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Fractal universality in near-threshold magnetic
lanthanide dimers
Constantinos Makrides,1,2 Ming Li,1 Eite Tiesinga,2 Svetlana Kotochigova1*

Ergodic quantum systems are often quite alike, whereas nonergodic, fractal systems are unique and display
characteristic properties. We explore one of these fractal systems, weakly bound dysprosium lanthanide molecules,
in an external magnetic field. As recently shown, colliding ultracold magnetic dysprosium atoms display a soft
chaotic behavior with a small degree of disorder. We broaden this classification by investigating the generalized
inverse participation ratio and fractal dimensions for large sets ofmolecularwave functions. Our exact close-coupling
simulations reveal a dynamic phase transition from partially localized states to totally delocalized states and univer-
sality in its distribution by increasing the magnetic field strength to only a hundred Gauss (or 10 mT). Finally, we
prove the existence of nonergodic delocalized phase in the system and explain the violation of ergodicity by strong
coupling between near-threshold molecular states and the nearby continuum.
INTRODUCTION
Ultracold atomic physics is now poised to enter a new regime, where
far more complex atomic species can be cooled and studied. Magnetic
lanthanide atoms with their large magnetic moment and large orbital
angular momentum are extreme examples of these species. Ultracold
gases of magnetic lanthanides provide the opportunity to examine
strongly correlated matter, creating a platform to explore long-range
dipolar magnetic interactions and exotic many-body phases, such as
quantum ferrofluids, quantum liquid crystals, and supersolids. In par-
ticular, experimental advances in trapping and coolingDy,Ho, Er, and
Tm atoms (1–8) are paving the way toward these goals.

Most lanthanides have a partially filled submerged 4f-electron
shell, which lies beneath a filled 6s2 shell. The 4f electrons are added
with parallel spins, leading to both a large magnetic moment and a
large total and orbital angular momentum. These “unquenched” an-
gular momenta generate a rich atomic andmolecular structure as well
as collective phenomena of these systems (8, 9).

In previous studies (8–11), we explored the scattering and interac-
tions between neutral magnetic lanthanide atoms in the ultracold re-
gime with temperatures well below 1 mK. Over the past few years, we
developed a framework for understanding the complex anisotropic
interactions between these dipolar atoms and their chaotic behavior.
In particular, our theoretical model, in combination with advanced
numerical treatments, bridges the conceptual gap between “simple”
alkali-metal and alkaline-earth atoms and complex lanthanides. It
allows us to explain the origin of the dense spectra and chaotic character
found in the statistics of the observed Er and Dy collisional resonances
as due to the anisotropy of both the short- and long-range interactions
between the atoms.

Here, we apply modern theoretical approaches from quantum
theories of chaos to characterize the observed chaotic distribution
of Fano-Feshbach resonances in weak magnetic fields. We turn to
an analysis of near-threshold bound states and, in particular, the eigen-
state wave functions of our molecular Hamiltonian matrices, which
include both localized and continuum basis states or configurations.
By introducing generalized moments of wave function mixing coeffi-
cients, we are able to identify extended eigenfunctions as well as a
number of localized eigenstates in our system. Localized states are
characterized by a wave function with a small percentage of mixing.
Our extended eigenfunctions exhibit strong, disordered mixing that
is partially chaotic and approaches a unique type of universal behavior.
The degree ofmixing is controlled by the externalmagnetic fieldB.We
compute the fractal statistics of the extended states and attempt to
answer the question ofwhether our quantum systemhas ergodic prop-
erties where all accessible configurations are equally available.

Our model goes beyond the canonical theory of spectral statistics.
It focuses on a discrete set of bound rovibrational levels coupled to
scattering continua, where states exist for any energy. The level statis-
tics are only chaotic in the energy region of the bound states. In prac-
tice, we treat continuawith a discretization procedure by introducing a
large spatial/radial cutoff. As a result, we include a large number of
continuum states to converge the eigenenergies and eigenvectors of
the selected bound states. This approximation works well for many
scattering problems.

