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Abstract: We discuss how to assess computationally the aesthetic value of “small” objects, namely
those that have short digital descriptions. Such small objects still matter: they include headlines,
poems, song lyrics, short musical scripts and other culturally crucial items. Yet, small objects are
a confounding case for our recent work adapting ideas from algorithmic information theory (AIT)
to the domain of computational creativity, as they cannot be either logically deep or sophisticated
following the traditional definitions of AIT. We show how restricting the class of models under
analysis can make it the case that we can still separate high-quality small objects from ordinary ones,
and discuss the strengths and limitations of our adaptation.

Keywords: algorithmic information theory; computational creativity; computational poetry; text
analysis

1. Introduction
1.1. Small Objects Matter

Creative objects with small complete combinatorial representations (hereafter, “small
objects”) can be of extraordinary influence in the creative world. In some cases, the small
object may be a member of a class of other small objects, but an exemplary member of
that class. For example, very short poems, such as Basho’s haiku [1], or hymn texts and
musical settings, such as those of Isaac Watts and William Billings [2], can influence their
readers and listeners in ways well out of scale to their short size. Popular music lyrics
often are around 300 words in length; Madonna’s “Papa Don’t Preach” comes in at 317 [3].
Headlines, such as “Wall Street Lays an Egg” [4], “Ford to [New York] City: Drop Dead” [5],
and “Headless Body in Topless Bar” [6] can make news events that might have mattered
only at the time become timeless, humorous memories.

Often, these short works can be, at least in part, reactions to earlier, larger objects.
William Carlos Williams’s very short poems (such as “The Red Wheelbarrow” [7] or “This
is Just To Say” [8]), and other poems by early 20th century Imagists, were in part a response
to and rejection of the more florid style of Romantic authors [9]; even the Renaissance
era motets of Thomas Tallis (such as “If ye love me” [10]) were set with one note per
syllable as a way of simplifying away from the more complex settings of Latin texts by
their contemporaries or slightly older composers [11]. Similarly, the minimalist composers
Terry Riley and Arvo Pärt created musical works of lasting influence, such as Riley’s “In
C” [12], and Pärt’s “Für Alina” [13] whose entire scores can be placed on a single printed
page; in practice, these composers are among the most popular contemporary composers.

An extreme version of this phenomenon is some objects of conceptual art for which
the point of the object can be to highlight an aspect of human experience not previously
recognized as worthy of study, criticism or celebration. John Cage’s 1952 work “4′33′′” [14],
which has been described as the most important piece of classical music of the 20th
century [15], consists of three timed movements; in each of them, the performers do
not perform on their instruments. Cage’s invitation to be open to atmospheric sound
revolutionized how mid-century audiences interacted with their aural landscape [15], but

Entropy 2021, 23, 1524. https://doi.org/10.3390/e23111524 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4850-661X
https://doi.org/10.3390/e23111524
https://doi.org/10.3390/e23111524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111524
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111524?type=check_update&version=2


Entropy 2021, 23, 1524 2 of 11

the piece itself, as described on a page of music paper, could not be simpler. Similarly, much
Surrealist and Fluxus art with language can be seen as normalizing wordplay [16], and
while Duchamp’s “Fountain” (which is a factory-made urinal) is not obviously reducible
to a small number of bits as a representation, the concept of it can be fully described in a
few words [17]. Yet these small objects and others like them also had massive influence on
the politics and language of the last century.

1.2. Small Objects and Computational Creativity

Computational creativity is also full of systems that create small objects, from text
objects, such as six-word stories [18], to short jokes [19], one-stanza poems [20] and musical
scores of individual songs [21]. Even somewhat larger objects, such as short stories or
plays [22], are still very small in terms of their digital representation.

