. Here,
individual reaction families of the MR subgroup are well
resolved, providing a more informative view of their
similarity relationships. For the enolase superfamily (and
for others investigated in an earlier misannotation study
(32)), annotation transfer at the family level is typically
the most reliable starting point for transferring annotations
from enzymes of known reaction specificity to unknowns.
This is because sequences within reaction families tend to
be more similar to each other than are sequences within
their parent subgroups. Again, this is not surprising as
families are defined in the ESFO as monofunctional groups
of enzymes that catalyze the same reaction using a similar
mechanism.

As with Figure 4A, the mapping of the family annota-
tions for structures in the MLE subgroup (Figure S6) shows
a tighter clustering than is represented for the MR sub-
group, consistent with their greater intra-subgroup similar-
ity. Interestingly, literature reports indicate catalytic promis-
cuity among some of the MLE subgroup enzymes (44,
48, 49). Additionally, an early engineering effort using
single amino acid substitutions in a subset of MLE sub-
group enzymes produced functional promiscuity among
them (50).

Mapping of subgroup designations to the reaction
similarity network is shown in Figure 4B. This figure
shows that the multiple different reactions of the MR
subgroup (light orange nodes) and the monofunctional
acid sugar dehydratase subgroups largely cluster together
in both Figures 4A and 4B. In contrast, the clustering of
the nodes of the MLE subgroup (blue nodes) is clearly
disparate, suggesting a substantial disconnect between

the evolution and chemistry-based classifications for this
subgroup. Similar types of disconnects were noted earlier
in a small-scale study of enzymes from several different
functionally diverse superfamilies (12) as well as in a
larger analysis of misannotation errors in the enolase and
several other superfamilies (32). This latter study found
that in the enolase superfamily, reaction families of the
MR and MLE subgroups were routinely misannotated in
major databases, either due to annotation of unknowns
to an incorrect enolase superfamily reaction or as a
‘mandelate racemase/muconate lactonizing enzyme’. This
latter annotation is especially misleading as neither the
literature nor our rather deep understanding of the enolase
superfamily suggests that an enzyme exists in nature that
catalyzes both of these reactions.

One reason for the occurrence of the high levels of mis-
annotation in functionally diverse superfamilies described
in the references listed above is that while the known super-
family reactions such as those from the enolase superfamily
all ‘look alike’ from a sequence and structural perspective,
their known overall reactions can differ widely, as shown
by their highly varied EC numbers (Figure S5). Moreover,
both the order in which the functions of these enzymes have
been experimentally annotated in public databases and the
extent of their sequence and structural similarities make it
challenging to determine accurate cut-offs for annotation
transfer of EC numbers to uncharacterized proteins in the
absence of biochemical confirmation.

Although estimates of general similarity thresholds have
been proposed at which annotation transfer is likely to be
correct (for example, (51, 52)), the results from our analyses
of the networks suggest that except for highly similar
sequences in functionally diverse enzyme superfamilies this
assumption is problematic. It appears instead that each
superfamily may be substantially unique with respect to
how its varied chemical capabilities have emerged through
divergent changes from an ancestral structural scaffold (53).
Thus, general similarity thresholds may be inadequate for
accurate annotation transfer for the divergent proteins that
typify functionally diverse enzyme superfamilies (see, for
example, (12, 32, 48, 54)).

Even at the family level of annotation (Figure S6),
our study shows differences between the evolutionary-
based classification (Figure 4A) and the chemistry-based
view (Figures 4B and 4C). Function assignment for the o-
succinylbenzoate synthase (OSBS) enzyme family provides
an informative example of this disconnect. From the
sequence and structural perspective, the OSBS family
enzymes can be confidently assigned to the MLE subgroup
based on several lines of evidence (for example, (28,48)).
From the chemical perspective (Figure 4B), however,
the OSBS family enzymes cluster more closely in the
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https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data


Page 10 of 15 Database, Vol. 2020, Article ID baaa034

network with the MR subgroup. This observation has
been rationalized in part due to the more ‘general’ features
of the active sites of OSBS-catalyzing enzymes relative to
other reaction families in the enolase superfamily (48). The
‘generalist’ features of proteins have been noted by others
as well (for examples, see (55, 56)). Other complex features
of OSBS structure and mechanism also contribute to the
disconnect between its evolutionary- and chemistry-based
classifications.

