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Abstract: Low dose computed tomography (CT) has drawn much attention in the medical imaging
field because of its ability to reduce the radiation dose. Recently, statistical iterative reconstruction
(SIR) with total variation (TV) penalty has been developed to low dose CT image reconstruction.
Nevertheless, the TV penalty has the drawback of creating blocky effects in the reconstructed images.
To overcome the limitations of TV, in this paper we firstly introduce the structure tensor total variation
(STV1) penalty into SIR framework for low dose CT image reconstruction. Then, an accelerated fast
iterative shrinkage thresholding algorithm (AFISTA) is developed to minimize the objective function.
The proposed AFISTA reconstruction algorithm was evaluated using numerical simulated low dose
projection based on two CT images and realistic low dose projection data of a sheep lung CT perfusion.
The experimental results demonstrated that our proposed STV1-based algorithm outperform FBP
and TV-based algorithm in terms of removing noise and restraining blocky effects.

Keywords: low dose CT; structure tensor total variation; accelerated fast iterative
shrinkage thresholding

1. Introduction

The X-ray computer tomography (CT) has been extensively utilized in industry nondestructive
testing and medical diagnosis. However, repeated use of conventional CT could significantly increase
the chance of developing cancer and other diseases due to the high radiation exposure [1–3]. Hence,
low dose CT which was firstly proposed by Naidich [4], has become one of the research hot spots
in the CT field. Lowering the tube current values (milliampere (mA) or milliampere second (mAs))
or the voltage values (kilovolt (kV)) is the most straightforward way to reduce the radiation dose
because it does not need to change the scanning structure of existing CT equipment. Nonetheless,
this method will result in insufficient number of x-ray photons detected at the detector and hence,
upgrade the quantum noise level on the sinogram. In this situation, for most current commercial CT
scanners, the often used Feldkamp-Davis-Kress algorithm (or its variants) will lead to severe image
quality degradation due to noisy projection. Hence, it is highly desirable to develop a new method to
reconstruct the high-quality image for LDCT imaging.
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Due to its advantages in effective physical noise modeling and possibilities of incorporating
priors of the reconstructed image, the statistical iterative reconstruction (SIR) method [5,6] had been
shown to be superior in removing image noise and streak artifacts. Recently, inspired by compressed
sensing (CS) theory [7], in 2008, Sidky et al. [8] first introduced the total variation (TV) into a low
dose CT reconstruction field and proposed an adaptive-steepest-descent-projection onto convex sets
(ASD-POCS) algorithm. Subsequently, Tang et al. [9] introduced the TV regularization term into SIR
framework for low dose CT reconstruction and further developed a Gauss-Siedel iterative algorithm
to minimize the objective function. Choi et al. [10] investigated a primal-dual first-order method to
minimize the TV-based SIR framework for CBCT image reconstruction with sparse and noisy low-dose
projection data. However, the TV regularization term has the drawback of creating staircase artifacts,
particularly at low dose levels. To further eliminate the block effects, Xu et al. [11] proposed a dictionary
learning-based approach for low dose CT reconstruction, in which the sparse constraint in terms of a
redundant dictionary was incorporated into an objective function in a SIR reconstruction framework,
and further proposed an alternating minimization reconstruction algorithm. Sun et al. [12] proposed
a Hessian penalty and developed an effective algorithm to minimize the objective function using a
maximization-minimization (MM) approach. Zhang et al. [13] described two iterative reconstruction
algorithms for low dose CT image reconstruction based on a Gamma regularization. Shangguan
et al. [14] introduced a modified Markov random field regularization term into the SIR framework
and utilized a modified alternation iterative algorithm to optimize the cost function. Very recently,
Shi et al. [15] combined the weighted TV and Hessian penalties for low dose CT reconstruction in a
structure-adaptive way, in which a MM approach was designed to optimize the objection function.
Xu et al. [16] introduced the TV and wavelet-based L1 penalties into SIR framework and solved
the objective function using accelerated variants of the fast iterative soft-thresholding algorithm.
Zhang et al. [17] introduced an adaptive fractional order TV penalty and used a separable paraboloid
surrogate (SPS) method to minimize the objection function. Liu et al. [18] discussed and compared
the behaviors of several convex Hessian Schatten penalties with orders 1,2 and ∞ for low dose CT
reconstruction. At the same time, K. Kim et al. [19] proposed low dose CT reconstruction using spatially
encoded nonlocal penalty, in which an ordered subset SQS method for log-likelihood is developed
and the patch-based similarity constraint with a spatially variant factor is developed to reduce the
noise effectively and preserve features simultaneously. Very recently, Cai et al. [20] investigated
block-marching sparsity regularization and developed a practical reconstruction algorithm using hard
thresholding and projection onto convex set methods for low dose CT reconstruction.

