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Abstract

Purpose: Imbalance of inhibitory GABAergic neurotransmission has been proposed to play a role in the pathogenesis of
temporal lobe epilepsy (TLE). This study aimed to investigate whether [18F]-flumazenil ([18F]-FMZ) PET could be used to non-
invasively characterise GABAA/central benzodiazepine receptor (GABAA/cBZR) density and affinity in vivo in the post-kainic
acid status epilepticus (SE) model of TLE.

Methods: Dynamic [18F]-FMZ -PET scans using a multi-injection protocol were acquired in four male wistar rats for validation
of the partial saturation model (PSM). SE was induced in eight male Wistar rats (10 weeks of age) by i.p. injection of kainic
acid (7.5–25 mg/kg), while control rats (n = 7) received saline injections. Five weeks post-SE, an anatomic MRI scan was
acquired and the following week an [18F]-FMZ PET scan (3.6–4.6 nmol). The PET data was co-registered to the MRI and
regions of interest drawn on the MRI for selected structures. A PSM was used to derive receptor density and apparent
affinity from the [18F]-FMZ PET data.

Key Findings: The PSM was found to adequately model [18F]-FMZ binding in vivo. There was a significant decrease in
hippocampal receptor density in the SE group (p,0.01), accompanied by an increase in apparent affinity (p,0.05)
compared to controls. No change in cortical receptor binding was observed. Hippocampal volume reduction and cell loss
was only seen in a subset of animals. Histological assessment of hippocampal cell loss was significantly correlated with
hippocampal volume measured by MRI (p,0.05), but did not correlate with [18F]-FMZ binding.

Significance: Alterations to hippocampal GABAA/cBZR density and affinity in the post-kainic acid SE model of TLE are
detectable in vivo with [18F]-FMZ PET and a PSM. These changes are independent from hippocampal cell and volume loss.
[18F]-FMZ PET is useful for investigating the role that changes GABAA/cBZR density and binding affinity play in the
pathogenesis of TLE.
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Introduction

Temporal lobe epilepsy (TLE) is the most common form of

partial epilepsy in adults, and is often resistant to pharmacological

therapies. A common neuropathology observed in patients with

TLE is sclerosis of the hippocampus and the surrounding mesial

temporal lobe. A decrease in inhibitory GABAergic neurotrans-

mission in the hippocampus has been proposed to play a key role

in epileptogenesis in TLE [1]. This reduction in GABAergic

neurotransmission may be caused by any or all of the following:

loss of GABAergic interneurons, loss of GABAA receptors, or

changes to GABAA receptor subunits, leading to alterations in

receptor properties [2,3,4] and needs to be further investigated.

Previous animal and human studies have shown decreased

GABAA/central benzodiazepine receptor (GABAA/cBZR) density

in structures important to seizure generation in the mesial

temporal lobe [5,6,7,8,9].

Radiolabelling of the GABAA/cBZR antagonist flumazenil

(FMZ) has long been used to image GABAA/cBZR. Initially this

was [3H]-FMZ for in vitro and ex vivo autoradiography assays, and
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subsequently radiolabelled FMZ conjugates were developed for in

vivo clinical studies with PET. The most commonly used GABAA/

cBZR-specific PET radioligand has been [11C]-FMZ [6,7,9,10],

and PET studies using this radiotracer in patients with chronic

TLE have consistently shown reduced GABAA/cBZR binding in

the hippocampus ipsilateral to the seizure focus, when compared

with the contralateral side [10,11,12]. Further, studies that have

coregistered [11C]-FMZ PET images with volumetric MRI have

shown that decreases in GABAA/cBZRs are greater in magnitude

than the decreases in hippocampal volume [13], indicating that

the decreased receptor density is not merely a reflection of cell loss

[10].

Despite the promising findings of both animal and patient

studies, [11C]-FMZ PET has not been adopted for routine

preclinical or clinical use due to a number of practical limitations.

Firstly, [11C] has a short radioactive half-life, thus requiring an

onsite cyclotron and dose by dose production. To overcome this

there has been a recent focus on developing [18F]-radiolabelled

FMZ conjugates, including [18F]-FEFMZ, [18F]-FFMZ and most

recently [18F]-FMZ [14,15,16]. [18F] has a substantially longer

half-life, meaning it does not need to be produced on site, and can

therefore be used in a greater number of centres and is more

practical for routine investigational use.

A second issue preventing the routine preclinical or clinical use

of FMZ PET is that the standard modelling protocols require

highly invasive serial arterial blood sampling for plasma input

function into compartmental models, which is not ideal for

longitudinal preclinical studies or a routine clinical diagnostic tool

[17]. Insertion of arterial lines for arterial blood sampling requires

local anaesthetic due to pain associated with placement of the

cannula, further, the presence of the cannula can lead to

infections, haematoma and bleeding following removal of the

cannula. Modelling methods have been developed to analyse

receptor-based PET data without arterial blood sampling, such as

the simplified reference tissue model [18] but only give quantifi-

cation of the binding potential (BP) which is the ratio of Bmax/Kd.

