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ABSTRACT

Motivation: Numerous competing algorithms for prediction in high-

dimensional settings have been developed in the statistical and ma-

chine-learning literature. Learning algorithms and the prediction

models they generate are typically evaluated on the basis of cross-

validation error estimates in a few exemplary datasets. However, in

most applications, the ultimate goal of prediction modeling is to pro-

vide accurate predictions for independent samples obtained in differ-

ent settings. Cross-validation within exemplary datasets may not

adequately reflect performance in the broader application context.

Methods: We develop and implement a systematic approach to

‘cross-study validation’, to replace or supplement conventional

cross-validation when evaluating high-dimensional prediction models

in independent datasets. We illustrate it via simulations and in a col-

lection of eight estrogen-receptor positive breast cancer microarray

gene-expression datasets, where the objective is predicting distant

metastasis-free survival (DMFS). We computed the C-index for all pair-

wise combinations of training and validation datasets. We evaluate

several alternatives for summarizing the pairwise validation statistics,

and compare these to conventional cross-validation.

Results: Our data-driven simulations and our application to survival

prediction with eight breast cancer microarray datasets, suggest that

standard cross-validation produces inflated discrimination accuracy

for all algorithms considered, when compared to cross-study valid-

ation. Furthermore, the ranking of learning algorithms differs, suggest-

ing that algorithms performing best in cross-validation may be

suboptimal when evaluated through independent validation.

Availability: The survHD: Survival in High Dimensions package (http://

www.bitbucket.org/lwaldron/survhd) will be made available through

Bioconductor.

Contact: levi.waldron@hunter.cuny.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cross-validation and related resampling methods are de facto

standard for ranking supervised learning algorithms. They

allow estimation of prediction accuracy using subsets of data

that have not been used to train the algorithms. This avoids

over-optimistic accuracy estimates caused by ‘re-substitution’.

This characteristic has been carefully discussed in Molinaro

et al. (2005), Baek et al. (2009) and Simon et al. (2011). It is

common to evaluate algorithms by estimating prediction accur-

acy via cross-validation for several datasets, with results sum-

marized across datasets to rank algorithms (Boulesteix, 2013;

Dem�sar, 2006). This approach recognizes possible variations in

the relative performances of learning algorithms across studies or

fields of application. However, it is not fully consistent with the

ultimate goal, in the development of models with biomedical

applications, of providing accurate predictions for fully inde-

pendent samples, originating from institutions and processed

by laboratories that did not generate the training datasets.
It has been observed that accuracy estimates of genomic pre-

diction models based on independent validation data are often

substantially inferior to cross-validation estimates (Castaldi et al.,

2011). In some cases this has been attributed to incorrect appli-

cation of cross-validation; however even strictly performed cross-

validation may not avoid over-optimism resulting from poten-

tially unknown sources of heterogeneity across datasets. These

include differences in design, acquisition and ascertainment stra-

tegies (Simon et al., 2009), hidden biases, technologies used for

measurements, and populations studied. In addition, many gen-

omics studies are affected by experimental batch effects (Baggerly

et al., 2008; Leek et al., 2010). Quantifying these heterogeneities

and describing their impact on the performance of prediction

algorithms is critical in the practical implementation of persona-

lized medicine procedures that use genomic information.
There are potentially conflicting, but valid, perspectives on

what constitutes a good learning algorithm. The first perspective

is that a good learning algorithm should perform well when

trained and applied to a single population and experimental set-

ting, but it is not expected to perform well when the resulting

model is applied to different populations and settings. We call

such an algorithm specialist, in the sense that it can adapt and

specialize to the population at hand. This is the mainstream per-

spective for assessing prediction algorithms and is consistent with

validation procedures performed within studies (Baek et al.,

2009; Molinaro et al., 2005; Simon et al., 2011). However, we

argue that it does not reflect the reality that ‘samples of conveni-

ence’ and uncontrolled specimen collection are the norm in gen-

omic biomarker studies (Simon et al., 2009).
We promote another perspective: a good learning algorithm

should be generalist, in the sense that it yields models that may be

suboptimal for the training population, or not fully representa-

tive of the dataset at hand, but that perform reasonably well
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across different populations and laboratories employing compar-

able but not identical methods. Generalist algorithms may be

preferable in important settings, for instance when a researcher

develops a model using samples from a highly controlled envir-

onment, but hopes the model to be applicable to other hospitals,

labs, or more heterogeneous populations.
In this article we systematically use independent validations