In 2015, S. Lefkimmiatis et al. [21] proposed a novel structure tensor total variation (STV) penalty
for image denoising and image deblurring. In contrast to TV penalty, STV penalized the image
variation at every point of the domain by taking into account the information in a local neighborhood.
Hence, it supplies a richer and more robust measure of image variation which translates to improve
reconstruction performance. Inspired by this work, Zeng et al. [22] firstly introduced STV penalty into
medical imaging field for multi-energy CT reconstruction. Later, Zeng et al. [23] developed a robust
perfusion deconvolution approach via STV regularization for estimating an accurate residue function
in cerebral perfusion CT with low mAs data acquisition. In 2018, Gong et al. [24] developed a SIR
approach by incorporating a precontrast normal-dose CT scan of robust dynamic myocardial perfusion
CT. Inspired by the above research, in this paper we introduce the STV penalty into the SIR framework
for low dose CT reconstruction, and then develop an accelerated fast iterative shrinkage thresholding
algorithm (AFISTA) to minimize the associated objective function. At last, the resulting method is
evaluated using simulated low dose projection data and real CT projection data

The remainder of this paper is organized as follows. Section 2 describes the SIR, SIR framework
with STV1 penalty, and AFISTA for the proposed reconstruction model. Section 3 illustrates the
performance of the proposed reconstruction approach via two numerical simulated experiments and
realistic CT projection. Finally, we will discuss relevant issues and conclude this paper in Section 4.
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2. Materials and Methods

2.1. SIR

The SIR algorithm [5] for reconstructing a CT image u can be expressed as the following
minimization problem:

u∗ = argmin
u

{
Φ(u) ,

1
2
‖Au− p‖2W + βR(u)

}
(1)

where u = (u1, u2, . . . , uN)
T is the image vector representing the attenuation coefficients of the imaged

object, p = (p1, p2, . . . , pm)
T is the vector representing the raw detector measurements, A is the m×N

system matrix that models the imaging system, the diagonal matrix W provides statistical weighting
that accounts for the ray-dependent variance of the noise, R(u) is the function of the image u which is
called regularization term, β is the regularization parameter that balances the data-fitting term and the
regularization term, and Φ(u) is the objective function.

2.2. SIR with STV1 Penalty for Low Dose CT Reconstruction

Discrete STV1 penalty [21] can be expressed as:

STV1(u) =
N∑

n=1

‖[JKu]n‖S1
(2)

where u denotes an image, N denotes the number of pixels in the image u, ‖ · ‖S1 denotes the Schatten
nuclear norm, corresponding to the S1 norm of the singular values, JK is the patch-based Jacobian
operator of the image u, which is defined as the linear mapping JK : RN

7→ X , whereX , RN×L×2, K is a
non-negative, rotationally symmetric convolution kernel, [JKu]n denotes a matrix with the patch-based
Jacobian applied on the nth pixel of the u, which is defined as

[JKu]n =
(
[Ts1,w ◦ ∇u]n, . . . , [TsL,w ◦ ∇u]n

)T
(3)

where (·)T is the transpose operator, ∇ denotes the discrete gradient operator, ◦ denotes the composition
of operator. The shift vectors sl(l = 1, . . . , L) are the elements in the neighborhood of the nth pixel,
where L = (2Lk + 1)2, Lk is the radius of the convolution kernel, TSl,w is a weighted translation operator,
which is defined as: [

TSl ,w
◦ ∇u

]
n
= w(sl)∇u[xn − sl] (4)

where xn represents the coordinates of image u and w(s) =
√

K[s] denotes the window function of the
convolution kernel [21]. In this work, we chose Gaussian kernel to design the structure tensor.