Other types of ultracold atomic andmolecular physics experiments
are also starting to influence the developments in the quantum chaos
and disorder theories. This is mainly due to the fact that these ex-
periments have an unprecedented control and tunability of system
parameters. Disorder potentials, for example, can be used to study
Anderson localization (12). For ultracold atoms andmolecules, these
potentials can be created with speckle patterns, obtained by passing
laser light through glass plates that introduce random phase profiles
(13, 14) or by preparing randomly located dipoles in optical lattices,
which are periodic potentials for atoms andmolecules (15, 16). In the
former case, the strength of the disorder potential is determined by the
laser intensity. In addition, atom-atom interactions can be set at a
known value with collisional Fano-Feshbach resonances (17), which
is then seen tomodify the localization (18). For randomly distributed
dipoles, the eigenenergy spectra are controlled by the lattice filling
fraction.

Disordered quantum systems exhibit a rich diversity of statistical
properties and types of extended and localized eigenstates. Within an
early statistical classification scheme, they were often characterized by
two distinct regimes where the nearest-neighbor spacing distribution
(NNSD) of eigenvalues follows either an integrable Poissonian or a
chaoticWigner-Dyson statistics (19). At the same time, many dynam-
ical systems that are partially chaotic exist (20, 21). In this intermediate
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regime, the best fit toNNSD is obtained using Brody distribution (22).
Recent studies of Anderson localization on hierarchical lattices, such
as random regular graphs, point to the existence of a phase transition
that separates extended-ergodic (EE) states from nonergodic, multi-
fractal extended (NEE) states (16, 23–25). The correspondence be-
tween classical and quantum chaos in ultracold dipolar collisions is
examined by Yang et al. (26).

Here, we broaden the class of partially chaotic systems accessible
for theoretical and experimental study.We present the search for frac-
tal dimensions in disordered scattering and near-threshold bound
states of ultracold highly anisotropic bosonic and magnetic 164Dy
lanthanide atoms in an external magnetic field. Their high-density
Fano-Feshbach resonance spectrum was recently seen in a number
of experiments with dysprosium (8, 27, 28) and is without precedent
in other ultracold quantum gases. For comparison, the resonance den-
sity in alkali-metal atom collisions is two orders of magnitude lower.

We concentrate on the hundreds of loosely bound dysprosiummo-
lecular states, with binding energies less than 0.5 GHz when expressed
in units of the Planck constant h, as we increase the strength of an ex-
ternal magnetic field B from 0 to 250 G, where 1 G equals 0.1 mT.
Unique is the notion of locality and the role of scattering thresholds.
In the Anderson Hamiltonian with random onsite energies, this is
defined through the location of the particle or spin. Eigenstates are
superpositions of being at different locations. In our system, the zero–
B-field molecular eigenstates are the natural equivalent (local) states.
These B = 0 states have energies either below or above the thresholds.
Finite B-field eigenstates are then superpositions of zero-field eigen-
states. This is schematically illustrated in Fig. 1. TheB= 0Hamiltonian
matrix (Fig. 1A) is diagonal with values that are randomly distributed.
For nonzero magnetic field, off-diagonal matrix elements appear be-
cause of the Zeeman interaction and are shown as yellow boxes in
Fig. 1B. Our Hamiltonian matrix has a few hundred bands.

By focusing on themixing coefficients ofmolecular wave functions,
we find a transition between two NEE regimes as we increase the ap-
pliedmagnetic field.We also isolate localized states within our chaotic
level structure. The transition is further elucidated by computing the
spectrum of multifractality using the concepts of De Luca et al. (23)
and correlated with statistical descriptions of the nearest-neighbor
energy spacing distributions of the near-threshold quantum states.
Our previous analyses (8, 9) have already shown that the spacing dis-
Makrides et al., Sci. Adv. 2018;4 : eaap8308 16 February 2018
tribution of these resonances closely, but not completely, follows a
Wigner-Dyson distribution for the larger magnetic field strengths.
RESULTS
The Hamiltonian of our diatomic 164Dy quantum system in a homo-
geneous magnetic field with strength B was discussed by Maier et al.
(8), and only a brief account of the features relevant in this discussion
is presented here. The atoms have angular momentum j

→

iwith i = a or
b, ji = 8, and projection mi along the magnetic field. For B = 0, the
total molecular angular momentum J