for the comparison of learning algorithms, in the context of

microarray data for disease-free survival of estrogen receptor-

positive breast cancer patients. Although concern has been

often expressed about the lack of independent validation of gen-

omic prediction models (Micheel et al., 2012; Subramanian and

Simon, 2010), independent validation has not been systematically

adopted in the comparison of learning algorithms. This defi-

ciency cannot be addressed for prediction contexts where related,

independent datasets are unavailable. For many cancer types,

however, several micro-array studies have been performed to

develop prognostic models. These datasets pave the way for a

systematic approach based on independent validations. For in-

stance, a recent meta-analysis of prognostic models for late-stage

ovarian cancer provides a comparison of publicly available

microarray datasets (Waldron et al., 2014). Furthermore,

Riester et al. (2014) showed that combining training datasets

can increase the accuracy of late-stage ovarian cancer risk

models. Thus situations exist in genomic data analysis where

comparable, independent datasets are available, and these pre-

sent an opportunity to use independent validation as an explicit

basis for assessing learning algorithms.
We propose what we term ‘leave-one-dataset-in’ cross-study

validation (CSV) to formalize the use of independent validations

in the evaluation of learning algorithms. Through data-driven

simulations, and an example involving eight publicly available

estrogen receptor-positive breast cancer microarray datasets, we

assess established survival prediction algorithms using our ‘leave-

one-dataset-in’ scheme and compare it to conventional cross-

validation.

2 METHODS

2.1 Notation and setting

>We consider multiple datasets i=1, . . . , I with sample sizes N1, . . . , NI.

Each observation s appears only in one dataset i, i.e. datasets do not over-

lap, and the corresponding record includes a primary outcome Ys
i and a

vector of predictor variables Xs
i ; throughout this article Xs

i will be gene-

expression measurements. Our goal is to compare the performance of dif-

ferent learning algorithms k=1, . . . , K that generates prediction models

for the primary outcome using the vector of predictors. Throughout this

article, the primary outcome is a possibly censored survival time.

We are interested in evaluating and ranking competing prediction

methods k=1, . . . , K. Since the ranking may depend on the application,

the first step is to define the prediction task of interest. We focus on the

prediction of metastasis-free survival time in breast cancer patients based

on high-throughput gene-expression measurements. Our approach and

the concept of CSV, however, can be applied to different types of re-

sponse variables and any other prediction task.

2.2 Algorithms

We assess six learning algorithms (k=1, . . . , 6) appropriate for high-

dimensional continuous predictors and possibly censored time-to-event

outcomes: Lasso and Ridge regression (Goeman, 2010), CoxBoost (Binder

and Schumacher, 2008), SuperPC (Blair and Tibshirani, 2004), Unicox

(Tibshirani, 2009) and Plusminus (Zhao et al., 2013). All parameters were

tuned either by default methods included in their implementation (Ridge

and Lasso regression: R-package glmnet) or by testing a range of param-

eters in internal cross-validation. Our focus is not to provide a compre-

hensive array of algorithms, but simply to use a few popular,

representative algorithms to investigate CSV.

2.3 CSV matrices

We refer in this article to m-fold cross-validation and related resampling

methods collectively as cross-validation (CV). Our ranking procedure for

learning algorithms is based on a square matrix Zk of scores

(k=1, . . . ,K). The (i, j) element in the matrix measures how well the

model produced by algorithm k trained on dataset i performs when

validated on dataset j. Since we consider K methods we end up with K

method-specific square matrices Z1; . . . ;ZK: We set the diagonal entries

of the matrices equal to performance estimates obtained with 4-fold CV

in each dataset. We will call Zk the CSV matrix.

Possible definitions for the Zk
i;j scores include the concordance index in

survival analysis (Harrell et al., 1996), the area under the operating char-

acteristic curve in binary classification problems, or the mean squared

distance between predicted and observed values in regression problems.

We use survival models and focus on a concordance index, the C-

index, which is a correlation measure (Gnen and Heller, 2005) between

survival times and the risk scores, such as linear combinations of the

predictors, provided by a prediction model. The heatmap in Figure 1A

displays the CSV matrix of C-statistics obtained through validation of

eight models trained on the studies in Table 1 with Ridge regression.

2.4 Summarization of a CSV matrix

In order to rank learning algorithms k=1, . . . , K, we summarize each

matrix Z
k by a single score. We consider following two candidate

approaches.

(1) The Simple Average of all non-diagonal elements of the Zk matrix:

CSV=

X
i

X
i6¼j

Zk
i;j

IðI� 1Þ
:

(2) The Median or more generally a quantile of the non-diagonal

entries of Zk. Quantiles offer robustness to outlier values, and

the possibility to reduce the influence of those studies that are

consistently associated with poor validation scores, both when

used for training and validation, and independently of the learning

algorithm.

2.5 True global ranking

Throughout our analyses the score Zk
i;j is a random variable. First, studies

i and j can be seen as randomly drawn from a population of studies.

Second, observations within each study can be considered as randomly

drawn from the unknown and possibly different distributions Fi and Fj
underlying studies i and j. With this view of Zk

i;j as random variable, we

consider the theoretical counterparts of the empirical aggregating scores

(simple average and quantiles) described in Section 2.4 to summarize Zk.