Given the significance of small objects, any general theory of computational creativity
and of computational aesthetics in particular must be able to analyze such objects. In
particular, in a generate–evaluate–improve loop system [23], the evaluation step must
include a ranking of what is a “good” or a “high-quality” small object. Obviously, this
question is at least partially cultural: “4′33′ ′” would be much less shocking to 21st century
audiences than to those of 1952, for example. However, the joy of good wordplay in a good
headline, a good pun, or a good poetry stanza is at least partially universal.

In this paper, we adapt our recent work [24,25], which uses algorithmic information
theory concepts in assessing the creativity of objects, to the problem of small objects. Our
previous approach does not immediately map over to small objects, but we show that with
some extension of the ideas of typicality, sophistication and logical depth, and with the
design of appropriate models, the algorithmic information theory framework we have
developed can, indeed, be used to assign value to objects large and small. However, we also
discuss the serious limitations of this framework for very small objects, such as “4′33′ ′”,
which cannot easily be distinguished from bugs in generation.

2. Preliminaries
2.1. Representations: Small Objects and Large Objects

Some creative objects are inherently discrete in their forms, while others are funda-
mentally continuous. The combinatorial category includes text documents (e.g., stories,
poetry, play scripts, and text descriptions of other media) and symbolic music (e.g., scores),
while the continuous set includes live performances, photography, movies, and paintings.

Producers of these various art forms probably do not spend much time thinking about
whether they are creating a fundamentally digital object or not, but in a digital era, the
difference is significant for a number of reasons. For example, there is no such thing as
a higher-resolution version of a novel; a proper encoding of the complete text is a full
representation of the creative artifact. Given that novels in English tend to be fewer than
100,000 words, this means that a novel can be represented in ASCII encoding in a few
megabits, and transmitted in less than a second. Adding more storage to the representation
does not make for a better reading experience. Obviously, one could include historical
versions of the text, annotations, criticism, contextual information and other augmentations
of that sort. However, the core text can be stored at a scale of over a thousand novels per
gigabyte; even the entire text of the King James Bible requires only a few megabytes.

By contrast, advances in digital photography technology, for production, storage, and
compression, give viewers increasingly accurate representations of the image that the artist
sought to generate. The 320 × 200-pixel images in sixteen colors that a Commodore 64
computer had in the 1980s could be stored in 32 kilobytes, but offered poor detail, no
ability to properly indicate shadow or dimensionality, and (obviously) low resolution and
color reconstruction. A 2019 Mac has the resolution of 5120 × 2880 pixels in over a billion
colors, requiring roughly 2000 times as much video memory and an astonishing amount
of computation to show a user images. However, it is also able to represent artwork in
vastly greater detail; further, super-high-resolution images of famous artworks can require
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gigabytes of space, and curators and art historians can use them as primary research
tools [26], given that they might well zoom into the image with more detail than is visible
to the naked eye.

This striking contrast in file size may seem like a curiosity, particularly now that we
are far enough removed from the Commodore 64 era that image (and audio and video)
quality issues are rarely major concerns, and most of us do not even store audio files locally
anymore in the streaming music era.

Yet the problem of “smallness” creates real challenges for computational creativity:
with many fast algorithms, we can easily generate hundreds of thousands of poems or
short stories or song lyrics or musical segments in a second, and this creates the need to
also evaluate their quality in real time. This is not easy: authors often identify a collection
of desiderata that characterize good examples of the genre they are creating and then
score the generated pieces against computationally efficiently measurable analogues of
each desideratum, highlighting the most successful piece. Ensuring novelty can be a real
challenge in this context.

2.2. Algorithmic Information Theory Basics

We explore a variety of desiderata for creative objects in a recent paper [24], using
the surprisingly apropos vantage point of algorithmic information theory. Algorithmic
information theory seeks to identify the inherent computation displayed by a combinatorial
object. It gives measure to the universal probability of an object (using an encoding given by
Turing machines) and the complexity of the object (the size of the smallest Turing machine
whose output is that object). In that work, we also adapt other more advanced concepts
of algorithmic information theory, such as logical depth [27] and sophistication [28] to the
more general concepts of computational creativity. This approach gives rise to a collection
of largely new definitions for core computational creativity goals, such as novelty, value,
typicality, surprisingness and others.