Previous work has shown that [11C]-FMZ PET quantification

using the partial saturation model allows identification of both

Bmax and Kd [19]. Briefly, this method relies on the observation

that flumazenil kinetics in cerebral tissue achieve a dynamic

‘‘Scatchard-like equilibrium’’ after the injection of a mass that

ensures at least 50–70% occupancy of the receptors. This method

is also non-invasive when a reference region is used to estimate the

concentration of radioligand in the free compartment. Given that

it has been shown that [18F]-FMZ kinetics are comparable to

[11C]-FMZ in the human [33] we want to use the partial

saturation approach (PSA) with [18F]-FMZ in rats. The PSA

would allow the derivation of the concentration of GABAA/cBZRs

(Bmax), and the apparent binding affinity of FMZ for the GABAA/

cBZR (1/KdVr with Kd being the dissociation constant and Vr the

volume of reaction) in a single experimental protocol.

Before using the PSA, it is necessary to first re-validate the

method for use with [18F]-FMZ, using the olive nucleus as a

reference region. To do this, we perform a full identification using

a multi-injection protocol with an arterially sampled input

function, on which we can base simulations of a partial saturation

experiment to test the robustness of the data analysis method. The

multi-injection protocol was first reported in baboons using [11C]-

FMZ and four injections [20]. The multi-injection protocol has

not been explored in the rodent for [11C]-FMZ, however, multiple

injection studies in the rat have been published using other

radiotracers [21,22], and there have been a small number of

studies using a multi-injection protocol in baboons [23,24].

The aim of this study was to investigate whether [18F]-FMZ

PET, analysed utilising the partial saturation model, could be used

to quantify binding parameters (receptor density and apparent

affinity) for the GABAA/cBZR in vivo in the well validated post-

kainic acid (KA) status epilepticus (SE) rat model of TLE. The first

step was to validate the use of the partial saturation model for

quantifying [18F]-FMZ binding parameters in vivo using a multi-

injection protocol with arterial blood sampling. Finally, it was

investigated whether in vivo assessment of GABAA/cBZR was

correlating with neurodegeneration in the epileptic animals.

Methods

Animals
Nineteen (4+15) male in-bred Wistar rats were used in this

study. The animals were single housed in standard opaque plastic

cages with food and water ad libitum. They were maintained on a

12 h light/dark cycle (lights on at 6.30 a.m.) at 22uC with 60%

relative humidity. The animals were treated in accordance with

the Australian NH&MRC Code of conduct for use of animals in

research and the study protocol was approved by the University of

Melbourne Animal Ethics Committee.

Tracer preparation
[18F]-FMZ was prepared according to Dedeurwaerdere et al

[15]. Radiochemical purity ranged from 95–99% and specific

activity ranged from 62.9–177.6 GBq/mmol at end of synthesis.

Table 1. Injected FMZ at each phase of the multi-injection protocol.

Rat Injection 1 (Tracer [18F]-FMZ) Injection 2 (Co-injection: [18F]-FMZ and FMZ) Injection 3 (Displacement: FMZ)

A 59.94 MBq 53.65 MBq 0 MBq

0.6 nmol 4.0 nmol 330 nmol

B 65.49 MBq 57.72 MBq 0 MBq

0.6 nmol 4.0 nmol 330 nmol

C 60.68 MBq 69.93 MBq 0 MBq

0.6 nmol 4.1 nmol 330 nmol

D 69.56 MBq 66.71 MBq 0 MBq

0.6 nmol 4.1 nmol 330 nmol

Mean 63.92 MBq 62.00 MBq 0 MBq

0.6 nmol 4.05 nmol 330 nmol

doi:10.1371/journal.pone.0086722.t001

[18F]-FMZ PET in a Model of Temporal Lobe Epilepsy
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Validation of the partial saturation approach using the
Multi-Injection protocol

Animal preparation. Healthy rats (n = 4, 12–14 weeks,

333624.7 g) were studied for the validation of the partial

saturation model, using a multi-injection protocol and arterial

blood sampling. Rats were anaesthetized with ketamine (100 mg/

kg) and xylazine (20 mg/kg) injected intraperitoneally (i.p). The

right femoral artery was cannulated using PVC tubing (Microtube

extrusions Australia, id 0.4 mm, od 0.8 mm, 30 cm length).

Briefly, a skin incision of about 1.5 to 2 cm was made on the right

inner thigh. Blunt dissection was used to reveal the femoral artery

and femoral vein located between the muscles. Approximately 1 to

1.5 cm of the artery was then separated from the vein and cleared

of surrounding connective tissue with blunt dissection. The artery

was then tied off both proximally and distally using silk suture (3.0

silk, Dysilk, Dynek Pty Ltd, Australia). Subsequently, a small

incision was made on the wall of the artery under a dissecting

microscope. The cannula, prefilled with heparinised saline (20

units) was tunnelled through the artery towards the heart (about 3–

4 cm). Good placement of the arterial cannula was confirmed if

blood was seen pulsating back and forth in the line, after which the

distal sutures were tightened to secure the cannula in place. The

rat was subsequently moved onto the imaging bed in a supine

position to easily allow access to the catheter for arterial blood

sampling and dorsal penile vein for [18F]-FMZ administration.