The theoretical counterparts are the expected value or quantiles of each

Zk
i;j score, i 6¼ j; obtained by integrating the two levels of randomness that

we described. The true global ranking of the learning algorithms

k=1, . . . ,K is then defined by these expected values (or quantiles), one

for each algorithm. We will call the ranking global because it depends on

the super-population (Hartley and Sielken, 1975) and not which popula-

tions were sampled by the available datasets.
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The true global ranking can be considered as the estimation target of

evaluation procedures such as CV or CSV. In Section 2.7 we present the

design of a data-driven simulation study in which we can compute the

true ranking through Monte Carlo integration. This allows us to evaluate

and compare the ability of CV and CSV to recover the true global

ranking.

2.6 Datasets

We used a compendium of breast cancer microarray studies curated for

the meta-analysis of Haibe-Kains et al. (2012) and available as supple-

ment to their article. We selected all eight datasets (Table 1) for which

distant metastasis-free survival (DMFS), the most commonly available

time to event endpoint, as well as Estrogen Receptor (ER) status, were

available. These studies were generated with Affymetrix HGU

GeneChips HG-U133A, HG-U133B and HG-U133PLUS2. We con-

sidered exclusively ER-positive tumors. Of these datasets, only one origi-

nated from a population-based cohort (Schmidt et al., 2008). Four studies

considered only patients who did not receive hormone therapy or adju-

vant chemotherapy. Only four provided date ranges of patient recruit-

ment (Chin et al. 2006; Desmedt et al., 2007; Foekens et al., 2006;

Schmidt et al., 2008). Table 1 points also to important differences in

survival (for instance 3Q survival) that are not easily explicable based

on known characteristics of these studies. This variability in design stra-

tegies, reporting, as well as outcomes, highlights the prevalence of ‘sam-

ples of convenience’ in biomarker studies discussed by Simon et al. (2009).

Samples from dataset ST1 duplicated in dataset VDX were removed.

Expression of each gene was summarized using the probeset with

A B C

Fig. 1. CSV matrices Zk in simulated and experimental data for Ridge regression. (A) C-indices for training and validation on each pair of actual datasets

in Table 1. The diagonal of this matrix shows estimates obtained through 4-fold CV. (B) The heatmap for each pair of studies (i, j), the average C-index

when we fit Ridge regression on a simulated dataset generated by resampling gene expression data and censored time to event outcomes from the i-th

study in Table 1, and validate the resulting model on a simulated dataset generated by resampling study j. Computation of each diagonal element

averages over pairs of independent datasets obtained by resampling from the same study. The heatmaps strongly resemble each other. CAL and MSK

are outlier studies: cross-study C-index is �0.5 when they are used either for training or validation. The values of the arrays in (A) and (B) that involve

these two studies constitute the blue ‘bad performance’ cluster in (C) which contrast the C-indices obtained for study pairs ði; jÞ; i 6¼ j, on simulated data

(y-axis) and experimental data (x-axis). Pearson correlation is �0.9. The three plots illustrate similarity between our simulation model and the actual

datasets in Table 1

Table 1. Breast cancer microarray datasets curated by Haibe-Kains et al. (2012)

Number Name Adjuvant

therapy

Number

of patientsa
Number of ER+ 3Q survival

[mo.]

Median

follow-up [mo.]

Original

identifiersb
Reference

1 CAL Chemo, hormonal 118 75 42 82 CAL Chin et al. (2006)

2 MNZ none 200 162 120 94 MAINZ Schmidt et al. (2008)

3 MSK combination 99 57 76 82 MSK Minn et al. (2005)

4 ST1 hormonal 512a 507b 114 106 MDA5, TAM, VDX3 Foekens et al. (2006)

5 ST2 hormonal 517 325 126 121 EXPO, TAM Symmans et al. (2010)

6 TRB none 198 134 143 171 TRANSBIG Desmedt et al. (2007)

7 UNT none 133 86 151 105 UNT Sotiriou et al. (2006)

8 VDX none 344 209 44 107 VDX Minn et al. (2007)

Datasets acronyms: CAL, University of California, San Francisco and the California Pacific Medical Center (USA); MNZ, Mainz hospital (Germany); MSK, Memorial

Sloan-Kettering (United States). ST1 and ST2 are meta-datasets provided by Haibe-Kains et al. (2012), TRB denotes the TransBIG consortium dataset (Europe), UNT

denotes the cohort of untreated patients from the Oxford Radcliffe Hospital (UK), VDX=Veridex (the Netherlands). Number of ER+ is the number of patients classified as

Estrogen Receptor positive. 3Q survival indicates the empirical estimate of the 75-th percentile of the distribution of the survival times (in months). Median follow-up (in

months) is computed using the reverse Kaplan–Meier estimate to avoid under-estimation due to early deaths (Schemper and Smith, 1996). aNumbers shown are after removal

of samples duplicated in the dataset VDX. bDataset identifiers specified in Haibe-Kains et al. (2012).
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maximum mean (Miller et al., 2011). The 50% of genes with lowest

variance were removed. Subsequently, gene-expression values were

scaled by linear scaling of the 2.5 and 97.5% quantiles as described by

Haibe-Kains et al. (2012).