→ ¼ ℓ
→ þ j

→

a þ j
→

b and parity
(that is, even versus odd relative orbital angular momentum ℓ

→
or

partial wave) are conserved. For even parity, the Hamiltonian de-
scribes coupled rovibrational motion in 81 distinct gerade anisotropic
potentials that depend on the interatomic separation and atomic
spins. A schematic of the molecular potentials, scattering thresholds,
and a rough estimate of the level density in the relevant energy region
is shown in Fig. 2. A sensible choice of basis functions is the weakly
bound and above-threshold continuum B = 0 eigenstates |nJM〉 with
eigenvalueEJM

n . For nonzero field and fixedM, unit-normalized eigen-
functions are then

jY;M〉 ¼ ∑
J≥jMj
∑
n
cnJMjnJM〉 ð1Þ

with expansion coefficients cnJM. The coefficients are determined by
diagonalizing the Hamiltonian, with diagonal matrix elements EJM

n
coupled (and shifted) by the matrix elements of the Zeeman Hamilto-
nian. Crucially, the coupling strengths are proportional to B and only
nonzero when |DJ| = 0, 1. Hence, the Hamiltonian leads to a banded
matrix that is schematically depicted in Fig. 1. Figure 3 shows the exact
eigenenergies of ourHamiltonian for four typicalB-field strengths. The
numerical approach and convergence properties of the Hamiltonian
are described in Materials and Methods.

We analyze the fractal properties of eigenfunctions of near-threshold
bound states of 164Dy2 that can lead to the magnetic Fano-Feshbach
Fig. 1. Structure of our banded Hamiltonian for lanthanide dimers in a mag-
netic field with strength B. Gray boxes correspond to matrix elements with a
zero value. Others correspond to elements with a nonzero value. (A) For B = 0 G,
the Hamiltonian is diagonal. Boxes with the same color are for states with the same
total molecular angular momentum J

→
. (B) For finite B, the Hamiltonian is banded.

The nonzero off-diagonal matrix elements (yellow boxes) are proportional to B.
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Fig. 2. Asymptotic thresholds in the 164Dy + 164Dy system. Schematic of (adia-
batic) molecular potentials for B = 50 G as functions of separation R. For graphical
purposes, partial waves are restricted to even ℓ up to 10. For R → ∞, the poten-
tials dissociate to scattering thresholds labeled by ma + mb = −16,−15,−14,⋯
starting from the lowest limit. Bound states used in the statistical analysis lie with-
in the energy range E=h ¼ �0:5 and 0 GHz just below the energetically lowest
threshold.
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resonances, when their binding energy goes to zero for increasing B.
Our analysis follows the spectral statistics and the spectrum of fractal
dimensions (SFDs) as used by De Luca et al. (23). We define the
generalized moment or partition function as well as a grand potential
for each eigenfunction |Y;M〉 as

IðqÞ ¼∑N

i¼1jcij2q and tðqÞ ¼ � logNIðqÞ ð2Þ

respectively, where q ∈R is a generalization of the inverse of a tem-
perature, and for simplicity, we suppressed the eigenstate labelsY and
M and replaced the indices nJM by the single index i. Here, logN is the
base-N logarithm. Unit normalization of the eigenstates ensures that
I(q = 1) = 1 and t(q = 1) = 0. The function I(q) can also be interpreted
as a generalization of the inverse participation ratio (IPR) to which it
coincides for q = 2.

The functions I(q) and t(q) classify eigenstates of the disordered
Hamiltonian. For example, a localized eigenstate with a single domi-
nant ci has I(q)≈ 1 and t(q)≈ 0 independent of q andN. On the other
hand, near-equal population with |ci|

2≈ 1/N for all basis states i leads
to I(q)≈N1 − q and t(q)≈ q − 1. Hence, the grand potential t(q) does
not depend on the number of basis functions. The set of eigenstates
|Y; M〉 within a small eigenenergy interval that still contains a fairly
large number of eigenstates is ergodic when the “local” (that is, fixed i)
average 〈|ci|

2q〉 over such a subset of eigenstates approaches 〈I(q)〉/N
when N → ∞. The system is thus said to uniformly explore all basis
functions with relatively weak fluctuations. On the other hand, a de-
parture from these relations and, in particular, t(q) ≠ q − 1 is a signa-
ture of nonergodic eigenstates.