Mapping of structure and chemical similarity

networks by EC number

As with the mappings by evolution-based subgroup
annotations onto the structure and chemical similarity
networks, mapping the enzymes represented by the first
three digits of their EC numbers illustrates additional
disconnects between the evolution-based and chemistry-
based classifications. For example, the green nodes in
Figures S7A and S7B represent the same overall reaction
(EC 4.2.1), which designates them as catalyzing hydro-lyase
chemistry. While these nodes cluster well together in the
reaction similarity network shown in Figure S7B, they are
disparate across the structure similarity network shown in
Figure S7A and are assigned to several different and highly
divergent subgroups (Figure 4). A better understanding of
this superfamily-wide disconnect is difficult to interpret
at this time as the paths by which the enzymes of each
subgroup evolved are poorly understood. Although a high
confidence phylogenetic tree would be helpful in achieving
this goal, the extreme divergence of these subgroups
currently prevents its calculation of a high confidence
phylogenetic tree that could aid our understanding these
observations.

The OSBS reaction offers a specific example of this
disconnect. While OSBS is appropriately assigned to EC
4.2.1 based on the chemical transformation it catalyzes
(Figure S7B), its evolution-based metrics and previous lit-
erature (48) clearly assign OSBS to the MLE subgroup
(Figure 4). Moreover, nearly all the known reactions of
enzymes in the MLE subgroup are assigned to an EC class
and subclass (EC 5.1 or 5.5) that differs from the EC 4.2
subclass of OSBS (see Table S1). Other more recent work
has provided new insight for understanding this intriguing
result (57–59).

As with the differences between the subgroup and family
level mappings for the structure-based networks (Figures 4
and S6), the networks mapped with EC classifications track
better with the evolution-based classifications at the family
level than they do at the less granular subgroup level. This
trend is reflected in Figure S8, which details how individual
reaction families map to the structure and reaction similar-

ity networks for each of the three main EC number group-
ings represented in the enolase superfamily. For example,
the majority of green nodes associated with EC 4.2.1 in the
structure similarity network (Figure S8A) represents acid
sugar dehydratases of the Enol, GalD, GlucD, ManD and
the MR subgroups. As with Figure S7, the OSBS reaction
family remains an outlier in Figure S8, consistent with the
results discussed above for Figure S7.

Highlighting yet another inconsistency between the
evolutionary and chemical perspectives, the mandelate
racemase reaction family (EC 5.1.2, magenta node in
Figure S8D), which belongs to the MR subgroup from an
evolutionary perspective (28) is connected in the chemical
similarity network shown in Figure S7B to the purple node
labeled as an N-succinyl amino acid racemase (NSAR)
(EC 5.1.1), which belongs to the MLE subgroup. Thus,
from the chemical perspective, the mandelate racemase
reaction clusters with reactions of the NSARs and dipeptide
epimerases of the MLE subgroup (Figure S8D), rather
than with the acid sugar dehydratases. This pattern is in
disagreement with evidence from sequence and structure
similarity that assigns the mandelate racemase family to
the MR subgroup for which it is the namesake reaction.
A substantial literature supports assignment of mandelate
racemase to the MR subgroup based on overall and active
site similarity (see for overviews of this literature (28, 60)).

Summary and future directions

For the enolase superfamily, the results of this study illus-
trate several of the conceptually distinct ways in which
structure- and chemistry-based classifications of enzyme
function, as well as EC number designations investigated in
this work show profound disconnects. The enolase super-
family networks and those calculated in the SFLD for the
haloacid dehalogenase and radical SAM superfamilies show
related types of disconnects. Specific examples of similar
trends have been published previously regarding members
of the radical SAM superfamily (30, 61); the Radical SAM
similarity networks available from the SFLD Archive offer
an additional data resource for interpretation of those
reports.