PET image acquisition and analysis. Data sets were

acquired on a dedicated saPET scanner (Philips Mosaic). Under

ketamine/xylazine anaesthesia, animals were PET scanned during

a three-injection protocol (Table 1): i) a tracer dose of [18F]-FMZ

(,0.6 nmol, 59.9–69.6 MBq in 0.1–0.3 ml of [18F]-FMZ at

t = 0 min), ii) co-injection of [18F]-FMZ and non-radiolabelled

FMZ (4.0–4.1 nmol, 53.7–69.9 MBq in 0.15–3 ml, t = 42 min;

and iii) a displacement injection of non-radiolabelled FMZ

(330 nmol, 0.2 ml, t = 70 min).

The scan acquisition consisted of three successive phases per

tracer injection: i) 6 min of list mode acquisition (starting 45 s

before tracer dose injection) followed by dynamic mode acquisi-

tion (363 min); ii) 7 min of list mode acquisition (starting 105 s

before co-injection) followed by dynamic mode acquisition

(363 min) and iii) 7 min of list mode acquisition (starting 105 s

before displacement) followed by dynamic mode acquisition

(363 min).

During the scanning protocol, the foot-pad reflex was checked

regularly and additional anaesthesia administered if necessary

(25 mg/kg ketamine and 5 mg/kg xylazine, i.p). Heart rate and

blood oxygen levels were continuously monitored using a

pulseoximeter (Smiths Medical Pm Inc, Wisconsin, USA).

PET dynamic series were reconstructed with an ordered subset

estimate maximization (OSEM) algorithm (four iterations and

eight subsets). No corrections for attenuation or random events

were applied. Each frame of the dynamic series was corrected for

radioactive decay and calibrated in Bq/ml.

Image analysis. PET scans were analysed using Analyze 7.0

(Mayo Clinic, AnalyzeDirect, Inc, KS) and co-registered to a MRI

template (T2-weighted acquisition, matrix: 29462866277, voxel

size: 0.2360.2360.23 mm) with intra-operator reproducibility of

0.5–1 mm. On the MRI-template, whole brain (1739 mm3), left

(51 mm3) and right (48 mm3) hippocampi, and olive nucleus

(8 mm3) were delineated as regions of interest (ROIs, [15]). The

mean activity/pixel (0.2360.2360.23 mm) in each ROI was

computed for each frame, resulting in the production of time-

activity curves normalised to the injected activity and converted to

pmol/ml.

Arterial blood sampling. Arterial blood samples (50 ml, 21

per phase or 63 samples in total) were taken every 15 s for the first

4 min and at 6 min, 10 min and 16 min during the scan after

every injection (three times). The cannula was flushed with 0.2 ml

of heparinised saline at the end of continuous sampling (4 min)

and following the 6, 10 and 16 min blood samples for each

injection, and animals injected with 1 ml of saline (s.c) following

cessation of blood sampling to replenish lost fluids. The blood

samples were collected into pre-weighed eppendorfs containing

50 ml of ice cold NaF (2.1%) to prevent further metabolism of the

FMZ in the blood by esterases [25]. At the end of the experiment

samples were stored on ice until weighing, followed by further

storage at 280uC until the time of analysis.

Within 5–45 min of withdrawal, the whole blood samples were

counted for radioactivity in a cross calibrated gamma counter.

Figure 1. Coregistration and region of interest delineations for image analysis. (A) Coregistration of [18F]-FMZ PET with T2 weighted MRI,
(B) Delineation of regions of interest on MRI (RCTX right cortex, LCTX left cortex, RHPC right hippocampus, LHPC left hippocampus, RTHA right
thalamus, LTHA left thalamus, RAmyg right amygdala, LAmyg left amygdala), (C) Application of regions of interest on to [18F]-FMZ PET image.
doi:10.1371/journal.pone.0086722.g001

[18F]-FMZ PET in a Model of Temporal Lobe Epilepsy
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Data were processed by subtracting the mean background

activity (counts per minute, CPM) from the measured activity in

the sample and the counts were decay corrected to the start of the

respective injection time.

Data analysis. The complete identification of the parameters

was done for each time activity curve for the hippocampus and

olive nucleus extracted as described above. The estimation was

done using modelling software developed in house with a

commercial software package (Matlab 6.1, The MathWorks,

Inc., Natick, MA, 2000) using a two tissue compartment (free

ligand in the tissue, and specifically bound ligand in the tissue), five

parameter model with the arterially sampled input function to fully

identify all parameters (Bmax, K1, k2, kon/Vr, koff).

Simulation of the partial saturation experiment. Based

on the complete identification of the parameters, we were able to

validate the modelling approach of the partial saturation model.

The simulated kinetic curves for the hippocampus (target region)

and the olive nucleus (reference region) were generated. The

simulation model used the arterially sampled input function, a two

tissue compartmental (2TC) model for the target region and a one

tissue compartmental (1TC) model for the reference region (free

ligand in the tissue only, no specifically bound ligand). The

simulation studies allowed us to validate that, using a mass of

4.5 nmol of [18F]-FMZ, a Scatchard like-equilibrium state occurs

during the scan.

Partial saturation approach. Bmax and KdVr was estimated

for each ROI using a nonlinear fit of the bound ligand (B) versus

the free ligand (F) concentration: B = (F*B)/(F+KdVr). For the

validation of the PSA, the parameters were estimated using the

true F from the simulated hippocampus as well as testing the

method with the simulated reference region as the F.