Figure 4 (A to D) shows the grand potential t(q) for Dy2 eigen-
states |Y; M〉 with eigenenergy in ½E; 0� at four finite B-field values
and E=h ¼ �0:5 GHz. All curves are monotonic and concave, meet
at q = 0 and 1, and, for q > 1, approach a linear functional form
with a slope that is less than one. The curves can be compared to
t(q) = 0 for a localized state (or any of our eigenstates at B = 0) and
t(q) = q − 1 for ergodic GOE states. Here, GOE is an abbreviation
for the Gaussian orthogonal ensemble of N-dimensional Hamiltonians,
whose matrix elements are randomly chosen from a Gaussian distri-
bution. Averages over eigenstates within a small energy window for the
whole ensemble of these GOE Hamiltonians satisfy t(q) → q − 1 for
N → ∞. In the context of metal-to-insulator transitions (29), 〈t(q)〉
has been used to distinguish insulator phases with 〈t(q)〉 = 0 from
Makrides et al., Sci. Adv. 2018;4 : eaap8308 16 February 2018
metallic states with 〈t(q)〉 ≠ 0. Figure 4 (A to D) also shows that t(q)
depends not only on near-threshold eigenstates but also on magnetic
field. At B = 10 G, with already significant Zeeman couplings between
zero-field basis states, a relatively large number of localized states with
a slope close to zero for q > 1 remains. For stronger B fields, mixing
increases and more eigenstates have a finite slope. At B = 250 G, only
one state remains localized, whereas t(q) for all other states seem to
collapse onto a single universal curve with a critical slope that is less
than one for q > 1. We identify this as the unique universal charac-
teristic of disorder in our system.

We further quantify these observations by studying the fractal
dimensionDq = 〈〈t(q) − t(1)〉〉/(q − 1). Here, 〈〈⋯ 〉〉 indicates a double
average over eigenfunctions with energy in ½E; 0� and over realization
of the molecular Hamiltonian. In particular, we changed the strength
of the strongest anisotropic potential contribution, as identified by
Maier et al. (8), in the zero-field Hamiltonian over ± 5 % from its
physical strength assuming a uniform probability distribution. This
range of strengths is sufficiently large that theB=0bound state spectrum
changes significantly but, at the same time, is small enough to not change
its mean spacing and random distribution. (A ± 5 % variation also re-
flects the uncertainty in this strength.) As a consequence, the accuracy of
our statistical analysis improves without changing our conclusions.

Figure 4E shows the computedDq as a function ofB for q= 1 and 2.
For q → 1, Dq corresponds to the derivative of averaged t(q) with
respect to q and, in fact, is an effective entropy

S ¼ lim
q→1

Dq ¼ �∑
N

i¼1
jcij2 logNðjcij2Þ

* +* +
ð3Þ
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Fig. 3. Near-threshold eigenstate energies at four typical B-field values as
indicated below each of the panels.
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Fig. 4. Grand potential and fractal dimension of the weakly bound Dy2 wave
functions. (A to D) t(q) as a function of q for all weakly bound eigenstates (dark
red curves) within an E=hj j ¼ 500 MHz energy range below the threshold at B =
10, 100, 200, and 250 G, respectively. The corresponding eigenenergies for these
four B fields are shown in Fig. 3. The two dashed straight lines correspond to t(q)
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d0 = 0.57 and 0.49, respectively.
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of the probabilities |ci|
2. By construction, the entropy is 0≤ S≤ 1 and

only equals one when jcij2 ¼ 1
N= for all i. By construction, the domain

of the entropy is 0≤ S≤ 1 and S only equals one when jcij2 ¼ 1
N= for

all i. The choice ofDq = 2 is a compromise. It gives a reasonable estimate
of the large q trends and, at the same time, describes the dimensionality
near the IPR point.

Two observations can bemade about Fig. 4E. First, we note that the
fractal dimension Dq depends on q. This is a characteristic of a multi-
fractal system. Second, at fixed q, the entropy S andD2 linearly increase
with magnetic field starting from zero, that is, the system becomes
chaotic and then saturates at a finite value near 0.5 much smaller than
one. The transition between the two behaviors occurs between 50 and
100G. Figure 4E also shows the square root of the variance of the frac-
tal dimension as a function ofB. A smaller variance indicates increased
universality with a larger fraction of the eigenfunctions with a similar
t(q). It is smallest for B > 200 G.