To be more specific, we define some of the basic concepts of algorithmic information
theory here that apply to our recent work. The Kolmogorov complexity K(x) of a string
x is the length of the shortest input p to a universal Turing machine U, where on input
p, U computes x and halts. Often, we ignore the details of this universal Turing machine
U, but in our case, we will spend a fair amount of time limiting the possible inputs to U
and restricting the possible behavior of the machine U, or of the machines it simulates.
The conditional Kolmogorov complexity of y given the string x, K(y|x) is the length of the
shortest input to U for which U outputs y, given that U is also provided with a read-only
tape on which the string x is pre-loaded. If K(y|x) � K(y), then the string x provides a
great deal of information in planning to later compute y, while if K(y|x) ≈ K(y), then x
and y are largely unrelated.

One way of understanding K(x) is to see it as coming from a two-part representation
of the object x: a program p that describes the regularity of x and how to compute it,
combined with a number of bits of random information y needed to describe the remaining
details in x. In this formulation, if we use U to simulate the running of the program p on
input y, then U again halts with output x. The usefulness of this idea is that it allows us to
explore other inputs to the program p; naturally, this approach is most effective if p does
not output x on all inputs. In this formulation, a model for x is a program p which, on some
input data y outputs x, and the pair (p, y) forms a two-part code encoding of x.

A clean way of describing the relationships among U, p and y is to see U as running
with two (read-only) input tapes that are initialized with p and y, and a work tape; then,
we say that U simulates that p(y) = x by halting with exactly the string x on the work tape.
To make this domain much more tractable, we require that U computes only on a prefix-free
set, that is, if p′ = pα for some non-empty α and if U halts on (p, y) for any string y, then U
goes to an error state on the input (p′, y) for any y; similarly if y′ = yβ for some non-empty
β, and U halts on (p, y) for any encoded Turing machine p, then U goes to an error state
for the input (p, y′) for any p. The prefix-free property can seem a bit unnatural, but in
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the domain of computer programs, this is equivalent to having an END statement at the
end of the program p, and for inputs, it can represent a special end-of-file character. An
alternative easy way to impose the prefix-free property is to represent a binary object z of
length n by the string z′ = 1n0z; in this formulation, all strings x have a unique 2|x|+ 1-bit
mapping available to them. In this frame, we can consider p to be a partial function where
p(z) = U(p, z′) if U halts on input (p, z′), and p(z) is undefined otherwise.

In this framework, strings x that have short data-to-model codes (p, y) are inherently
more likely as outputs of U than those with only longer encodings. This is best described by
the algorithmic probability of x: given a universal machine U with the prefix-free property
on the inputs it accepts, the algorithmic probability of x is

PU [x] = ∑
(p,y):U(p,y)=x

2−(|p|+|y|).

(Note that because of the prefix-free property, ∑x∈{0,1}∗ PU [x] < ∞, by the Kraft inequal-
ity [29]; we do not typically scale the measure to sum to 1 since we are more often concerned
with the difference in algorithmic probability of two different strings x and x′). We can
further define a program-specific algorithmic probability Pp(x) as following,

Pp(x) = ∑
y:U(p,y)=x

2−|y|,

because of the prefix-free property of U’s second input tape. This probability is the
likelihood of x being the outcome of p, a program of interest. Since the smallest (p, y)
pair that computes x has length K(x), this contributes 2−K(x) to the overall algorithmic
probability of x, which is the largest contribution. Let the language of the model p be the
set L(p) of all strings x that p generates.