2.7 Simulation design

We simulate heterogeneous datasets with gene-expression profiles and

time to event outcomes from a joint probability model. We define the

model through a resampling procedure that we apply to the eight breast

cancer datasets in Table 1. The resampling scheme is a combination of

parametric and nonparametric bootstrap (Efron and Tibshirani, 1993).

The goal of our simulation study is to compare CV and CSV when used

for ranking and evaluation of competing learning algorithms. Here we

use resampling methods to iteratively simulate realistic ensembles of

breast cancer datasets from a hierarchical probability model that we

define using the actual datasets in Table 1. CV and CSV are then assessed

with respect to their ability to recover the true global ranking, which we

compute through Monte-Carlo integration.

We will quantify the ability to recover the ranking by using the

Kendall correlation between the true global ranking and the estimates

obtained with CV or CSV.

For b=1, . . . ,B=1000 iterations, we generate a collection of I=8

datasets as follows. First, we sample eight study labels with replacement

from the list of breast cancer studies in Table 1. This step only involves

simulations from a multinomial Mult(8,[1/8, . . . , 1/8]) distribution. We

resample the collection of study labels to capture variability in study

availability, and heterogeneity of study characteristics. Second, for each

of the eight randomly drawn labels, we sample N=150 patients from the

corresponding original dataset, with replacement. If a study is randomly

assigned to the j-th label, then each of the N=150 vectors of predictive

variables is directly sampped from the empirical distribution of the j-th

study in Table 1. Finally, we simulate the corresponding times to event

using a proportional hazards model (parametric bootstrap) fitted to the

j-th dataset:

Mj
true : �j tjxð Þ=�j0 tð Þ � exp xT�j

� �
; ð1Þ

where �j(tjx) is the individual hazard function when the vector of pre-

dictors is equal to x and �j denotes a vector of regression coefficients. We

combine the truncated inversion method in Bender et al. (2005) and the

Nelson–Aalen estimator for cumulative hazard functions to simulate sur-

vival times that reflect survival distributions and follow-up of the real

studies. We set the vector �j to be the coefficients fitted in study j=1, . . . ,

I using the CoxBoostmethod (Binder and Schumacher, 2008). A different

regression method could have been used at this stage. The collections of

simulated datasets are then used both (i) to compute by Monte-Carlo

method the true global ranking defined in Section 2.5, and (ii) to compute

ranking estimates through CV and CSV. Figure 1A displays, for each pair

of studies (i, j) in Table 1, the C-index obtained when training a model by

Ridge regression on dataset i (rows), and validating that model on dataset

j (columns). We computed the diagonal elements (i= j) by 4-fold CV.

Figure 1B displays mean C-indices for each (i, j) combination across

simulations, when the training and validation studies are generated

resampling the i-th and j-th study. Here diagonal elements are computed

by averaging C-indices with the training and validation datasets inde-

pendently generated by resampling from the same study.

The strong similarity between the two panels is reassuring, in particular

with regard to the clear separation of the eight studies into two groups.

The first group includes studies MNZ, ST1, ST2, TRP, UNT and VDX,

and produces more accurate prediction models than the remaining stu-

dies. The datasets in this group are also associated with higher values of

the concordance index when used for validation. This difference between

the two groups is also illustrated in Figure 1C. It displays the non-diag-

onal entries of the matrices represented in the left and middle panels, that

is the average C-indices from simulated datasets, against the C-indices

from real data. This scatterplot shows a clear two-cluster structure: the

yellow dots display the 30 training and validation combinations within

studies MNZ, ST1, ST2, TRP, UNT and VDX. We will return to this

cluster structure in the discussion.

2.8 Evaluation criteria for simulations

In simulation studies we can assess and rank algorithms based on their

ability to recover the true underlying models Mi
true; i=1; . . . ; I: In this

subsection, we introduce a criterion that reflects the degree of similar-

ity between the true regression coefficients �i that were used to

simulate the i-th in silico dataset and the coefficients b�ðkÞj fitted through

algorithm k on the j-th simulated dataset. We consider the i= j and i 6¼ j

cases separately. Similarity between vectors is usually quantified by com-

puting the Euclidean distance between them. However, since our focus is

on prediction, we useccorðXi�i;Xi
b�ðkÞj Þ; the correlation between true and estimated patient-

specific prognostic scores, to measure the similarity between the true �i
and estimated regression coefficients b�ðkÞj : Here Xi is the matrix of pre-

dictors of dataset i and ccor denotes Pearson’s correlation. The average

Sk
self= 1=Ið Þ �

X
i

ccor Xi�i;Xi
b� kð Þ

i

� �
; ð2Þ

over the I studies, provides a measure of the ability of learning algorithm

k to recover the model that has generated the training dataset, hence the

index self.