A measure of the multifractality of Dq or, equivalently, the q
dependence of 〈〈t (q)〉〉 is given by the SFD or the Legendre transform
of 〈〈t(q)〉〉 (29). It is defined as f ðaÞ ¼ minq∈R½qa� 〈〈tðqÞ〉〉� and
implies d〈〈t (q)〉〉/dq = a. Figure 5A shows f(a) as functions of a for
six representative B values ranging from 1 to 250 G. Each curve is
defined between (a− , a+) with 0 < a− < a+. They are positive and re-
semble half of an ellipse with a maximum value fmax ≈ 1 at a = amax,
the slope of t (q) at q = 0. A small value of f(a) indicates that
corresponding tangent lines of t (q) extrapolate to the origin. Finally,
a− is the slope of t (q) when q → + ∞.

We characterize the behavior of f(a) as multifractal with a trend
toward the ergodic limit for increasing magnetic field strength, where
the ergodic limit corresponds to a delta function at a = 1. For increas-
ing B, the SFD sharpens up with a maximum that shifts to smaller a
and approachesamax = 2.3. The approach is shown in Fig. 5B. The SFD
reaches a universal function for B > 50 G, leading to the conclusion
that weak multifractality persists over the whole range of magnetic
fields accessible in our numerical analyses. In contrast to the results of
De Luca et al. (23) for a Bethe lattice, we do not obtain a triangular-
shaped SFD even for small magnetic field strengths. The shape of
our curves is always flat-topped, typical for weak multifractality.
Makrides et al., Sci. Adv. 2018;4 : eaap8308 16 February 2018
The lack of ergodicity in the collisional dynamics of Dy atoms will
have significant implications for the observed spectra and invites fur-
ther investigation.

The onset to universality has its origin in our Hamiltonian matrix
structure. It contains the B = 0 G eigenenergies on the diagonal, with
mixing and shifts induced by the ZeemanHamiltonian with each of its
matrix elements proportional to B. Naively, we can then expect that
the expansion coefficients of eigenstates |Y, M〉 become independent
ofBwhen the energy scale of the Zeeman interaction is larger than that
of theB= 0G eigenenergies. However, in practice, the energy scales for
the two contributions are hard to estimate because of the presence of
the (discretized) continua near our threshold bound states with energy
between ½E; 0�. The coupling strength between the bound and spatially
extended continuum states has a different character than that between
bound B = 0 G basis states. We have only been able to empirically de-
termine thisB value (that is, between 50 and 100G) from the spectrum
of the fractal dimensions.

We finish by connecting the statistical properties of eigenstate
wave functions with those of the NNSD of their eigenenergies. This
spectral statistics of quantum systems is often characterized by either
a Poisson distribution PP(D) = e−D or a Wigner-Dyson distribution
PWDðDÞ ¼ ðp=2ÞDe�pD2=4 (30), where D = s/〈s〉 is the dimensionless
scaled spacing between levels. The Brody distribution is used to de-
scribe quantum systems that experience a transition from Poisson to
Wigner-Dyson statistics (21). Here, we construct the NNSD as a his-
togram fromeigenenergy spacingswithin the energy interval½E; 0�and
over several realizations of the molecular Hamiltonian, as described
in the previous subsection. We then determine the Brody param-
eter h that provides the best fit of the Brody distribution PðD; hÞ ¼
bð1þ hÞDhe�bDhþ1

(22) to the histograms, where b is a known con-
stant such that ∫∞0 D

kPðD; hÞdD ¼ 1 for k = 0 and 1.
Figure 6 shows our Brody parameter h as a function of B be-

tween 0 and 250 G. Examples of our fitting of the Brody parameter
to our histograms for two B fields, 25 and 160 G, are presented as
insets. We observe that the Brody parameter changes monotonically
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from h ≈ 0.1 for B ≥ 1 G to an h just below 1 for B > 100 G. Hence,
our system undergoes a transition from an integrable system with
Poissonian distributed levels to a “hard-chaotic” system that satisfies
theWigner-Dyson distribution. Crucially, we observe two physical re-
gimes: For B < 50 G, the Brody parameter increases linearly, whereas
for larger field strengths, it saturates to an asymptotic value and
becomes universal. The critical or transition B value is ~60 G, as
defined in the figure, and closely follows the universality as observed
in the fractal dimension and multifractality of Figs. 4 and 5.
DISCUSSION
Here, we obtained a detailed understanding of the chaotic quantum
dynamics of two weakly bound bosonic lanthanide 164Dy atoms in a
magnetic field. The near-threshold chaotic molecular structure is a
consequence of the magnetic Zeeman interaction–induced mixing
of 81 gerade electronic potentials of Dy2 that dissociate to two
ground-state Dy atoms (31). The remarkably complex nature of the
electronic structure is due to the large total and orbital angular mo-
mentum of the dysprosium atom.

