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Agents: Contrarian Effects by Spatial
Correlations
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We investigate the dynamics of opinion formation in a group of mobile agents with noisy

perceptions. Two models are applied, the 2-state Galam opinion dynamics model with

contrarians and an urn model of collective decision-making. It is shown that models built

on the well-mixed assumption fail to represent the dynamics of a simple scenario. The

challenge of accounting for correlations in the agents’ spatial distribution is overcome

by different heuristics and supported by empirical investigations. We present a concise,

simple 1-dimensional macroscopic modeling approach that can be tuned to correctly

model spatial correlations.

Keywords: swarm robotics, swarm intelligence, opinion dynamics, collective decision making, swarm robotic

system

1. INTRODUCTION

Group behaviors of interacting, mobile agents are of interest in many fields and many models have
been published. So-called microscopic models (also known as multi-agent models, agent-based
models, or individual-based models) explicitly incorporate properties of each member of the
group such as position, direction, and internal state. Examples are models of self-propelled
particles (Vicsek et al., 1995; Czirók and Vicsek, 2000; Levine et al., 2000) and active Brownian
agents (Schimansky-Geier et al., 1995; Helbing et al., 1997; Schweitzer, 2003). So-called
macroscopic models abstract away such individual properties (e.g., derivations in the mean-field
limit) and reduce the state space to a few variables. Examples are diffusion models of animal
groups (Okubo, 1986; Hillen and Painter, 2009; Degond and Yang, 2010; Vicsek and Zafeiris,
2012), robots (Galstyan et al., 2005; Hamann, 2010, 2018; Prorok et al., 2011), and general models
of self-propelled particles (Czirók and Vicsek, 2000). Collective decision-making, in particular, is
observed in many systems such as natural swarms (Franks et al., 2003; Nicolis and Dussutour,
2008; Yates et al., 2009), artificial swarms (Schmickl et al., 2008; Garnier et al., 2009), and in
human groups and societies (Galam and Moscovici, 1991; Helbing and Molnar, 1997; Hegselmann
and Krause, 2002; Galam, 2004; Galam and Jacobs, 2007; Motsch and Tadmor, 2014). Naturally,
observations and descriptions of these systems take place on two different levels: the microscopic
level, where an individual agent is observed and described, and the macroscopic level, where the
group of agents is considered as a whole. This categorization holds also for models of opinion
dynamics. Microscopic models represent internal states and in the case of spatial models also
positions of each agent which increases the computational effort that is to be invested to evaluate
the model. In macroscopic models one abstracts from details of individual agents, for example, in
a mean-field approach (Schweitzer, 2002), and tries to focus on important macroscopic features.
The macroscopic models are the epistemologically more promising approach because they allow
for deeper insights as stated by Schweitzer (2003):
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“To gain insight into the interplay between microscopic

interactions and macroscopic features, it is important to find

a level of description that, on the one hand, considers specific

features of the system and is suitable for reflecting the origination

of new qualities, but, on the other hand, is not flooded with

microscopic details.”

There are macroscopic models that are built on simplifying
assumptions, for example, there are models of opinion dynamics
that assume well-mixed agent distributions (Schweitzer et al.,
2002; Galam, 2004), that is, uniform distributions of agents
independent of their current opinion. While it is possible, for
example, to derive a Fokker-Planck equation of Brownianmotion
with drift based on integration over short time intervals assuming
uncorrelated collisions of particles (Haken, 1977), it is in general
not possible for biological swarm models due to the breakdown
of the “propagation of chaos” (Carlen et al., 2013).

A frequently used method to incorporate spatial correlations
of agents and interactions (Mateo et al., 2017), be it due to spatial
relations or relations based on opinions, is that of voter models
based on networks. Opinion dynamicsmodels and swarmmodels
have both two different types: discrete (Sood and Redner, 2005;
Holme and Newman, 2006) and continuous (Toner and Tu,
1998). Whether spatiality is of importance in swarm and opinion
dynamics models is questioned. For example Huepe et al. (2011)
argue that

“spatial geometry may have less of an impact on collective motion

than previously thought.”

A simple modeling approach is based on so-called “adaptive
coevolutionary networks” which are of low dimension and non-
spatial (Gross and Blasius, 2008; Huepe et al., 2011).