Another criterion of interest is the ability of a learning algorithm k to

recover the vector of regression coefficients �i when it is trained on a

separate dateset j 6¼ i and the unknown models underlying datasets i and j

might differ from each other.

This can be quantified with

Sk
across= 1= I I� 1ð Þð Þð Þ �

X
i

X
j6¼i

ccor Xi�i;Xi
b� kð Þ

j

� �
; ð3Þ

where the index across emphasizes the focus on cross-study similarity, i.e.

on the ability of algorithm k to recover the coefficients �i when fitted on

dataset j, with j 6¼ i:

In alternative to averaging across studies, or pairs of datasets, as in

Equations (2–3) one can also use different summaries, e.g. quantiles, as

we do in Section 2.4. Both Sk
self and Sk

across are summary statistics to assess

and compare learning algorithms. We denote the ranking obtained by

ordering the algorithms according to Sself(Sacross) by Rself(Racross). Both

Sk
self and Sk

across vary across simulations of the datasets ensembles, al-

though the hierarchical simulation model remains fixed and their com-

putations involve the vectors �i, i=1, . . . , I. We will therefore call the

rankings Rself and Racross local because they are specific to the collection

of datasets at hand.

3 RESULTS

3.1 Simulated data

Our focus in the simulation study is on differences between the

rankings and performance estimates obtained by using CV and

CSV. We will use CV and CSV to denote the means of the

diagonal and non-diagonal elements of a CSV matrix, respect-

ively. Recall that we compute the diagonal elements through CV.
Figure 2A shows, for K=6 algorithms, the distributions of

CSV and CV; and Figure 2B shows the distribution of the rank-

ings estimates, across 1000 simulated collections of eight data-

sets. Table 2 compares the medians of the distributions in

Figure 2B with the true global rankings that we obtained using

the criteria in Section 2.4. The rank of method k is 1 if it
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outperforms the remaining K – 1 training algorithms. We ob-

serve large differences in the distributions of CSV and CV across

simulations (Fig. 1A): the average of the CV scores, under all the

algorithms we considered, is close to 0.65, while the CSV scores

are centered at �0.55. The variability of CV and CSV across

simulations, however, is comparable.
Performance differences across algorithms, whether estimated

by CV or CSV, are relatively small compared to the overall dif-

ference between CV and CSV performance estimates. We also

observe differences between the rank distributions produced by

CV and CSV. Accordingly, to both CV and CSV, in most of the

simulations, Lasso regression is ranked as one of the worst per-

forming algorithms, while Ridge regression and Plusminus are

ranked first or second. However, the CV summaries suggest an

advantage of Ridge regression over Plusminus across most of the

simulations while CSV rank Plusminus as the best performing

algorithm in �50% of the simulations. The median rank of

CoxBoost across simulations has an improvement of two pos-

itions when it is estimated through CV and compared to the CSV

summaries; in this case CSV results are more consistent with the

true global rankings (Table 2). When we consider the criteria

described in Section 2.4, Ridge regression and Plusminus ex-

change the top-two positions of the true global rankings (see

Table 2), although for these two algorithms the Zi,j distributions

under our simulation scenario are nearly identical.

The local rankings Racross and Rself of the K=6 algorithms

defined by Sk
across and Sk

self in Section 2.8 vary across the 1000

simulated collections of studies. The median Kendall’s correl-

ation between Racross and Rself across simulations is �0.5, i.e.