This report illustrates in a new way fundamental and
complex differences between evolution- and chemistry-
based classifications of enzyme function although each is
appropriate for use in the respective context for which
each they were developed. Using a retrospective analysis
of a well-studied enzyme superfamily, we show that our
approach for accurate annotation transfer from known
reactions to unknown homologs could be enlightened by
examining these two classifications together and on the
scale of large superfamilies. These results also support our
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previous observations regarding some of the hazards in
attempting to define general similarity thresholds appropri-
ate for annotation transfer from chemical classifications
to homologous unknowns. Automated investigation of
many more superfamilies will be needed to evaluate the
general utility of our findings for the broader universe of
functionally diverse enzyme superfamilies.

The proof-of-concept strategy described in this work
was designed as a first step in enabling new types of
comparisons between enzyme classifications based on
evolutionary and chemical perspectives. In providing
the concept representations and controlled vocabularies
required to link these data in a computationally useful
manner, it aims to inform new work by others to extend the
scale and depth at which these types of comparisons can be
mounted. Key to the MEERCat strategy, linking together
the previously developed evolutionary-based structure–
function ESFO ontology with the chemistry-based EMO
ontology provides an example of one way to enable
computing with both types of classification together.

While this report focuses on the application of our
strategy to functionally diverse enzyme superfamilies, sim-
ilar approaches could be developed for general applica-
tion to broader use cases that also could benefit from
using the reaction- and the protein-centric points of view
together. For example, future extensions to this approach
could be developed for investigation of convergent evolu-
tion of particular functions in different superfamilies and
fold classes.

Materials and Methods

Representation of chemical entities

ChEBI was chosen for describing the chemistry of the
overall transformation because it contains molecular data
in several different formats and can be freely downloaded
and stored locally.

Besides inclusion of the overall reaction as a key chem-
ical descriptor of the chemistry an enzyme performs, the
MEERCat strategy captures more complex information
about reaction mechanism using the reaction scheme con-
cept (not shown here; see (41)). Minimally, this concept
includes at least the overall reaction and its links to specific
EFDs. Alternatively, it can also represent more detailed
information, giving a richer description of the chemistry
that occurs. This may include such features as catalytic
residues, directionality and cofactors. The full schema for
reaction representation implemented in the SFLD using the
MEERCat strategy is shown in Figure S2.

Reaction mapping, similarity calculations and annota-
tion are done using the Reaction Decoder Tool (RDT)

(47). Small molecule mapping and similarity calculations
were done using the Small Molecule Subgraph Detector
(SMSD) toolkit (62). Both are designed to use MDL file
formats (.mol and .rxn) as well as SMILES strings (63). Both
SMILES and .mol formats are stored in ChEBI. The reac-
tions are built from the .mol files in the .rxn format defined
in the MDL file specifications. Reactions are visualized by
taking the constituent molecules and using RDKit (64) to
convert the SMILES strings into 2D representations that are
then shown on the Archive website.

The program used to compare two reactions, Reac-
tionDecoder (ReactionDecoder.jar), was executed using
the default parameters to compare .rxn files. The results
were written to a file in the same directory as the query
and target files. A Linux 2.6 host was used with a local
compute cluster using Java version is 1.8 (also known as
Java 8).

Similarity networks

Similarity networks generated for the enolase superfamily
were computed using algorithms inspired by Pythoscape
(65), tailored to work with the available computing infras-
tructure. Visualization of networks are laid out as thresh-
olded networks (46) using the yFiles Organic layout algo-
rithm as implemented in Cytoscape 3 (66). Lengths of edges
are not meaningful except that sequences in tightly clus-
tered groups are relatively more similar to each other than
sequences with few connections. Thresholded networks
were used to explore qualitative differences between protein
structural- and chemical-similarities for biochemically and
structurally characterized enzymes. This was done by map-
ping SFLD functional annotations (as well as EC number
designations for overall reactions) for subgroups and fami-
lies of the enolase superfamily onto structure and chemical
similarity networks. While the similarities among each type
of network represent quantitative scores as determined by
each algorithm used to compute similarities, the thresholds
for drawing edges (lines) between nodes in the structural
similarity networks were chosen by qualitative inspection
to effectively enable visualization. For structure similarity
networks, thresholds were chosen to enable visualization
of connectivity among the most similar subgroups, leaving
the most dissimilar subgroups disconnected. The threshold
for drawing edges between nodes in the chemical similarity
networks were chosen similarly, with the aim of visualizing
the best connected reactions comprising each subgroup
annotated by reaction similarity or small molecule similar-
ity. For all the network figures presented in the main text
and supplementary figures, the algorithms used, the chosen
thresholds and other details are described in each figure
legend.