HPLC – MS/MS analysis. Collected rat blood samples

(40 ml) were diluted with water (80 ml), 1.0 M carbonate buffer

(100 ml, pH 8.0) and 10 ng/ml zolpidem (50 ml, internal standard,

IS). The mixture was subjected to liquid-liquid extraction with

50% ethyl acetate: 50% diethyl ether (3 ml). The organic layer was

transferred, concentrated to dryness and reconstituted in mobile

phase (100 ml). Chromatography was performed on X Bridge C18

column 2.1630 mm, 3.5 mm (Waters Corp., Rydalmere, NSW,

Australia) at a temperature of 30uC. The mobile phase consisted of

0.1% formic acid in 2 mmol/l ammonium acetate (solvent A) and

2 mmol/l ammonium acetate and 0.1% formic acid in methanol

(solvent B). A step gradient at a flow rate of 0.4 ml/min was used

with a resultant analysis time of 6.0 min. Mass spectrometric

detection was by selected reaction monitoring in positive-

electrospray ionisation mode (FMZ m/z304.1R258.2; IS m/

z308.2R235.0). The method was linear from 0.25 to 500 mg/l

(r2.0.990). Inter-day accuracy and imprecision, over the an-

alytical range, was 91.6 to 105.2% and ,12.2%, respectively

(n = 5). The signal-to-noise at the lower limit of quantification was

approximately 12:1.

Data processing: a correction factor (FMZ conc/[Actual blood

vol (ml)/Actual blood volume (ml)+ NaF vol(0.05 ml)]*[supposed

blood vol (0.05 ml)/supposed blood vol (0.05 ml)+NaF (0.05 ml))

was applied to the mass spectrometry data (ng/ml) to take into

account the exact amount of the blood in the sample.

Epilepsy study
Induction of status-epilepticus. Fifteen male in-breed

Wistar rats (10 weeks, 26864 g) were used in this study. SE was

induced using a repeated low-dose KA treatment protocol,

adapted from that of Hellier et al. [26], as previously described

by our group [8,27], which is associated with reduced animal

mortality as compared to traditional single dose protocols. For this,

eight male Wistar rats were injected intraperitoneally (i.p.) with an

initial 5 mg/kg dose of KA (Ocean Produce International,

Shelburne, NS, Canada) and then observed behaviourally by an

experienced investigator for the presence of SE (loss of conscious-

ness was confirmed by lack of response to repeated application of

external stimuli). If sustained SE did not occur within 30 minutes,

further 2.5 mg/kg doses were administered at 30 minute intervals

until this occurred. The median dose of KA administered was

13.75 mg/kg, range 7.5–25 mg/kg. The severity of SE was similar

between the rats despite the variability of doses of KA

administered; consistent with previous reports noting that the

dose of KA required to induce SE varies considerably between

animals [28]. Control rats (n = 7) received saline injections only.

Four hours after the induction of SE (or saline injections) animals

were given a single dose of diazepam (2.5 mg/kg, i.p) to terminate

SE.

MRI scan. Five weeks post-SE, 2–5 days before PET

scanning, a volumetric MRI scan was acquired for volumetric

analysis of brain regions and co-registration of the PET data. T2

weighted MR images were acquired using a 4.7 T Bruker Biospec

47/30 Avance small animal MRI scanner (Ettlingen, Germany),

running Paravision 3.0 data acquisition (Ettlingen, Germany).

Animals were anaesthetised using isofluorane (induction dose 5%,

1.5% maintenance dose, 1:1 air/oxygen). After scout images were

obtained, a T2-weighted image of the rat brain was acquired using

a fast spin-echo sequence (repetition time (TR) = 3.1 ms, echo time

(TE) = 67.5 ms; 2566256627 matrix, 0.2360.2361 mm).

Figure 2. A typical seizure on EEG in a post-KA SE rat. (A) Position of recording electrodes on rat skull (adapted from Paxinos and Watson [46]).
(B) The EEG trace shows a typical seizure in a rat 6 weeks post-KA SE demonstrating the abrupt onset of evolving rhythmic spike and wave activity
from normal drowsy background EEG. Recording voltage is 50 mV/min.
doi:10.1371/journal.pone.0086722.g002

[18F]-FMZ PET in a Model of Temporal Lobe Epilepsy
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PET scan. [18F]-FMZ radiochemistry was performed as

previously described [15]. Radiochemical purity ranged from

95–99% and specific activity ranged from 62.9–177.6 GBq/mmol

at end of synthesis.

Six weeks following induction of SE, animals were placed in

supine position in a saPET camera under ketamine/xylazine

anaesthesia (75 mg/kg and 10 mg/kg, i.p., respectively) [15].

Simultaneously, the animal was given a single bolus injection of

[18F]-FMZ (3.6–4.6 nmol, 43.66–77.33 MBq, 0.2–0.4 ml) via the

dorsal penile vein as the scan commenced. The dynamic scan was

acquired as 2630 s, 261 min, and 1063 min frames (total scan

duration was approximately 45 min).