Our work was motivated by successful experiments in producing
quantum degenerate gases of dysprosium atoms (3, 8) as well as the
measurement of its densemagnetic Fano-Feshbach spectrum. The lat-
ter is directly related to the collisional properties of atoms in an optical
trap. In a previous study of chaos in this system (8), we showed that the
NNSD of Fano-Feshbach resonances was closer to theWigner-Dyson
distribution than to the Poisson distribution.

Here, we identified the key parameter that governs chaos and ran-
domness of the vibrational diatomicwave functions and how it changes
with increasing magnetic field to a system with a higher level of chao-
ticity. We analyzed the fractal properties of the Dy2 eigenfunctions in
the near-threshold region, which allowed us to characterize the degree
of localization and ergodicity for each eigenstate. We were surprised
to find that some states in the chaotic system are localized, whereas
others are nonlocalized, making our system multifractal. Moreover,
by increasing the magnetic field strength, we are able to change our
system from partially chaotic to completely chaotic with a remark-
able degree of universality. At the same time, we realized that the
degree of ergodicity, characterized by fractal dimensions Dq, has a
limiting value of ≈0.5 for large B, where complete ergodicity cor-
responds to Dq = 1.
MATERIALS AND METHODS
Our Hamiltonian contains bound states as well as a continuum spec-
trum separated by a threshold at energy E = 0 corresponding to two
ground-state Dy atoms at rest and in their energetically lowest
magnetic Zeeman level. Following the study of Maier et al. (8), it suf-
fices to study even parity states withM = − 16, limit the sum over J to
≤ Jmax, and useB= 0G eigenstates withEJM

n ∈½Emin; Emax�, where Emin <
0 < Emax. The continuum spectrum is “discretized” by limiting the ex-
tent of the vibrationalmotion to a large radius chosen such that weakly
bound B = 0 states are unaffected. The number of basis functions N is
then finite.We use Jmax = 36, Emin/h = − 120GHz, Emax/h = + 60GHz,
and a largest radius of 52.9 nm. Thus, Eq. 1 hasN= 46,300 coefficients.
Approximately 7% of the matrix elements of our banded matrix are
nonzero, and ≈15% of the basis states have EJM

n < 0. The value of
matrix elements between continuum states is a few orders of magni-
tude smaller than those between bound states.
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Our statistical analysis looks at eigenstates |Y;M〉 with energy in
the small energy interval ½E; 0�with E < 0 and jEj≪jEminj;Emax. The
energy of these eigenstates has converged with respect to the basis
size. We chose E=h ¼ �0:5 GHz to correspond to the nominal Dy
Zeeman energy, mBB, at the largest B-field strengths studied. Here, mB
is the Bohr magneton and mB=h≈1:4 MHz/G. There are approxi-
mately 150 basis functions, with energy EJM

n ∈½E; 0� corresponding
to a mean spacing of 〈s〉/h = 3.3 MHz. Their NNSD is Poissonian
(8). Energy shifts induced by the diagonal Zeeman matrix elements
are already larger than this mean spacing when B = 1 G, a field that is
smaller compared to our typical field strength.

We emphasized that the matrix size of the lanthanide Hamiltonian
does not play the same role as it typically does in the conventional
random matrix Hamiltonians (32). For random matrices, the eigen-
energies do not converge to fixed values with increasingN. The statis-
tical properties of eigenpairs as a function ofN are often an integral part
of a study and rely on the notion that basis functions are equivalent
(that is, adding spins in aHeisenbergmodel or lattice sites in an atomic
Hubbard model). This is not true for our Hamiltonian because basis
states have a distinct physical interpretation. We can increase Jmax

and thus N; however, there are diminishing returns from these states,
because both the eigenenergies converge and the additional number of
zero-field states within the energy range [Emin, Emax] decreases.
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