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa034#supplementary-data
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Sequence similarity network

The sequence similarity network for the enolase superfamily
was computed and laid out similarly to those computed for
structural similarity networks.

Structure similarity network

A set of representative enolase superfamily structures was
gathered so as to include a single structure for each unique
sequence for which a structure was available in the PDB
(67) as of 3 November 2017. Where multiple structures
were available for a given sequence, a single representative
was chosen with a preference for wild type, liganded struc-
tures missing the fewest number of residues. A structure
similarity network was computed from all-by-all pairwise
comparisons of these 170 nonredundant structures using
the TM-Align algorithm (68) using scripts similar to those
used for generation of sequence similarity networks in the
SFLD. TM-align scores of 0.73 and 0.85 were chosen as the
threshold cutoffs for drawing edges and produced 9460 and
2697 edges, respectively.

Chemical similarity network

These include overall reaction and molecular similarity net-
works (substrates, products and all molecules in a reaction)
for the superfamilies and subgroups for which more than
three reactions are annotated.

Reaction similarity network. Networks were generated
comprising the 33 reactions from the enolase superfamily
for which the SFLD contained reaction data in .rxn format.
For each pair of reactions, a comparison was made using the
RDT. The scoring threshold for drawing edges was chosen
empirically to allow useful visualization of reaction similar-
ity patterns. .rxn files were staged on the SFLD host and
the reaction comparisons were calculated by a multi-node
compute cluster with access to the .rxn files. Resulting edges
were stored in a MySQL database keyed by the hash of the
reaction IDs of the pair of reactions that share the edge.

Reaction similarity was calculated (and stored) three
ways: reaction center, bond change and small molecule
similarity using the EC-BLAST tool (69). The reaction
center similarity metric provides the most nuanced view of
overall reaction similarity as it includes information on both
bond changes and the atomic environment of the bonds and
atoms at which the changes occur.

Reaction center similarity. The similarity between two
reactions can be calculated based on fingerprints. The size
of the computed fingerprints is dynamic as it depends on
the number of reaction patterns in each reaction as well as
the method of similarity used. The reaction center metric
is based on a comparison of the reactive centers of the
reactions. First, atom–atom mapping is calculated. For this

step, changes involved in the transformation are encoded
using a circular fingerprint, which enables the description
of the chemical environment around the atoms of interest.
Figure S9 provides an example illustrating a reaction center
and accompanying bond changes for muconate cycloiso-
merase (EC 5.5.1.1).

Bond change similarity is based on a comparison of
the bond changes (bonds formed/cleaved, order changes
and stereo changes). Following atom–atom mapping, bond
changes are encoded as a fingerprint that is used to calculate
similarity. Bond change similarities for this work are not
shown.

Small molecule similarity is based on comparison of the
chemical structure of the small molecule moieties in the
reactions. The chemical similarity of the full structure of
small molecules used as substrate(s) and product(s) are cal-
culated using the fingerprint generation methods in Small
Molecule Subgraph Detector (SMSD) toolkit (62) from
which a standard Tanimoto similarity (70) is calculated.

Small molecule similarity network

These were computed using an analogous method to that
for the reaction similarity network, except that the SMSD
toolkit was used as the comparison tool. Data gathered
for computing the small molecule similarity network
included the associated SMILES strings to enable the use
of Cytoscape’s ChemViz2 Plugin (71) for analysis of the
networks.

Supplementary Data
Supplementary data are available at Database online.
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