Image analysis. PET dynamic series were reconstructed as

described above. Analyze 7.0 (Mayo Clinic, AnalyzeDirect, Inc.

KS) was used for analysis and manual co-registration (intra-

operator reproducibility of 0.5–1 mm) of MRI and PET scans. On

the MRI, the hippocampus, cortex, amygdala, thalamus, olive

nucleus and ventricles were delineated as regions of interest

(Figure 1). The mean activity/pixel (0.2360.2361 mm) in each

ROI was computed for each frame, resulting in the production of

time-activity curves converted to pmol/ml.

Data analysis. The concentration of free radiotracer in the

tissue was approximated by the activity measured in the olive

nucleus, a structure relatively devoid of GABAA/cBZR [29]. This

structure has been selected because its remote position ensured a

low level of spillover from other very specific regions, such as the

hippocampus and cortical areas. Bmax and KdVr was estimated for

each ROI using a nonlinear fit of the bound ligand (B) versus the

free ligand (F) concentration: B = (F*B)/(F+KdVr).

Video-EEG monitoring. Within three days of the PET scan,

each animal was implanted under ketamine/xylazine anaesthesia

(as described previously [9]) with four epidural EEG screw

electrodes (bilaterally in the frontal, parietal regions), and

reference and ground electrodes (occipital region). For postoper-

ative analgesia, an intraperitoneal injection of carprofen (4 mg/kg,

Rimadyl, Pfizer, USA) was given and 1 ml of subcutaneous saline

(0.9% NaCl) to prevent dehydration.

One week following surgery, animals underwent five days of

continuous video-EEG monitoring to confirm the occurrence of

spontaneous recurrent seizures. Video-EEG recordings were made

using the CompumedicsTM system (Compumedics, USA) running

Profusion EEG (version 3.7) with video recordings made using a

Pentax digital colour CCD camera. EEG recordings were

manually analysed using Profusion EEG. A seizure was defined

as a paroxysmal electrographic discharge lasting longer than 5 s in

duration which showing a clear rhythmical pattern distinct and at

least 3 times the amplitude of the background rhythms (Figure 2).

Seizures identified on the EEG recordings were then observed on

the synchronised video and the Racine scale was used to classify

seizure severity [30]. All post-kainic acid SE animals were

observed to have at least one convulsive seizure during the five

days of continuous monitoring (median 2, range 1–20 over 5 days).

Histology. Following the video-EEG recordings the animals

were euthanized using a terminal dose of anaesthetic (Lethabarb

3.25 mg/kg, Virbac Animal Health, Australia). Brains were

extracted and snap-frozen in isopentane cooled by liquid nitrogen,

then stored at 280uC until sectioning for thionin staining.

Figure 3. Kinetic curves from the multi-injection study and subsequent data simulations. (A) Individual data points for the left
hippocampus (black squares) and the olive nucleus (black circles) are plotted, with the solid lines showing the model fit in the left hippocampus, and
dashed lines the model fit in the olive nucleus. Red lines show total [18F]-FMZ uptake as estimated by the model, blue lines the amount of specific
[18F]-FMZ binding, and the green lines the amount of free [18F]-FMZ in the tissue. (B) Scatchard plot for parameter estimates of the hippocampus
using the true free fraction for the hippocampus. (C) Scatchard plot for parameter estimates of the hippocampus using the reference region (olive
nucleus).
doi:10.1371/journal.pone.0086722.g003

Table 2. [18F]-FMZ binding parameters in the left hippocampus as derived from the partial saturation model using a multi-
injection protocol.

Rat Bmax (pmol/ml) K1 (pmol/ml) k2 (pmol/ml)
kon/Vr (pmol/
ml) koff (pmol/ml) KdVr (pmol/ml)

1/KdVr (pmol/
ml) DV1 (pmol/ml) BP

A 27.26 0.23 0.77 1.24 4 3.23 0.31 0.29 8.44

B 29.29 0.30 0.71 1.67 4 2.39 0.42 0.42 12.23

C 38.92 0.39 0.70 1.14 4 3.49 0.29 0.56 11.13

D 27.91 0.12 0.33 0.76 4 5.26 0.19 0.37 5.31

Mean 30.85 0.26 0.63 1.20 4 3.60 0.30 0.41 9.28

doi:10.1371/journal.pone.0086722.t002

[18F]-FMZ PET in a Model of Temporal Lobe Epilepsy
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Thionin staining was performed as previously described and two

blinded investigators (TOB and SD) visually scored neuronal cell

loss in CA1, CA3, CA3c and the dentate hilus [22,31]. Cell loss

was assessed on 6–8 sections of the hippocampus, 23.80 mm from

bregma. This scoring scale ranges from 0–4 with 4: no neuronal

loss and 0: complete cell loss.

Statistical analysis. Unpaired t-tests were used to assess

significant differences between the control and KA-treated groups.

Spearman’s rank correlation coefficient was used to assess

correlations between data.

A value of p,0.05 was considered significant. Values

0.05,p,0.10 were reported as trends to significance. PET data

are expressed as mean 6 standard error of the mean (SEM) and

MRI and cell loss data expressed median 6 inter-quartile range to

visualise the range within the results.