We can further restrict the class of valid models p we permit, and will do this exten-
sively in later sections of this paper. For example, we can require that p always accepts
(except when rejecting inputs that are not from its prefix-free set of valid inputs), that p
computes an injective function, that L(p) is a prefix-free set, that |p| < K(x) + c for some
constant c, and even make restrictions on the size or resource use (space or time) of p. We
can require that L(p) = Q for some set of valid outputs Q to guarantee that all possible
objects of a type are output. Some of these restrictions correspond to substantial demands
on the space of valid models and dramatically expand the computational requirements for
a valid model; it is possible that under these restrictions, the shortest model for x might
be quite a bit longer than K(x), or indeed x might no longer be a computable string at
all with the restrictions. It is also possible that testing whether a program p satisfies the
restrictions is itself uncomputable: for example, the requirement that p always accept is
untestable, due to the uncomputability of the halting problem. For any property P that
defines a valid class of models p, KP (x) is the smallest length of representation p ∈ P such
that U(p, y) = x; if no such model p exists, then KP (x) = ∞. One trick that is worth noting
is that while the inputs to U (the representations of p and its input y) may be required to be
prefix-free, we can consider p and y to be extracted from that prefix-free representation, so
by the time the universal Turing machine simulates P on y, the input to p can be assumed
to be of length |y|.

Some Pathological Programs

There are two programs that form special cases that we most likely do not want to
have as optimal models for the string x. The first program is the “print” program, which
requires that its inputs all are of the form 0n1x for |x| = n, and on input 0n1x prints the
string x on the work tape and halts. This program is of constant size (the portion that
verifies that the input is valid can be handled by the UTM U), and for any valid input, 0n1x
assigns algorithmic probability 4−n/2 to the string x in runtime O(n). (In this case, the
algorithmic probability exactly integrates to 1, and so no scaling is needed.) However, we
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can certainly agree that “print” performs no interesting computation, and ideally is not the
best model for any object we wish to view as creative.

The second pathological program is even simpler: it is the “print x” program, which
stores the string x in full detail in its structure, and on every input y, simply prints x on the
output tape and halts. This program is of length n + c for some constant c, and requires
O(n) runtime (regardless of the length of its input, which it ignores); its language contains
only x, which it outputs with probability 1.

Note that the Turing machines we consider in this article are deterministic and non-
probabilistic. As such, actions such as “print out a random string of length n” cannot be
encoded for this model.

2.3. Desiderata for Creativity

We now define several of the key concepts in the evaluation of creative agents and
explain how these concepts integrate with advanced ideas from algorithmic information
theory, as defined in our recent paper [24]. A somewhat unexpected concern comes from
the question of model classes: by restricting to models that represent only finite sets, we
can potentially over-fit on training data and not have a good representation of the novelty
of a new object.

The definition of typicality that we give in our recent paper is that, given an “inspiring
set” S of objects in our class, and a good model M whose language is a superset of S, the
typicality of a new object x is the negative of randomness deficiency of x with respect to M,
or −(miny:M(y)=x |y| − K(x|M)). In this formulation, an object is “typical” for the model
M if M generates it with parameterizations that cannot be better represented by changing
the model itself: the most typical examples of M are those with a typicality of zero.

Of course, as alluded to in the previous section, we must do a good job of defining
the class of models we are considering. In our previous paper, we restrict the class of valid
models to those for which the model complexity along with the data-to-model code of each
member si of the inspiring set is not much larger than K(si); to be specific,

P =
⋂

i
{M : si ∈ L(M), |M|+ K(si|M) < K(si) + c}

for some constant c, and the typicality of x with respect to the model M is as defined in the
previous paragraph.

Similarly, we define the value of an object x in two related ways. The first approach
uses logical depth to model the inherent computation of the object itself: if all of the short
programs for x require substantial computation to generate x, then the best explanation
for the creation of x is one that involves substantial effort, and hence, x is of value. To
be specific, let P = {p : U(p, ε) = x, |p| < K(x) + b} for some constant b, where ε is the
empty string; then ldepthb(x) = minp∈P time(p). Obviously, ldepthb(x) is uncomputable
since if we know what ldepth0(x) are, we could just run all programs for that runtime
until we find one that halts with output x. Again, in this frame, if x is logically deep, it is
valuable since it attests to the likely effort that the creator engaged in while building the
object x. In the algorithmic probability sense, a logically deep string is a string for which
the most likely explanations all require substantial computational effort; while U generates
x with some long, quick programs, the bulk of the probability mass is on the shorter, slower
programs.