the performance measures Sk
across and Sk

self tend to define distinct

rankings of the competing algorithms, see also the

Supplementary Figure S1. We illustrate the extent to which CV

and CSV recover the unknown rankings Racross and Rself. The

boxplots in Figure 3 display the Kendall’s correlation between

local rankings (i) Racross or(ii) Rself , and the rankings estimated

through CV (gray boxes) and CSV (white boxes) across simula-

tions. Figure 3C shows the Kendall’s correlation between the

true global ranking and the ranking estimates. The median

Kendall’s correlation between Rself and the corresponding CSV

estimates across simulations is �0.5. The CV ranking estimates

tend to be less correlated with the local rankings Racross than the

CSV estimates. In contrast, the CV estimates tend to be more

correlated with Rself than the CSV estimates. We recall that both

CV and Rself are defined summarizing performance measures,

Zk
i;i and ccorðXi�i;Xi

b�ðkÞi Þ; that refer to a single study, while

CSV and Racross summarizes performance measures computed

using two distinct studies that are used for training and

validation.
Finally, CSV tends to be more correlated with the true global

ranking than CV. This suggests that CSV is more suitable for

recovering the true global ranking. When we removed the two

outlier studies (CAL and MSK) and repeated the simulation

study, the advantage of CSV over CV in recovering the true

global ranking was confirmed (median Kendall’s correlation

0.8 versus 0.6, see also Supplementary Figs S2–S4), moreover

after their removal Kendall’s correlations between Rself and the

CSV estimates tend to be larger than those between Rself and the

CV estimates. Overall, as displayed by the Supplementary Figure

S3, it appears that, after outlier studies are removed, CSV out-

performs substantially CV when used for ranking algorithms.

3.2 Application to breast cancer prognostic modeling

We apply CV and CSV to the I=8 breast cancer studies

described in Section 2. Generally, the results resemble those ob-

tained on simulated data. The top panel in Figure 4 illustrates the

distributions of the diagonal and off-diagonal validation statis-

tics in Zk for each of the K=6 algorithms. Except for the dis-

tinctly larger interquartile ranges of the box-plots we observe

several similarities with Figure 2. Note that each box-plot

A

B

Fig. 2. Comparison of CSV and CV on simulated data. Each panel rep-

resents evaluations of K=6 algorithms across 1000 simulations of a

compendium of I=8 datasets. For each simulation the diagonal or

off-diagonal elements of the Z
k matrix of validation C-statistics is sum-

marized by (A) mean and (B) rank of the mean across algorithms. CV

estimates tend to be much higher than the CSV estimates. In most of the

simulations Lasso is ranked as one of the worst algorithms, both by CV

and CSV, while Ridge and Plusminus are ranked among the best predic-

tion methods

Table 2. True global rankings and estimates with CV and CSV on

simulated data

Algorithm Global

true ranking

CSV

(median ranks)

CV

(median ranks)

Criterion Average Medium Average Medium Average Medium

Ridge 1 2 2 2 1 2

Plusminus 2 1 2 2 2 2

Superpc 3 3 4 3 4 4

Unicox 4 4 4 4 5 4

CoxBoost 5 5 5 5 3 4

Lasso 6 6 6 6 5 6

Median estimates across 1000 simulations are displayed for CV and CSV; individual

columns refer to summarization of the Zk
i;j statistics by using the mean or the

median as discussed in Section 2.4. We also computed the true global ranking as

well as CV and CSV estimates by using the third quartile of the Zk
i;j summaries, and

obtained results identical to those displayed for the rankings obtained by summar-

izing validation results through their median. Both CV and CSV tend to rank Ridge

regression and Plusminus as best performing algorithms. Variability of CV and CSV

rank estimates across simulations is shown in Figure 2B.
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represents validation scores within a single Zk-matrix, whereas in

Figure 2 each box-plot displays a summary of 1000 Z
k matrices,

one for each simulation. This explains the higher variance

observed in Figure 4. We also observe the following.

� CV estimates are �0.06 higher than CSV estimates on the

C-index scale. To interpret the magnitude of this shift on the

C-index scale consider a population with two groups of pa-

tients, high and low risk patients, covering identical propor-

tions 0.5 of the population. A perfect discrimination model

that correctly recognizes the subpopulation of each individ-

ual, when the hazard ratio between high versus low risk

patients is 2.7, achieves on average a C-index of 0.62. It is

necessary to double the hazard ratio to 5.4 to increase the

average C-index of the perfect discrimination model to 0.68.

Thus, it is fair to say that the CV results are considerably

more optimistic than the CSV estimates.

� The ranking defined by CSV, using median summaries of

the Zk
i;j scores, is nearly identical to the global ranking in our

simulation example (see Supplementary Table ST1 and

Table 2). With both, median and third quartile aggregation

of the Zk
i;j statistics, the rankings defined by CV and CSV

differ substantially (Kendall’s correlations 0.6 and 0.07).

This is consistent with the results of the simulation study,

where median correlation of the rankings estimated through

CSV and CV was �0.4 (see Supplementary Fig. S1).

� The presence of outlier studies (CAL and MSK) has a

strong effect on the ranking estimates when we use the

mean to summarize the Z
k matrices. After aggregating the

validation statistics by averaging, both CSV and CV rank

Superpc first. This result might be due to the high variability,

�0.5, of the Zk
i;j validation scores corresponding to models

trained by outlier studies. In particular, Superpc and Unicox

are the only algorithms that produce models with substantial

prediction performances when trained on the MSK study.

With median summarization the ranking estimates are less

influenced by the presence or absence of outlier studies. We

therefore recommend the use of the median to summarize Zk

matrices.