To overcome the block effects of TV penalty and inspired by the successful application of STV1

penalty in image processing field [21], a new SIR-STV1 framework for low dose CT reconstruction is
proposed as follows:

u∗ = argmin
u

{
Φ(u) ,

1
2
‖Au− p‖2W + βSTV1(u)

}
(5)

2.3. AFISTA Algorithm for Solving SIR-STV1

2.3.1. General FISTA for Solving SIR-STV1

FISTA has been widely used for image denoising and deblurring in image processing field due to
its ability to minimize a cost function that is specified by the sum of a smooth and convex data fidelity
term and a convex but possibly nonsmooth penalty [25]. Since the STV1 penalty is not differentiable
everywhere, the traditional gradient-based algorithm cannot be directly applied to minimize the cost
function (5). Therefore, in this paper we propose to adapt the FISTA algorithm to solve problem (5).
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Let
F(u) =

1
2
‖Au− p‖2w (6)

the FISTA algorithm decoupled the minimization problem (5) into two steps. The first step is to
minimize the data fitting term F(y(i)) using a gradient descent method, which can be expressed as:

v(i) = y(i)
−

1
Q
∇F(y(i)) = y(i)

−
1
Q

ATW(Ay(i)
− p) (7)

where i is the iteration number, Q is the Lipschitz constant of ∇F(u). The second step is STV1-based
denoising problem, which can be represented as:

u(i) = argmin
u

{
1
2
‖u− v(i)

‖
2
2 +

β

Q
STV1(u)

}
(8)

Let λ = β/Q, Equation (8) can be solved efficiently by a progressive proximal map algorithm [21].
In all, the detailed workflow of the general FISTA is listed in Algorithm 1.

Algorithm 1 Workflow of the general fast iterative shrinkage thresholding algorithm (FISTA).

Input: system matrix A, projection data p, Q is the Lipschitz constant of ∇F(u)
Initial Step: y(1) = u(0) = 0, t1 = 1, maximum iteration number I, regularization parameter λ, convolution
kernel K
for i = 1,2,...,I

Update intermediate image v(i) with (7)
Update image u(i) with (8)

ti+1 = 1
2 (1 +

√
1 + 4t2

i )

y(i+1) = u(i) + ((ti − 1)/ti+1)/(u(i) − u(i−1))

end for
output: u(I)

2.3.2. AFISTA for Solving SIR-STV1

Although the general FISTA algorithm can be applicable to solve problem (5), it poses challenges
for optimization. Lipschitz constant of the gradient data-fitting term is very large for low dose CT
reconstruction [6,26,27], which results in small gradient steps leading to slow convergence. To solve
this problem, we proposed to use the separable quadratic surrogate (SQS) method [6,28], that replaces
the data fitting term F(y(i)) by a surrogate function φ

(
v; y(i)

)
at ith iteration.

φ(v; y(i)) , F(y(i)) + ∇F(y(i))(v− y(i)) +
D
2
(v− y(i))

2
(9)

where D , diag
{
[ATWA]1

}
is a diagonal Hessian (second order derivatives) matrix. φ

(
v; y(i)

)
can be

easily minimized by zeroing the first derivative, this leads to the following updating algorithm:

v(i+1) = y(i)
−D−1

∇F(y(i)) = y(i)
−D−1ATW(Ay(i)

− p) (10)

To further accelerate updating Equation (10), we adopt order subset (OS) methods [29], by grouping
the projection views into M subsets evenly and using only the subset of measured data to approximate
the exact gradient of the cost function.