Results

Validation of the partial saturation approach using the
multi-injection protocol

Multi-injection protocol. Figure 3A shows the time-activity

curve for the multi-injection experiments in a representative

animal. Total uptake in the hippocampi and olive nucleus were

measured, and modelling simulations performed to fit the data to a

two tissue-compartmental model. The results show an overesti-

mation of the peak uptake in both regions, and a slight

underestimation of specific binding in the olive nucleus (with a

small amount of specific binding measured, which was not

considered in the model).

Table 2 shows the binding parameters in the left hippocampus

derived from the model for the four animals. Equilibrium

constants between animals were consistent. Mean Bmax was

30.8562.73 pmol/ml in the left hippocampus, and

29.6161.41 pmol/ml in the right hippocampus, and mean 1/

KdVr 0.3060.05 pmol/ml in the left hippocampus and

0.3360.03 pmol/ml in the right hippocampus.

Simulations. Simulations of the partial saturation analysis

experiment were performed to validate the use of the data analysis

method. Parameter estimations using the true free fraction from

the simulated hippocampus produced Bmax values of 27.3 pmol/

ml and 1/KdVr of 0.31 pmol/ml when using the time-window

4.3–60 min (Figure 3B). These estimates were within ,1% of the

input parameters and therefore provided a good reference region

could be found, the method will produce accurate parameter

estimates. Using the reference region generated by a one tissue

compartmental (1TC) model with no binding, and a time window

of 5.8–60 min, the Bmax and KdVr values generated were

27.4 pmol/ml and 0.34 pmol/ml respectively, which are within

,1% and 8.7% of the simulation input parameters (Figure 3C)

Thus bias in the KdVr estimate comes from using a reference

region, however, the simulated reference region kinetic may not

fully represent the experimental reference region kinetic as it was

generated using a 1TC model, which may be the source of bias

observed.

The epilepsy study
Hippocampal GABAA/cBZR density and apparent affinity

as measured by [18F]-FMZ PET. Hippocampal Bmax was

significantly reduced in epileptic animals compared to controls

(14.1762.84 vs 19.2361.18 pmol/ml, Figure 4A; p,0.01).

Interestingly, the hippocampal Bmax values in the control animals

were lower than those observed in the healthy animals in the

multi-injection study (30.8562.73 vs 19.2361.18 pmol/ml,

p,0.01). A significant increase in apparent binding affinity (1/

KdVr) was observed in the hippocampi of epileptic animals

compared to controls (0.1560.01 vs 0.1260.01 pmol/ml,

Figure 4B; p,0.05). No difference was observed in the GABAA/

cBZR Bmax or 1/KdVr in the cortex between controls and

epileptic animals (Figure 4A and B).

In vivo MRI volumetrics. Overall, there were no significant

changes in MRI volumetrics for any brain region measured

(Figure 5A). However, a subgroup of epileptic animals showed

substantial limbic sclerosis, as shown by decreased hippocampal

and amygdala volumes and increased ventricular volume

(Figure 5A). Figure 5D shows an animal with reduced hippocam-

pal volume, and increased ventricular volume, representative of

limbic sclerosis.

Visual scoring of cell loss. No significant differences were

observed in visual scoring of cell loss in subregions of the

hippocampus between epileptic and control animals (Figure 6A).

As with the MRI data, there was a subset of epileptic animals who,

compared to both control (Figure 6B) and non-lesional epileptic

animals (Figure 6C), displayed severe cell loss similar to that seen

in patients with hippocampal sclerosis (Figure 6D). However,

when scores for individual regions were combined to give a total

hippocampal cell loss score, there was a significant decrease in

scoring in the epileptic animals compared to the controls (8.63 vs

13.83, p = 0.04).

Figure 4. GABAA/cBZR density and apparent binding affinity in
the hippocampus and cortex of epileptic and control animals
as measured by [18F]-FMZ PET and the partial saturation
model. Results are expressed as Bmax/1/KdVr (mean6SEM, pmol/ml) in
control (white bars, n = 7) and epileptic (black bars, n = 8) (**p,0.01;
*p,0.05 epileptic vs. control); (A) Bmax values 6 weeks post-SE (B) 1/KdVr

values 6 weeks post-SE.
doi:10.1371/journal.pone.0086722.g004
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Correlations analyses. Hippocampal volume as measured

by MRI showed a significant correlation with the summed score of

hippocampal cell loss (r2 = 0.60, p = 0.02, Figure 7).

No correlations were found between cell loss or hippocampal

volume and GABAA/cBZR density or apparent affinity (data not

shown, all p.0.08, r2,0.22). Also seizure frequency did not show

significant correlations with any structural or GABAA/cBZR

measurements (data not shown, all p.0.15, r2,0.55).