The second approach for the value of an object is its sophistication. The sophistica-
tion of an object x is the length of the shortest program for which x is a typical output.
Formally, let P be all machines that compute total functions. Then, given a constant c,
sophc(x) = min{|p| : p ∈ P , U(p, d) = x, |p|+ |d| ≤ K(x) + c}. In this formulation, a high-
sophistication string is one that can be compressed but for which the data-to-model code
requires a fairly complicated model p; the model represents the complexity of the creator
itself, and the object is satisfying because it would only come from a simple creator in a
surprising outcome. To consider our two pathological examples, if K(x)� |x|, then neither
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the “print” program nor the “print x” program is a good model for x since the former
requires a too-long argument and the latter a too-long program. However, if K(x) ≈ |x|,
which is to say, if x is a random string, then the “print” program is a good model for
x. By contrast, if x = 1n, or is some other highly repetitive string, and K(x) ≈ log n or
is some other small value, then the string x is still a typical output of a simple program
that reads in a binary representation of n and prints out that many 1 s. So, despite being
highly-compressible, x is still unsophisticated. Said in a different way, with a small value
of c, the tolerance constant in the definition of sophistication, the minimum total program
for x is a trivial program that reads in a c-length value (the length of x) and then outputs a
string of 1 s of that length.

It is an important theorem that sophisticated objects are all of high logical depth: that
is, if it requires a complex program to compress a non-random string x with a short input,
then the execution of that program will be lengthy. See Antunes et al. [30] for more details.

Unfortunately for us, this overall approach does not work immediately with small
objects. Short objects all have trivial short descriptions; including enough background
information to describe the class that an object belongs to makes the overall program much,
much larger than any small object. As such, the logical depth of any small object is itself
small, and distinguishing among these objects is impossible in this manner. Similarly, for
any finite inspiring set S of small objects, it will be hard to beat the trivial model M that just
lists off those elements, and then simply prints off the new object, with no real computation
involved in any of the explanations. The sophistication of a small object x is going to be
small, because the “print” program has x as a typical output, and yet, it is a small program.
Compressibility, and the effort found in compression, is not sufficient to explain small
objects.

2.4. The Problem of Small Objects, Formally

Now, we at last can present the problem of small objects. We know that small objects
x, where n = |x| is small (and our understanding of x is complete; that is, there exists no
string xα, for |α| > 0 that better represents the object) have the property that K(x) ≤ n. If
n ≤ k for some constant k, how can we identify if x is of high value, or of high novelty or
typicality with respect to an inspiring set S, relative to some other small object y?

The reason why this problem is serious comes from the low value of K(x). Imagine
that x is a haiku. To build a program p to generate a good-quality English language haiku,
we would need to represent English grammar and vocabulary, syllable counts and so on,
all as part of the program p. Thus, p will presumably require megabytes of code and data;
after doing so, we might be able to identify x by an input y that is a bit shorter than x, and
might even be able to express some aesthetic judgment in prioritizing “good” haiku.

However, by our definition of typicality, the program p is an invalid model for x since
K(x) ≤ n, and |p| � K(x) + c, the program p is not allowed. Similarly, ldepthc(x) ≈ n
since the “print x” program is short enough to be a valid answer to the question “how was
x generated?”, and its runtime is approximately n; the “print” program run with the input
x also generates x in approximately n time, and the pair (print, x) has a length that is not
much longer than n. It is possible in some rare cases that a small object might have a very
short program that compresses it even more, but it would be very surprising if the best
very short program allowed the expansion of x in only very long runtimes indicative of
much logical depth. Finally, x cannot be sophisticated because parameterizing the “print”
program to output x will be a valid choice.