Furthermore, to find the solution of Equation (8), we first introduce a dual norm of STV1(u) and
write it as follows [21]:

N∑
n=1

‖[JKu]n‖S1
= max

Ω∈B∞,∞
〈Ω, JKu〉X (11)
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where X , RN×L×2 is the target space of JK, Ω denotes the variable in the target space X, B∞,∞ denotes
the l∞ − S∞ unit-norm ball, which can be expressed as:

B∞,∞ =
{
Ω ∈ X : ‖Ωn‖Sn ≤ 1,∀n = 1, . . . , N

}
(12)

Then, the proximal map of STV1 can be rewritten as follows:

u∗ = argmin
u∈C

1
2
‖u− v‖22 + λ max

Ω∈B∞,∞

〈
J∗KΩ, u

〉
2

(13)

where convex set C = RN,
〈
J∗KΩ, u

〉
2
=

〈
Ω, JKu

〉
X

and J∗K denotes the adjoint of the patch-based
Jacobian operator. This formulation naturally leads us to the following minmax problem:

min
u∈C

max
Ω∈B∞,∞

L(u, Ω) =
1
2
‖u− v‖22 + λ

〈
J∗KΩ, u

〉
2

(14)

Since L is a strictly convex w.r.t. u and concave w.r.t. Ω, a saddle point of L can be obtained.
Therefore, the order of the minimum and the maximum in Equation (13) does not affect the solution.
This means that there exists a common saddle point (u∗, Ω∗) when the minimum and the maximum
are interchanged, i.e.,

min
u∈C

max
Ω∈B∞,∞

L(u, Ω) = L(u∗, Ω∗) = max
Ω∈B∞,∞

min
u∈C
L(u, Ω) (15)

Based on Equation (15), two optimization problems, the primal and the dual one can be defined.
This can be accomplished by identifying the primal and dual objective functions, respectively, with the
following minmax problem [21]:

p(u) = max
Ω∈B∞,∞

L(u, Ω) =
1
2
‖u− v‖22 + λ

N∑
n=1

‖[JKu]n‖S1
(16)

d(Ω) = min
u∈C
L(u, Ω) =

1
2
‖z−

∏
C

(z)‖
2

2

+
1
2

(
‖v‖22 − ‖z‖

2
2

)
(17)

where z = v− λJ∗KΩ and
∏

C is the orthogonal projection operator on the convex set C. According to
the conclusion in Ref. 21, the minimizer u∗ of the primal objective function can be obtained from the
maximizer Ω∗ of the dual objective function. It can be expressed as follows:

u∗ =
∏

C

(v− λJ∗KΩ∗) (18)

where Ω∗ can be derived as the optimization of the corresponding dual objective function in Equation
(17). For minimizing the dual objective function in Equation (17), the progressive proximal map
algorithm [21] can be used and listed as follows (Algorithm 2):
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Algorithm 2 Workflow of the progressive proximal map algorithm

Input: v, λ,
∏

C
Initial Step: Ψ(1) = Ω(0) = 0, t1 = 1
for i = 1,2,...,I

Ω(i) =
∏

B∞,∞(Ψ
(i) + 1

8
√

2
JK

∏
C(v− λJ∗

K
Ψ(i)))

ti+1 = 1
2 (1 +

√
1 + 4t2

i )

Ψ(i+1) = Ω(i) + ((ti − 1)/ti+1)/(Ω(i)
−Ω(i−1))

end for
Output u =

∏
C(v− λJ∗KΩ(I−1))

In all, the proposed AFISTA can be listed as follows (Algorithm 3):

Algorithm 3 Workflow of the proposed accelerated (A)FISTA

Input: System matrix A, projection data p, v, λ,
∏

C
Initial Step: y(1) = u(0) = 0, t1 = 1, maximum iteration number I, regularization parameter λ, convolution
kernel K, the number of order subset M
for i = 1,2...I

for m = 1,...M
k = (i− 1) × I + m
Update intermediate image using Equation (10):
v(k) = y(k) −D−1MAT

mWm(Amy(k) − pm)