Discussion

This is the first study to utilise [18F]-FMZ PET to quantify

GABAA/cBZR density and apparent binding affinity in vivo in an

animal model of epilepsy. Previous animal studies utilising [18F]-

FMZ PET have focussed on assessing tracer kinetics and

metabolite profiles [15,32]. More recent human studies have

investigated modelling of binding potential (Bmax/Kd) in healthy

adults [33,34]. The key findings of the study are as follows: (1) The

multi-injection protocol allowed accurate modelling of [18F]-FMZ

kinetics, validating the use of the partial saturation model; (2) A

significant decrease in GABAA/cBZR density (Bmax) in the

hippocampus was seen in epileptic animals compared with non-

epileptic controls; (3) A significant increase in hippocampal

GABAA/cBZR apparent binding affinity (1/KdVr) was observed

in epileptic animals compared to controls; (4) No overall

differences were observed in MRI volumetrics between epileptic

and control animals; (5) Hippocampal volume correlated strongly

with visual scores of hippocampal cell loss in the CA1, CA3 and

CA3c; (6) The changes in GABAA/cBZR Bmax and KdVr in the

hippocampus were independent of hippocampal cell and volume

loss.

Validation of the partial saturation model
The current study employed a multi-injection protocol with

arterial blood sampling to model [18F]-FMZ kinetics using a

standard two-tissue compartmental model in order to derive values

for the validation of the non-invasive partial saturation model.

This technique has previously been successfully employed to

model [11C]-FMZ kinetics in humans [19,35]. This validation

allowed the use of the non-invasive partial saturation model in the

epilepsy study. The benefit of this model over traditional models is

that quantification of receptor density and affinity can be derived

from a single-injection protocol without arterial blood sampling.

This simplified protocol, used in combination with [18F]-FMZ, is

Figure 5. Volumes of regions of interest for epileptic and control animals as measured by manual delineation on MRI. (A) Results are
expressed as volumes (number of voxels, median and inter-quartile range) in control (blue lines, n = 7) and epileptic animals (red lines, n = 8).
Individual volumes are plotted for control (open squares) and epileptic animals (closed triangles). A subset of epileptic animals showed reduced
hippocampal and amygdala volumes and increased ventricular volume (red triangles, n = 2) indicative of hippocampal sclerosis. Coronal slices
through the hippocampi on MRI (B) a control animal, (C) an epileptic animal without hippocampal sclerosis, (D) an epileptic animal with hippocampal
sclerosis. White arrows indicate decreased hippocampal volume.
doi:10.1371/journal.pone.0086722.g005
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appropriate for longitudinal studies. Most previous [11C]-FMZ

PET studies have used compartmental modelling with arterial

blood sampling [17]. Non-invasive models include the simplified

reference tissue model [33], image derived plasma function

compartmental modelling [36], Logan graphical analysis and

multilinear reference tissue model [37]. However, these models

derive either a volume of distribution (Vd) or a binding potential

(BPND), not receptor density (Bmax) and affinity (1/KdVr). The

partial saturation approach combines aspects of the simplified

reference tissue model, with the partial saturation injection [35].

The method lends itself well to the performance of serial PET

acquisitions to study the temporal evolution of the changes in

GABAA/cBZR density and affinity in vivo following an epilepto-

genic brain insult.

GABAA/cBZR density and affinity in an animal model of
TLE

This study found a significant reduction in GABAA/cBZR Bmax

in the hippocampus of epileptic animals compared with controls as

measured in vivo by [18F]-FMZ PET. This is in agreement with a

number of previous [11C]-FMZ PET studies investigating

GABAA/cBZRs in TLE patients. Only two studies in TLE

patients have derived Bmax from [11C]-FMZ PET. One study

found reduced receptor density in the epileptogenic zone as seen

on parametric images of Bmax [38]. The second study also

reported decreased receptor density (expressed as an asymmetry

index), and associated this with a shorter inter-ictal period prior to

the PET acquisition suggesting that this may be a transient

phenomenon following seizure [10]. Another study, found binding

potential was decreased in both the ipsilateral and contralateral

temporal lobes of TLE patients when compared with controls

[39]. Cortical GABAA/cBZR density did not differ between the

control and epileptic animals indicating the reduction in GABAA/

cBZR density is not a global brain change, which further supports

Figure 6. Cell loss as assessed by visual inspection in sub-regions of the left hippocampus 6 weeks post-SE. (A) Results are expressed as
visual score of cell loss (median and inter-quartile range) in control (blue lines, n = 7) and epileptic animals (red lines, n = 8). Individual scores are
plotted for control (open squares) and epileptic animals (closed triangles). A subset of epileptic animals showed considerably reduced scoring in CA1,
CA3 and CA3c (red triangles, n = 2) indicative of hippocampal sclerosis. Thionin stained sections of the left hippocampus from (B) a control animal (C)
an epileptic animal without hippocampal sclerosis/cell loss (D) an epileptic animal with significant hippocampal sclerosis/cell loss as indicated by the
black arrows.
doi:10.1371/journal.pone.0086722.g006

Figure 7. Relationship between whole hippocampal volume
and cell loss in the left hippocampus. Spearman’s correlations of
whole hippocampal volume against summed visual scoring of cell loss
in the left hippocampus. A significant correlation was observed
(p,0.05, r2 = 0.60).
doi:10.1371/journal.pone.0086722.g007
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a region specific pathophysiological down-regulation of GABAA/

cBZRs in the hippocampus in response to epileptogenesis and/or

seizures.