We consider the well-mixed assumption as too imprecise
for certain applications (Hamann, 2012, 2013) because agent
distributions might be intrinsically correlated and consequently
models based on the well-mixed assumption have limited
accuracy. These applications, such as collective motion of
locusts (Yates et al., 2009), hung elections (Galam, 2004), or
aggregation behaviors of robot swarms (Schmickl and Hamann,
2011), are of importance. Hence, we assume that spatial
correlations exist but we also want to restrict ourselves to very
concise and easy to handle models of low dimensions. The
motivation of this paper is to show how the limitations of the
well-mixed assumption can be overcome while still keeping the
models concise and easily manageable.

In the following, we investigate a binary decision problem
in a group of mobile agents with noisy perceptions and
compare results of two opinion dynamics models: first, the
2-state Galam opinion dynamics model with contrarians (Galam,
2004) and, second, an urn model for collective decisions in
swarms (Hamann, 2012). The Galam model is particularly suited
to the investigated multi-agent system because it accounts for the
size of subgroups, that influence each others’ opinion, which is
also explicitly set in the multi-agent system. However, it does
not account for spatial correlations between agents. The urn

model is of interest because it allows for a description of spatial
correlations but has no concept of subgroup sizes.

The multi-agent system that is investigated here was
introduced before (Hamann and Wörn, 2007; Hamann et al.,
2010) and was labeled “density classification scenario” because
the agents’ choice is set close to a symmetric setting initially
and the supposed task is that all agents should converge to
the choice that had a slight majority initially. Here, we are not
interested in collective decision-making as such but only the
spatial correlations of the opinion dynamics. The agents show
a simple form of motion. They move like billiard balls without
friction. They move straight within a square and bounce off each
other and the bounding walls.

2. DENSITY CLASSIFICATION SCENARIO

In this scenario, we have a population of N agents that are in
one of two states: either they are in favor of opinion A or in
favor of opinion B. Originally this scenario is interpreted as a
task that is assigned to a population to estimate whether there
are initially more A- or more B-members, that is, to converge on
a majority decision (Hamann and Wörn, 2007; Hamann et al.,
2010). This problem is derived from a well-known example of
emergent computation in cellular automata (Packard, 1988).

We define this system as a 2-d self-propelled particles model.
The particles move in a bounded square of dimensionless side
length 1 (unit square). Collisions between particles and bounds
are elastic.

Paricles also avoid collisions with each other by bouncing off
as soon as they are within a collision avoidance radius r = 0.01.1

All particles have equal velocity of 0.01 at all times (seeTable 1 for
all parameters). Particle positions x(t) and states o(t) have initially
a random uniform distribution (i.e., initial positions sampled
from a uniform distribution; 50% of agents in favor of A, 50%
in favor of B).

We include an explicit stochastic component because we
assume errors in the opinion recognition. We assume that a
particle recognizes the state of an encountered particle correctly
only with a given probability 1−γ = 0.8. A particle perceives the
state of particle j as

p(oj(t)) =

{

oj(t), with probability 1− γ

oj(t), with probability γ
, (1)

whereas oj is the opposite of the opinion of particle j.
The particles have an internal memory N . Whenever at

least two particles i and j are mutually within perception
range r = 0.01 (‖xj(t) − xi(t)‖ 6 r), they perceive the opinion
of each other (p(oi(t)) and p(oj(t)) respectively), and store it in
their memoryNi∩{p(oj(t))} anNj∩{p(oi(t))} respectively. Once
a particle had |N | = 5 of these particle–particle encounters2, it

1Note that the distance r = 0.01 is not always enforced because of the particles’

high velocity of 0.01 per time step. Distances between particles below r = 0.01 do

occur. Once such an event is detected particles turn away from each other.
2Choice of five is arbitrary, while odd numbers are preferred to avoid tie-breaking

methods; the agent does not change its opinion until five encounters have occurred;

Frontiers in Robotics and AI | www.frontiersin.org 2 June 2018 | Volume 5 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hamann Opinion Dynamics With Mobile Agents

TABLE 1 | Parameters of the density classification scenario and the values used

for simulations.