� Figure 4B illustrates lack of agreement between CSV and

CV performance estimates. The black digits contrast, for

each dataset i, the CSV summary
X

j 6¼i
ðI� 1Þ�1Zk

i;j versus

the CV summary Zk
i;i: Performance measures refer to Ridge

regression. Similarly, the gray digits in this panel contrastX
j 6¼i
ðI� 1Þ�1Zk

j;i with Zk
i;i: The CV performance

statistics Zk
i;i are only moderately correlated with the

CSV statistics
X

j 6¼i
ðI� 1Þ�1Zk

i;j (correlation=0.2), and

negatively correlated with the CSV summariesX
j 6¼i
ðI� 1Þ�1Zk

j;i (correlation=–0.33).

3.3 CV and CSV summaries

Correlation between CSV and CV summary statistics, as dis-

played in Figure 4B, suggests that cross- and within-study per-

formances are less redundant than one might expect. In

Figure 4B study specific CSV summaries are plotted against

CV for Ridge regression. For each study we have a single CV

statistic and two CSV statistics obtained by averaging the

A

B

Fig. 4. Panel (A) describes the CSV and CV statistics in Zk, separately for

each of the six algorithms that we considered. Each box-plot represents

the variability of CV or CSV performance statistics from a single Z
k

matrix. The CV statistics tend to be higher than the CSV statistics.

Panel (B) contrasts with black digits, for each study i, the CSV summaryX
j6¼i
ðI� 1Þ�1Zk

i;j with the CV summary Zk
i;i: Similarly, with gray digits

it contrasts the CSV summary
X

j 6¼i
ðI� 1Þ�1Zk

j;i with the CV summary

Zk
i;i: This panel shows results for the learning algorithm Ridge regression

and the displayed numbers refer to Table 1 (outliers CAL and MSK were

removed). Cross-validation statistics on the y-axis are moderately corre-

lated to the CSV summaries on the x-axis; identical considerations hold

for all K=6 algorithms that we used

A B C

Fig. 3. Kendall’s correlation between true global or local rankings and

estimates obtained with CSV (white box-plots) or CV (cross-validation,

gray box-plots) across simulations. Panels (A) and (B) compare CV and

CSV in terms of their correlation to the local rankings (Racross and Rself),

while panel (C) considers the true global ranking. Each box-plot repre-

sents a correlation coefficient that was computed in each of the 1000

iterations of our simulation study. CSV tend to achieve a higher correl-

ation with the global ranking and Racross than CV. The results displayed

have been computed using the mean criterion discussed in Section 2.4
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Z-matrix column- and row-wise. In the column-wise case correl-

ations, between CSV and CV summaries, vary across algorithms

�0.5, while in the row-wise case all the correlations are negative.

Overall, we can consider cross- and within-study prediction as

two related but distinct problems.
We also noted that CV is less suitable for detection of outlier

studies than CSV; in particular CV can estimate encouraging

prediction performances even on studies associated, under each

training algorithm, with poor CSV summaries Zk
i;i: For instance,

with the SuperPC algorithm all but one C-index estimates ob-

tained with CV are above 0.6.

3.4 Specialist and generalist algorithms

Our analyses lead to the question of whether some algorithms

can be considered as generalist or specialist procedures according

to our definitions. Our examples are not exhaustive and add-

itional comparisons, within the development of new prognostic

models, are necessary in order to determine ‘specialist’ or ‘gen-

eralist’ tendencies of these algorithms. However, the fact that

Ridge regression, Lasso regression and CoxBoost are ranked dis-

tinctly better accordingly to CV than CSV, in most iterations of

our simulation study, suggests that these algorithms might be

specialist procedures and adapt to the specific properties of the

individual dataset. The status of generalist versus specialist, for

each algorithm, can be discussed using the local performance

criteria Sself and Sacross, which are conceived to measure

within-single-studies and generalizable prediction performances.

We note that CoxBoost and Ridge regression tend to achieve

better ranks in Rself than in Racross. In particular CoxBoost im-

proves its position by 1 or 2 ranks in most simulations, which is

similar to what we observed comparing CoxBoost’s CSV and CV

rankings. In summary, in our study, these two algorithms seem

to have—accordingly to all the criteria that we considered—a

tendency to specialize to the dataset at hand. We mention that,

as one can expect, for all the algorithms Sself is consistently

higher than Sacross. We also compared CV to independent

within-study validation using our simulation model. For the inde-

pendent within-study validation, we iteratively pair two datasets

generated using identical regression coefficients and gene expres-

sion distributions. Subsequently, we train a model on the first

dataset and evaluate it on the second one. As can be seen in

Supplementary Figure S5, CV values, as expected, are slightly

smaller than for the independent within-study validations.