How can we use algorithmic information theory to differentiate the value and typical-
ity of small objects?

3. Small Objects and Value

In the previous section, we defined the problem of small objects. Here, we address
this problem, though our solution does not yield a full answer to the problem. In the
affirmative, we present a couple of ways of solving the problem for small objects that are
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part of a large set, and in particular, focus on ranking as an approach that can help us with
the problem. In the negative, we note that tiny objects (those objects x for which not only
x, but the set of all objects of a size smaller or equal to x is itself a small object) cannot be
subjected to our theory; they are handled in Section 3.6.

In all of these examples, we assume that x, a small object we are interested in, is a
member of a finite class Q of possible objects of the same type (haiku, short stories, song
lyrics, etc.). Since x is small, it can also be represented as a member of Q in small space.

3.1. Sets of Small Objects

One simple way to get started at solving the problem of small objects is to prime the
pump with a large set of them. If we are given a corpus S ⊆ Q of one hundred billion haiku,
then S is no longer small, and we can use AIT to assess whether the corpus is itself logically
deep or sophisticated, for example, by assessing if a program that substantially compresses
the corpus requires long runtime, or if only long programs can be parameterized so that
the corpus is a typical output. To be specific, let S be an inspiring set of small objects;
if S is sufficiently large and complex, that S is logically deep or sophisticated by our
previous definition. Then, we can say that the objects in S demonstrate substantial internal
structure; in particular, this means that there are programs that are substantially shorter
than ∑x∈S |x| that generate S much more slowly than just enumerating every example of S.
At a certain point, complex language models can be used to better generate S, with shorter
parameterizations than the actual haiku themselves.

In some sense, this is not surprising. Even if the only modeling we do is to supply
a dictionary of valid English words and their syllable counts, then a new haiku can be
identified by the indices of its words in that dictionary. If we use the CMUdict dictio-
nary [31], then words can be identified by 18 bits (easily shortened on average, using
Huffman codes), and the possible haiku can be distinguished with far fewer bits than
the ASCII representation of a typical haiku. If instead, we code words by their parts of
speech and choose each new word from just the list of possible words of that part of speech,
that will give a shorter coding, and if we describe the sentence structure of the lines in
more detail, then each line will have a still shorter code; the cost will be a larger, and
slower, language model. Further, if the model uses the structure of one haiku to shrink
the coding of similar haiku, this can allow compression of the corpus in the exact same
way that we can compress DNA sequences [32] or other text data. It is our assertion that
if S is a corpus of non-random haiku, but instead of haiku satisfying a specific aesthetic
property (including quality) or creation process, then once we have sufficiently many of
them, we will be able to compress them substantially. Given our previous claim that the
value of creative objects is assigned to objects generated as typical examples of the output
of sophisticated creators, who require substantial computation to generate them, we can
then say the following: small objects generated only slowly by the programs for which
they are part of a large class of similar objects are themselves small objects of high value.

Unfortunately, this approach does not allow us to assess which haiku of S are the good
ones, just that the corpus overall is good and indeed improves as the complexity of the
encoding machine grows.