Am, Wm, pm are submatrices of A, W, p corresponding to the mth subset
Update image u(k) with progressive proximal map algorithm using Algorithm 2

tk+1 = 1
2 (1 +

√
1 + 4t2

k)

y(k+1) = u(k) + ((tk − 1)/tk+1)/(u(k) − u(k−1))

end for
end for
Output u(I×M)

3. Experimental Results

In this subsection, a series of numerical simulation experiments were designed to evaluate the
performance of the proposed method in CT image reconstruction from a low dose situation. In addition,
low dose and under sampled raw projections of a sheep lung perfusion were acquired to validate the
feasibility of our proposed method in practical applications. Meanwhile, the TV-based SIR (denoted by
SIR-TV) and filtered backprojection(FBP) methods were presented for comparison.

3.1. Brain Image Numerical Simulation

A human brain CT image, downloaded from website [30], was used to validate the performance
of the proposed algorithm. This image was a 2 mm thick corrected form of a female patient.
During scanning, the X-ray tube voltage and tube current was 120 KVp and 200 mAs, respectively, a
monochromatic spectrum was adopted, scattered photons were not considered, and the equi-angularly
detector was used. The image is shown in Figure 1a. The spatial dimension is 512 × 512 pixels and the
size of each pixel is 0.4883 × 0.4883 mm.
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Figure 1. Two phantoms (a) brain image phantom; (b) Thorax image phantom. The display window is
[−1000, 667] Hounsfield Unit(HU).

In this simulation, we adopt the fan-beam geometry with an equi-angular detector to simulate
projection. The distance from the X-ray source to the detector is 1140 mm and the distance from the
rotation center to the curved detector is 570 mm. Uniformly collected in [0, 2π] were 1160 projections.
For each projection, 672 detector elements spanned a field-of-view (FOV) of 25 cm in radius. To obtain
noisy projection, we firstly compute noiseless projection using siddons’s ray-driven algorithm. Then,
Poisson noise assuming 5 × 103, 1 × 104, and 5 × 104 photons per detector element was superimposed
on the obtained noiseless projection to simulated three different noise levels, respectively.

3.1.1. Convergence Analysis

To examine the convergence of our proposed algorithm, Figure 2 shows the value of objective
function in terms of iteration steps for the brain image numerical simulation with 5 × 104 incident
photon numbers. The curve indicates that our proposed algorithm can converge to a steady solution
after 20 iterations. Furthermore, it can be seen that the proposed AFISTA method converges much
faster than FISTA.
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Figure 2. The value of objective function in terms of iteration steps of the proposed AFISTA methods
and FISTA for the brain image phantom with 5 × 104 incident photon numbers.

3.1.2. Visual Quality Comparison

Figure 3 shows the reconstructed brain images and zoomed regions of interest(ROI) (indicated
by the red square in Figure 1a) reconstructed from low dose projections. Images in the left, middle,
and right column are reconstructed by the FBP, SIR-TV, and SIR-STV1 method, respectively. Images in
the first, second, and third row are reconstructed from noisy projections with incident photon numbers
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5 × 103, 1 × 104, and 5 × 104, respectively. In the SIR-STV1 method, parameters σ and LK are selected
according to the method described in Ref. [21], i.e.,σ = 0.5, LK = 3, the number of subset were set
to 40. For the reconstruction from noisy projections with incident photon numbers 5 × 103, 1 × 104,
and 5 × 104, the parameter λ were set as 6 × 10−5, 2 × 10−5, and 9 × 10−6, respectively. It can be seen
that the FBP results contains serious noise, and became worse and worse when the number of photon
decreased from 5 × 104 to 5 × 103. The SIR-TV method removes noise but the reconstructed image
suffers from over smoothing effect. The reconstructed results using the SIR-STV1 perform better in
restraining the blocky effect and removing image noise than other methods, and are almost visually
the same as the original image.Sensors 2020, 20, x FOR PEER REVIEW  9 of 20 
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Figure 3. Images reconstructed by the FBP (left column), SIR-TV (middle column), and structure tensor
total variation SIR-STV1 (right column) methods from noisy projections with incident photon numbers
5 × 103 (the first row), 1 × 104 (the second row), and 5 × 104 (the third row). The display window is
[−1000, 667] HU.