Parameter Value

Swarm size N 150

Square world side length 1

Avoidance distance 0.01

Agent speed per step 0.01

Iterations per simulation run 8× 103

Repetitions M (independent sim. runs) 1× 106

reconsiders its current opinion, converts to the opinion that was
more frequent in these five encounters, and resets its memory
toN = ∅. The above given parameters are set as stated inTable 1,
such that a particle does not travel far (i.e., only fractions of the
unit square) to gather five opinions. Hence, the system is not
necessarily well-mixed, there is a chance for spatial correlations
to form, and a particle’s memory N can be interpreted as its
perception of its neighborhood.

3. MODELING APPROACH I: GALAM
MODEL

In the following we apply the 2-state Galam opinion dynamics
model (Galam and Moscovici, 1991; Galam, 1997, 2008). It
is a non-spatial model with discrete time and based on
a population of N agents. In each round, agents come
together in small groups of size m that are randomly picked
without any bias. Within these groups a local majority rule
is applied (i.e., the whole group switches to the group’s
majority opinion). If m is odd, tie breakers need not to be
considered.

The density classification task is similar to the 2-state
Galam opinion dynamics model concerning the decision process
which is based on observing five particles and subsequently
switching to the state of the majority. However, the formation
of these virtual groups is neither necessarily mutual due to
asynchronous decisions nor uncorrelated due to the spatial
distribution of particles. Still, we apply Galam’s model as
an approximation. We set the group size to m = 5. In
addition we apply Galam’s extension of his model, the so-
called “contrarians” (Galam, 2004). Galam’s assumption is
that a fraction a of the population are contrarians, that
is, they always switch to the minority opinion of their
group. We use the contrarian concept here to model effects
due to spatial correlations, which will become clear in the
following.

The model is based on one state variable st . Say we count a
number of At agents with opinion A at time t, then we define
the global opinion state st = At/N which is the fraction of the
population with opinion A. The dynamics of the state variable st

if there are more neighbors, a random subset is chosen to keep the limit of five

encounters.

according to the 2-state Galam opinion dynamics model with
contrarians for a group size ofm = 5 is

st+1 = g(st , a) = (1− a)(10s3t (1− st)
2 + 5s4t (1− st)+ s5t )

+ a(10(1− st)
3(1− (1− st))

2 + 5(1− st)
4(1− (1− st))

+ (1− st)
5). (2)

This model is based on simple probability theory and
combinatorics, for details see Galam (2004). In Figure 1Awe give
a plot for 1st = st+1 − st = g(st , a)− st with a = 0. For g(st , a =

0) we have two stable fixed points (s∗1 = 0 and s∗2 = 1)3. Due
to the noisy perception of particles in the density classification
task, this does not well correspond to the observation in the
simulations. Even for s = 0 agents will on average still perceive an
effective state of s = γ (discussed below concerning Figure 1B).

Next, we want to empirically investigate the spatial
correlations between particles in the density classification
simulation. We define the local perception sloci (s, t) of the global
state s by a particle i as

sloci (s, t) =

{

1
|Ni(t)|

|{o|o = A, o ∈ Ni(t)}|, |Ni(t)| > 0

undefined, |Ni(t)| = 0
. (3)

In order to get statistically useful measurements, we define the
local opinion state sloc(s, t) as the average over an ensemble of
M independent simulation runs and over a population N for a
given global opinion state s

sloc(s, t) =
1

MN

∑

M

∑

N

sloci (s, t). (4)

sloc(s, t) is the state of the neighborhood as it is perceived
locally by an agent of any opinion including the particles’
noisy perceptions and averaged over an ensemble of simulation
runs. The relation between sloc(s, t) and s(t) was determined
empirically and as expected it was found to be almost linear,
see Figure 1B. Hence, we follow a two-step process of first
accounting for the known influence by the agent’s imperfect
perception (γ ) and then studying the remaining deviation. We
approximate it linearly

sloc(s, t) = c1s(t)+ c2. (5)

For perfect perception γ = 0 we would expect sloc(s, t) ≈

c1s(t). Here we have γ = 0.2. sloc is time-variant but converges
approximately to

sloc(s, t′) ≈ (1− 2γ )s(t′)+ γ , (6)

for t′ ≫ 0. This is a modeling approach based on a well-
mixed assumption, not an attempt to fit the measured data. In