Despite the large number of studies looking at various [11C]-

FMZ binding parameters, only one previous study has quantified

binding affinity in an animal model of epilepsy, finding no

difference in binding affinity (Kd) between KA-treated and control

animals despite reduced GABAA/cBZR density as measured by

[11C]-FMZ PET [9]. An autoradiography study using [3H]-FMZ

found decreases in both Bmax and Kd in subregions of resected

hippocampi following epilepsy surgery [5], again agreeing with the

current study. In a previous study using ex vivo autoradiography in

the post-KA SE rat model of TLE we found a decrease in the

GABAA/cBZR density in hippocampal subfields but no change in

receptor binding affinity (Kd) in epileptic animals six weeks

following the SE [8]. Consistent with this, in this in vivo study at the

same time point post-SE we found a decrease in Bmax for [18F]-

FMZ binding however, in contrast to our ex vivo study and previous

work by Syvanen and colleagues [9], we also found an increase in

binding affinity (1/KdVr). This apparent disparate finding may be

due to the measurement of slightly different parameters, with 1/

Kd being a measure of affinity for the receptor, and 1/KdVr

affinity for the receptor as a function of the distribution of the

radiotracer. Alternatively, changes in GABAA subunit expression

may explain the increase in affinity seen in this study. The central

benzodiazepine binding site is found between the a1 and c2

subunits. Despite both the a4 and a6 subunits being benzodiaz-

epine insensitive, FMZ is known to be partial agonist of these

subunits [40]. Studies using the post-kainic acid SE model of TLE

have shown increases in both a1 and a4 subunit and mRNA

expression, with decreases in a2 and a3 [41,42]. Further,

alterations in a subunit expression have been seen in the white

matter of temporal lobe tissue following surgical resection [43].

Alterations in subunit composition have been shown to affect

sensitivity to neurosteroids [44] and therefore subunit expression

changes may alter [18F]-FMZ binding, reflected by the increased

1/KdVr apparent affinity seen in this study.

In this study, MRI volumes and visual scoring of cell loss did not

significantly correlate with GABAA/cBZR binding characteristics,

suggesting hippocampal cell loss or atrophy is an unlikely primary

cause for the decrease in GABAA/cBZR binding seen in the

epileptic animals. Nevertheless, there were clear decreases in

hippocampal volumes and cell loss in a subgroup of epileptic

animals. This is a reflection of the clinical situation where

hippocampal sclerosis is present in only a proportion of patients

with TLE. It is noteworthy that the MRI hippocampal volumes

strongly correlated with cell loss in the CA1, CA3 and CA3c

subregions of the hippocampus, in agreement with previous studies

showing visual scoring of cell loss correlated with stereological cell

counting [45], however there was no relationship between Bmax

and either hippocampal volume or cell loss. This agrees with

previous human data which found no correlation between

GABAA/cBZR binding and hippocampal volume or cell loss in

TLE patients [5,13]. Moreover, previous studies have shown

consistently reduced [11C]-FMZ uptake in TLE patients with

normal MRI [10,11,39], supporting our finding of reduced

receptor density in epileptic animals without hippocampal

sclerosis. This indicates that the changes in GABAA/cBZR

binding and affinity are independent of structural alterations.

Methodological considerations
As shown in the results, the Bmax values derived from the multi-

injection study were higher than those in the control animals in the

epilepsy study. One possible explanation for this disparity is the

use of template vs individual MRIs for the coregistration. In the

multi-injection study, a template MRI was used for the derivation

of the regions of interest. This may result in a less accurate

delineation of the olive nucleus, which may account for the

overestimation of Bmax values in this group compared with the

control animals with individual MRI in the epilepsy study.

Alternatively, it may be the Bmax values in the epilepsy study are

underestimated, due to the partial saturation model requiring

estimation of the free fraction from the olive nucleus (which may

be not completely devoid of receptors).

This study has shown that the partial saturation approach is an

appropriate method for the derivation of receptor-radiotracer

binding kinetics in vivo. There are a number of assumptions with

this model. Firstly, that an equilibrium state is reached amongst

tissues, which was true in the current study from 8–50 minutes.

Secondly, free concentration in the target tissue can be estimated

from uptake in a reference region which is devoid of specific

binding – in this case the olive nucleus. The olive nucleus was

shown to provide robust estimates of the free compartment in the

current study – with a small amount of specific binding in the MI

data, which can be attributed to spillover from surrounding

regions due to the use of a template MRI (as discussed above).

Following the verification of these assumptions, standard Scatch-

ard analysis can be used to derive Bmax and KdVr.

Conclusion
In summary this study has investigated the application of [18F]-

FMZ PET with the partial saturation model to study GABAA/

cBZR density and affinity in vivo in rats. The results demonstrated

a decrease in both GABAA/cBZR Bmax and 1/KdVr in the

hippocampus of epileptic animals, in agreement with previous

human and ex vivo animal studies of TLE. We have validated the

use of [18F]-FMZ PET and the partial saturation approach for

studying changes in GABAA/cBZR density and affinity in vivo and

demonstrated the independence of these from structural changes

in the hippocampus. This method does not require serial arterial

blood sampling or multiple injections, making it ideal for

longitudinal studies. Future studies could focus on longitudinal

changes in GABAA/cBZR density and affinity during the

epileptogenic process, providing new insights into the role of

these changes in the pathophysiology of the disease, facilitating the

development of [18F]-FMZ PET for clinical application.
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