3.1.3. Quantitative Comparison

To quantify the reconstruction accuracy of the low dose reconstruction algorithm, signal-to-noise
ratio (PSNR) [31], relative reconstruction error (RRE), and structure similarity (SSIM) [32] indexes are
employed in this subsection.

PSNR = 10 log10
(max(µn))

2∑
n
(µn − µ∗n)

2/N
(19)
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RRE =
‖µ− µ∗‖22

‖µ‖22
(20)

SSIM =
(2µµ∗ + c1)(2σµµ∗ + c2)

(µ2
− µ∗2 + c1)(σ2

µ + σ2
µ∗ + c2)

(21)

where µn is the reconstructed value, µ∗n is the golden reference value,J is the number of the pixels
in the reconstructed image, µ and µ∗ are the mean value of µ and µ∗, σµ and σµ∗ are the variation of
µ and µ∗, σµµ∗ is the covariance of µ and µ∗, c1 and c1 are the constants that we choose according to
Reference [32]. Table 1 gives the PSNR, RRE, and SSIM values of the reconstructed whole brain images
in Figure 3. It can be seen that the SIR-STV1 method has the best performance in all evaluation metrics
in all noise levels.

Table 1. Image quality metrics.

Incident Photon
Number Algorithm PSNR (dB) RRE SSIM

5 × 103
FBP 26.6131 0.2049 0.5526

SIR-TV 33.8416 0.0892 0.7539
SIR-STV1 35.7597 0.0715 0.7639

1 × 104
FBP 29.8176 0.1417 0.6135

SIR-TV 35.7454 0.0716 0.8162
SIR-STV1 38.2683 0.0536 0.8248

5 × 104
FBP 36.7103 0.0641 0.7318

SIR-TV 40.2409 0.0427 0.9016
SIR-STV1 42.8079 0.0307 0.9275

3.2. Thorax Image Numerical Simulation

To further validate the performance of the SIR-STV1 method, a human Thorax image is downloaded
from website [33], which is shown in Figure 1b. The spatial dimensional of the image is 512 × 512
pixels, the real size of each pixel and the imaging geometry are exactly the same as that used in the
brain numerical simulation. The Poisson noise assuming 5 × 104 photons per detector element was
added to simulate noisy projection.

3.2.1. Visual Quality Comparison

Figure 4 shows the reconstructed images from noisy projections with incident photon numbers
5 × 104 by the FBP, SIR-TV, and SIR- STV1 methods. In the proposed SIR-STV1 method,σ is set to 0.5,
LK is set to be 3, and λ is set to 2× 10−6. It can be seen that SIR-TV and SIR-STV1 can remove noise
effectively and the SIR-STV1 method performs better in eliminating blocky effect than SIR-TV.

3.2.2. Quantitative Comparison

To quantitatively evaluate the performance of the SIR-STV1 method, we compare the performance
of the three methods on the reconstruction of ROIs with detailed structures, which were marked by
red rectangles in Figure 1b. The quantitative results are given in Table 2. It can be seen that the SIR-
STV1 method has the lowest RRE and highest SSIM for all of the ROIs.
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Table 2. A summary of the evaluation indexes of the reconstructed image at different noise levels in the
Thorax image simulated studies.