3s∗1 = 0 and s∗2 = 1 are stable fixed points because in these states all particles

have the same opinion and without noise these system states are absorbing (i.e.,

once reached the system cannot leave them anymore). Also note the instable fixed

point s3 = 0.5.
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a well-mixed system (without any spatial correlations) an agent
perceives a local state of sloc = γ for s = 0 and sloc = 1 − γ

for s = 1. For γ = 0.2 we get sloc(s′t) ≈ 0.6st′ + 0.2 (plotted in
Figure 1B). A plot of g(sloc(st), 0) in Figure 1A shows the effect of
sloc. The two stable fixed points move inwards toward the middle
and the absolute values decrease.

g(sloc(st), a = 0) gives the exact values of 1st for an assumed
well-mixed setting, that is, if an agent’s current opinion is truly
uncorrelated with its position. However, the spatial distribution
of agents is not independent from the agents’ opinion. A spatial
correlation is likely to emerge based on the definition of the
agent’s behavior. The opinion of an agent is directly influenced
by its neighbors, consequently they are correlated. This can also
be determined in simulation by measuring the average, locally
perceived opinion state for agents of a given opinion (measured
during the last 100 time steps of the simulation, that is, 7, 900 <

t 6 8, 000); slocA (s) gives the state perceived by agents of opinionA

and slocB (s) gives the state perceived by agents of opinion B. The

differences between slocA,B(s) and 0.6s + 0.2 show clearly a bias
depending on the agents’ current opinion as seen in Figure 1C

which is evidence of a correlated spatial distribution of agents.
The neighborhood of an agent with opinion A is populated by
more agents of opinion A than on average for any state (for
s < 0.8) and respectively for agents with opinion B.

We need an adjustment of the Galam model to account for
spatial correlations. Although there is no explicit concept of
contrarians in the density classification scenario, the contrarian
approach can be used to compensate the effect of spatial
correlations. That way the contrarians reflect the observed bias
away from the current global majority due to local effects.
For s<0.5 contrarians model the excess of perceived particles
with opinion o=A by particles with opinion A and for s >

0.5 contrarians model the excess of perceived particles with
opinion o=B by particles with opinion B. With increasing
contrarian density a the two stable fixed points move further
inwards until they would unite for a ≈ 0.0555 leaving one stable

FIGURE 1 | System dynamics 1s for the Galam model; measurements of spatial correlations and 1s in the agent-based model.
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fixed point at s = 0.5. In addition, we also scale the absolute
values of g(sloc(st), a) by multiplying a constant d as done in
Figure 1A. Fitting dg(sloc(st), a) via a and d to the empirically
obtained data gives a good result for values 0.17<s<0.83 but
has systematic errors outside of that interval, see Figure 1D4.
Data was obtained by measuring values of 1st as a function of
the current system state st (i.e., 1st(st) = st+1 − st) during the
last 100 time steps of the simulation, that is, 7, 900 < t 6

8, 000. Plotted values are averages over all samples collected of
the respective 1st(st).

4. MODELING APPROACH II: URN MODEL

As an alternative to Galam’s model we apply an urn model
that was originally introduced as a model of collective decision-
making in swarms (Hamann, 2012). The main idea is that we
have a state-dependent probability of positive feedback Pfb(s).
The current majority opinion spreads for Pfb(s) > 0.5 and is
diminished otherwise.

The idea of this urn model is as follows. An urn is filled
with N agents which are either associated with opinion A or
B. The game’s dynamics is turn-based. First an agent is drawn
with replacement and its opinion is noted. Then the opinion of
a second agent is changed determined by that noted opinion.
Say, first, an agent with opinion A is drawn. The probability of
drawing an agent with opinion A is implicitly determined by
the current number of agents with opinion A in the urn. The
subsequent change of opinion of a second agent is determined
by the probability of positive feedback Pfb(s) and effects either a
positive (an agent in the urn changes from opinion B to A, the
fraction of the first drawn agent increases) or a negative feedback
(an agent changes from opinion A to B, the fraction of the first
drawn agent decreases). The feedback is determined explicitly by
probability Pfb(s) that we define below and that also depends on
the current global opinion state s. Following Hamann (2012), the
state variable’s dynamics is defined by5

1st = st+1 − st = 4e(Pfb(st)− 0.5)(st − 0.5), (7)

for a scaling constant e. The rationale of the urn model is to
emulate, by the first draw, the frequency that an agent of a certain
opinion happens to persuade another agent. The second draw
models the average success rate of the persuasion based on the
current global state. Thus, the urn model has no explicit concept
of group sizes as Galam’s model and only implicitly assumes a
minimal setting of a bilateral meeting. Also spatial correlations of
agents are not incorporated explicitly but can be represented by
the probability of positive feedback Pfb(s).