4 DISCUSSION AND CONCLUSION

In applying genomics to clinical problems, it is rarely safe to

assume that the studies in a research environment faithfully rep-

resent what will be encountered in clinical application, across a

variety of populations and medical environments. From this

standpoint, study heterogeneity can be a strength, as it allows

to quantify the degree of generalizability of results, and to inves-

tigate the sources of the heterogeneity. This aspect has long been

recognized in meta-analysis of clinical trials (Moher and Olkin,

1995). Therefore, we expect that an increased focus on quantify-

ing cross-study performance of prediction algorithms will con-

tribute to the successful implementation of the personalized

medicine paradigm.

In this article we provide a conceptual framework, statistical
approaches and software tools for this quantification. The con-
ceptual framework is based on the long-standing idea that finite

populations of interest can be viewed as samples from an infinite
‘super-population’ (Hartley and Sielken, 1975). This concept is
especially relevant for heterogeneous clinical studies originating

from hospitals that sample local populations, but where re-
searchers hope to make generalizations to other populations.
As an illustrating example, we demonstrate CSV on eight in-

dependent microarray studies of ER-positive breast cancer, with
metastasis-free survival as the endpoint of interest. We also de-
velop a simulation procedure involving two levels of non-

parametric bootstrap (sampling of studies and sampling of ob-
servations within studies) in combination with parametric boot-
strap, to simulate a compendium of independent datasets with

characteristics of predictor variables, censoring, baseline hazards,
prediction accuracy and between-dataset heterogeneity realistic-
ally based on available experimental datasets.

Cross-validation is the dominant paradigm for assessment of
prediction performance and comparison of prediction algorithms.
The perils of inflated prediction-accuracy estimations by incor-

rectly or incompletely performed cross-validation are well
known (Molinaro et al., 2005; Subramanian and Simon, 2010;
Simon et al., 2011; Varma and Simon, 2006). However, we

show that even strictly performed cross-validation can provide
optimistic estimates relative to CSV performance. All algorithms,
in simulation and example, showed distinctly decreased perform-

ance in CSV compared to cross-validation. Although it would be
possible to further reduce between-study heterogeneity, for ex-
ample by stricter filtering on clinical prognostic factors, we believe

this degree of heterogeneity reflects the reality of clinical genomic
studies and likely other applications. Some sources of biological
heterogeneity are unknown, and it is impossible to ensure consist-

ent application of new technologies in laboratory settings.
Prediction models are used in presence of unknown sources of
variation. Formal CSV provides a means to assess the impact of

unknown or unobserved confounders that vary across studies.
In simulations, the ranking of algorithms by CSV was closer to

the true rankings defined by cross-study prediction, both when

we considered Racross and the global true ranking. Surprisingly,
CSV was also competitive with CV for recovering true rankings
based on within-study prediction, such as Rself. Although the

performance differences we observed between algorithms were
smaller than the difference between CV and CSV, Lasso consist-
ently compared poorly with most of the competing algorithms,

both under CV and CSV evaluations. Lasso, and other algo-
rithms that ensure sparsity have been shown to guarantee poor
prediction performances in previous comparative studies

(Bøvelstad et al., 2007; Waldron et al., 2011).
Systematic CSV provides a means to identify relevant sources

of heterogeneity within the context of the prediction problem of

interest. By simple inspection of the CSV matrix we identified
two outlier studies that yielded prediction models no better than
random guessing in new studies. This may be related to known

differences in these studies: smaller numbers of observations,
higher proportions of node positive patients, different treatments
and larger tumors (Supplementary Figs S6–S9). Conversely,

other known between-study differences do not seem to have
created outlier studies or clusters of studies as seen in the Z
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matrix, such as between studies where all or no patients received
hormonal treatment. We note that incorporation of clinical prog-
nostic factors into genomic prognostic models could likely pro-
duce gains in CSV accuracy, and that such multi-factor

prognostic models could also be assessed by the proposed
matrix of CSV statistics.
In practice it is neither possible nor desirable to eliminate all

sources of heterogeneity between studies and between patient
populations. The adoption of ‘leave-one-in’ CSV, in settings
where at least two comparable independent datasets are available,

can provide more realistic expectations of future prediction model
performance, identify outlying studies or clusters of studies, and
help to develop ‘generalist’ prediction algorithms whichwill hope-

fully be less prone to fit to dataset-specific characteristics. Further
work is needed to formalize the identification of clusters of com-
parable studies, to develop databases for large-scale cross-study
assessment of prediction algorithms, and to develop better ‘gen-

eralist’ prediction algorithms. Appropriate curated genomic data
resources are available in Bioconductor (Gentleman et al., 2004)
through the curatedCRCData, curatedBladderData and

curatedOvarianData (Ganzfried et al., 2013) packages, and in
other common cancer types through InSilicoDB (Taminau
et al., 2011). In realms where such curated resources are available,

CSV is in practice no more difficult or CPU-consuming than
cross-validation, and should become an equally standard tool
for assessment of prediction models and algorithms.
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