3.2. Corpora Enumerators

One step up from just having the set S set off as a corpus is to restrict to models for
which p has S as typical outputs. For this approach, instead of asking p to output the entire
set S as a single output, we use p as a program, which, upon input y, generates members of
S as output. Let P consist of those models whose outputs include only subsets of Q: that is,
given an input d, the model p outputs a set p(d) = S′ ⊆ Q. If S is a typical output of p, then
|p|+ |d| ≤ K(S) + c, and we can look at p as being a sophisticated creator of a corpora of
haiku if |p| is large (that is, S is a sophisticated object, and hence p, its likely producer, is a
sophisticated creator).
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In this framework, S is well described by p, and as such, a different typical output
from p (another corpus initialized with an uncompressible d input to p) will also be of
comparable quality and complexity to S. It is possible that the new corpus may be of
different size than S, for example, if we develop a compression strategy in p that does
not individually compress each example from S. This is not a routine for coming up with
better corpora than S. If S is a good collection of largely mediocre objects and accumulates
its sophistication as a whole, the same will be true of any other typical output. Another
concern is to make sure that p has a panoply of diverse outputs, but this is actually not a
live worry: if S can be compressed into a two-part code (p, d), with d as the uncompressible
bits of input to p to generate S, then there cannot exist another uncompressible input (p, d′)
for sufficiently long d′ that generates a closely related S′.

3.3. Small Object Enumerators

An alternative framework requires us to start with external evidence of quality. If
we are given a large corpus S along with a promise that all examples found in S are good
members of Q, we can then compute a model whose job it is to generate members of S
alongside new members. In this frame, we can require that a valid model p is injective and
total, except when its inputs are not from the valid prefix-free set (until all members of
Q are enumerated), and then we specialize to requiring that the members of S are again
typical outputs of p. This requires a change to our definition of “typical”: instead of
requiring that |p|+ |d| ≤ K(x) + c, we require that |d| ≤ K(x|S) + c for all x ∈ S—that
is, the parameterization needed for p to output x is not much longer than the optimal
way of using S to assist in encoding x. We may need to make the constant c a bit larger
than before (in part to account for the injectivity and totality requirement on p). However,
with this frame satisfied, if p is again large (implying that the regularity detected in S
is substantial), then the optimal program p will again output members of Q that have
this regularity as their typical outputs. As S grows and the optimal model becomes
increasingly sophisticated, the model will generate more and more complex small objects,
with substantial code execution underlying them.

To assess a single haiku x, we can attempt inputs to p until we obtain a haiku x that
we are interested in; if x comes as the output of p to an atypical input y (one that can be
compressed substantially), then x is not a typical output of p, and we cannot immediately
assess its quality. If, on the other hand, x does come from a typical input, then its quality is
comparable to that of S.

We can also play a different game with enumeration: we can require that S comes not
just as a set, but as a ranking. Suppose that S is a known set of excellent examples of the
class under consideration, and that there exists a quality ranking s1 ≺ s2 ≺ . . . s|S| of its
inputs. Then, we can require that for all entries si and sj of S, if i < j, then Prp[si] > Prp[sj].
Such a model discovers not only the underlying information found in S, but it also discovers
the inherent properties that differentiate good examples of the genre from bad ones. If
we again limit p so that it must output all members of Q eventually, then we can use the
algorithmic probability of a string x as a measure of the goodness implied by generalizing
the precedence order ≺. As the sophistication of p (the minimum program size needed
to keep the model consistent with the precedence order while treating the details of the
individual haiku as largely random) grows, we can say that we are progressively learning
more and more serious descriptions of what makes for good small objects of the type being
analyzed. This is similar to the notion of uniform Kolmogorov complexity, wherein given
an infinite-length string x, we identify the length K(x; n) of the shortest program whose
output is the n-letter prefix of x, which monotonically increases as n grows; the difference
is that we require that p treats the individual members of S as typical outputs, and we
move in increments of single objects, not bits.
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3.4. Background Knowledge

In the previous subsections, our language model was based only on a corpus of objects
of the same type as x. If we are given a wide set of experiences, it is possible that broad
background knowledge can compress x even more effectively than just using examples
of the same type as x. For example, learning about narrative might be useful for a haiku
generator, even though it only generates seventeen-syllable poems. In this frame, we allow
the prior knowledge to come in two parts, S and T, where S ⊆ Q and T is any binary
string representing prior background experience of the producer, and then the project of
identifying the good-quality examples of Q starts off with a program that can also generate
T. Since we are not concerned that the information of T is typical, we do not have to ensure
that p outputs its results on ordinary outputs; instead, we can compress T and restrict
to models p, where p(0) = T and p outputs the members of S on typical inputs. If p is
substantially larger for the prior knowledge (S, T) than just for T, then p has, in fact, built
up more sophistication in the analysis of the type of objects found in S than in just T, and
its typical outputs, again, will inherit the sophistication (and consequently computational
depth) found in p.