Following Hamann (2013), the probability of positive
feedback can be measured in the simulation based on

4Summed squared error: 4.741× 10−3.
5This equation is easily obtained by basic probability theory considering all four

cases of drawing an agent of either color followed by either positive or negative

feedback.

FIGURE 2 | Measured positive feedback with fitted polynomial for the urn

model and system dynamics 1s compared to measurements of the

agent-based model.

observations of opinion revisions

Pfb(s) =

rb(s)
rb(s)+ra(s)

− 1+ s

2s− 1
, for s 6= 0.5,

min(s, 1− s) 6
rb(s)

rb(s)+ ra(s)
6 max(s, 1− s), (8)

for rb(s) is the absolute number of observed individual decision
revisions from opinion A to B over any given period and ra(s)
denotes revisions from B to A. The measured function Pfb(s)
is fitted by a polynomial of 4th degree6 which is set mirror-
symmetrical in s = 0.5. The result is shown in Figure 2A. Based
on this empirically obtained function Pfb(s) the dynamics of the
system is then defined by Equation(7). A comparison to data
from simulations is shown in Figure 2Bwhich shows a very good
fit7.

6polynomial f (x) = c3x
4 + c4x

3 + c5x
2 + c6x + c7 with 0 6 f (x) 6 1 to

model a probability, c3 = −21.3144, c4 = 29.7651, c5 = −16.1583, c6 = 4.2788,

c7 = 0.0720295.
7Summed squared error: 3.715× 10−7.
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5. DISCUSSION AND CONCLUSION

We have reported two approaches to overcome the limitations
of the well-mixed assumption in models of opinion dynamics.
Both approaches are a combination of mathematical modeling
and empirically obtained parameters.

The 2-state Galam opinion dynamics model with contrarians
has systematic errors for extreme values of s, see Figure 1D. We
chose to interpret the effect of spatial correlations as a contrarian
effect. Hence, we used the main empirical element of Galam’s
model, parameter a specifying the fraction of contrarians, but
the model still suffers from the simplifying assumption of well-
mixed particles. The errors could also not be overcome by simple
extensions of fitted sloc-functions (data not shown). Despite this
shortcoming, we gain a valid insight. A spatial correlation can be
a local group of particles that share a similar opinion. However,
they can be contrarian to the global majority. While this local
group of particles acts according to properly defined decision
rules, its global effect is that they oppose the majority as if they
would defect the system in the way Galam’s contrarians do.

In the case of the urn model, a very good fit to the simulation
data was obtained using the probability of positive feedback
that is measured following Equation (8). The urn model has
a comprehensive empirical element [Pfb(s)] and is still simple,
concise, and achieves high accuracy. Measuring the positive
feedback probability seems to comprise the averaged influence
of correlations in the agents’ spatial distribution. The urn model,
hence, could be used to predict the long-term behavior of the
collective system. The gained insight from this second modeling
approach is that spatial correlations may be difficult to measure

but they can be captured with a concise global modeling
approach.

In addition, the knowledge about 1s can be used as a novel
tool in multiple ways to model opinion dynamics in mobile
agents. For example, one can macroscopically model the system
dynamics as a Markov chain (Valentini et al., 2014, 2017) or
by Langevin and Fokker–Planck equations (Carlen et al., 2013;
Hamann, 2013) which allows for good predictions without
modeling spatial distributions explicitly. Features such as the
steady state of the probability density function of the global
opinion state s or the mean first passage time (i.e., the switching
time between two states of consensus) can be predicted with such
models (Yates et al., 2009). Another interesting aspect is to apply
the concept of the local opinion state slocA,B(s) within an agent
to find an accurate estimate of the global state based on local
sampling. One faces a kind of a bootstrapping problem then,
because the agent only has a local sample instead of the actual
global state. However, it seems feasible that systematic spatial
correlations could be reduced by such a modeling approach. This
would be useful especially in swarm robotics.
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