3.5. Tricks That Do Not Work

One trick that does not work is to just describe the set of valid haiku and then demand
that we build a Turing machine whose language is a subset of that language that includes
x, an object we would like to assess. In particular, the “print x” program is a short program
that prints out the object, and which does not print any invalid haiku (since it only prints
x). Similarly, given a small set of haiku, the regularity detected will not be sophisticated: it
is essential to have a sufficiently substantial set S so that even if the best compression is
fairly modest, the model can be smaller than the total size of S.

Another natural trick is to want the members of S to be enumerated as the first |S|
outputs of p, or for p(0) to result in the output S. Neither of these is appropriate, though,
as they encourage the model that is generated to overtrain on the members of S: what is
needed instead is that S, or its members, are typical outputs of p.

3.6. Tiny Objects

We started this paper by considering small objects of minimalism, and in particular,
the piece “4′33′ ′” by John Cage. In this section, we show that unfortunately, no theory
based on AIT can explain the significance of tiny objects of this sort, though they might
assess critiques that explore the significance of tiny objects.

We define a tiny object as an object x for which the set of all objects of size at most |x|
can be treated as a constant. That is, the set of all tiny objects is itself a small object, as is
any subset of that set. A simple example of a tiny object is ε, the zero-character string that
is in some sense equivalent to “4′33′ ′”; we could also imagine a 19-bit string as a tiny object
since there are just 220 − 1 ≈ 106 strings of length at most 19, and a set of this sort can be
represented by a 220 − 1-length bit-string.

Adding a tiny object x to the valid set of objects in Q makes the problem that we
can add x to L(p) for any p in constant space that is below the constant threshold c for
sophistication or b for logical depth, meaning that we can make p output x for arbitrarily
many inputs. (For example, we can add “on even inputs, output x” to the behavior of p).
The tiny object x will then be indistinguishable from when it would be output as a specific
example of an object of high quality. In fact, it is easier to explain that a tiny x has arisen as
the outcome of a bug (and thus occurred very quickly, most likely) than as the result of a
program that generates x through a large amount of computation. We can think of this as
the computational equivalent of the common “anyone could have done that” dismissal of
much conceptual art: even in the frame where a creator has a wide oeuvre and a consistent
artistic practice, and decides, as a result of much serious computation, to exhibit a truly
minimalist result, it will be very challenging for the community to take it seriously as the
outcome of substantive work and not just a trivial provocation.
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4. Conclusions and Future Directions

In this manuscript, we have given the beginning ideas to extend our recent work on
algorithmic information theory as a way of assessing the creativity of digital objects to
the domain of small objects, those with very short representations. While the theory does
not immediately adapt, we show that by using large corpora of small objects, or by using
rankings of small objects known to be of good quality, we can adapt our original ideas to
this new domain.

In general, the direct practical application of our ideas is challenging, in no small
part because of the uncomputability of computing most of the measures in our paper, but
also because getting enough of a corpus of “good” examples of the small objects under
consideration to allow us to build a model capable of identifying good examples as “typical”
ones is itself a significant challenge. Modern language models, such as GPT-2 [33], are
trained on large databases of text examples so as to ensure sufficient fitting of the data to
justify their enormous parameter space and a small parameterization for useful short texts.

Future work in this domain includes identifying other contexts in which we can use
external information as a component of the assessment of the quality of digital objects,
most notably cultural or other background information, or external biographical data
about creators in the model-creation process. Applying algorithmic information theory to
questions of quality is a challenge, but it is an interesting challenge indeed.
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