Different ROI Algorithm PSNR (dB) RRE SSIM

ROI 1
FBP 30.7537 0. 0447 0.7403

SIR-TV 35.0948 0.0271 0.9206
SIR-STV1 35.7648 0.0251 0.9370

ROI 2
FBP 29.9316 0.0540 0.7730

SIR-TV 33.1043 0.0374 0.9145
SIR-STV1 34.2960 0.0326 0.9348

ROI 3
FBP 30.0721 0.0446 0.7021

SIR-TV 33.8564 0.0288 0.8927
SIR-STV1 34.9798 0.0253 0.9183
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3.2.3. Profile-Based Comparison

In order to further visualize the differences among the three methods in this Thorax numerical
simulation experiment, the profiles of the resulting images corresponding to the white line in Figure 1b
were plotted in Figure 5. It can be demonstrated that the profiles of the Thorax images reconstructed
by the SIR-STV1 method achieve the best performance in terms of noise suppression and fine
structure preservation.Sensors 2020, 20, x FOR PEER REVIEW  12 of 20 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Comparison of the target profile in Figure 1b of different methods. (a) ROI 1; (b)ROI 2 ; (c) 

ROI 3. 

3.2.4. Analysis of the Parameter 

（1）Regularization parameter  : To sense the sensitivity of  , experiments are performed with 

various 7=5 10  , 61 10 , 62 10 , 63 10 , 64 10 , and 65 10  with 0.5 , =3KL . The reconstruction 

images are shown in Figure 6. The PSNR, RRE, and SSIM curves corresponding to different  are 

plotted in Figure 7. It is clear that the value of PSNR and SSIM are highest and the value of RRE is 

lowest when 62 10   . 

Figure 5. Comparison of the target profile in Figure 1b of different methods. (a) FBP; (b) SIR-TV;
(c) SIR-STV1.
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3.2.4. Analysis of the Parameter

(1) Regularization parameter λ: To sense the sensitivity of λ, experiments are performed with
various λ = 5 × 10−7, 1 × 10−6, 2 × 10−6, 3 × 10−6, 4 × 10−6, and 5 × 10−6 with σ = 0.5, LK = 3.
The reconstruction images are shown in Figure 6. The PSNR, RRE, and SSIM curves corresponding to
different λ are plotted in Figure 7. It is clear that the value of PSNR and SSIM are highest and the value
of RRE is lowest when λ = 2× 10−6.Sensors 2020, 20, x FOR PEER REVIEW  13 of 20 
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Figure 6. Thorax images reconstructed by the SIR-STV1 method with respect to different λ. The display
window is [−1000, 667] HU.
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Figure 7. Image quality assessments of reconstructed Thorax phantom images for the SIR-STV1 method
with respect to different λ. (a) The PSNR curve; (b) The RRE curve; (c) The SSIM curve.

(2) Parameters σ and LK
When σ was set to 0.5, Gaussian kernel with 99.7% of its energy will be within three pixels, so LK

and σ should be changed together instead of separately. To sense the impact of parameter σ and LK,
six different sets of parameters including σ = 0.5, LK = 3, σ = 0.8, LK = 5, σ = 1.2, LK = 7, σ = 1.5,
LK = 9 σ = 1.8, LK = 11, and σ = 2.1, LK = 13 are tested. The results are given in Figure 8. In addition,
the quantitative results are given in Table 3. The results show that the performance of our proposed
method is not quite sensitive to parameter LK and σ and that there are no noticeable difference for
different parameters. To balance the performance and computational time, the σ is set to 0.5, LK is set
to 3 in this paper.
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Figure 8. Thorax images reconstructed by the SIR-STV1 method with respect to different σ and LK.
The display window is [−1000, 667] HU.

Table 3. A summary of the evaluation indexes of the reconstructed image in Figure 8.

Parameter PSNR (dB) RRE SSIM

σ = 0.5, LK = 3 37.7983 0.0290 0.9449
σ = 0.8, LK = 5 37.9762 0.0283 0.9477
σ = 1.2, LK = 7 37.9653 0.0284 0.9482
σ = 1.5, LK = 9 37.8765 0.0287 0.9480
σ = 1.8, LK = 11 37.7748 0.0291 0.9474
σ = 2.1, LK = 13 37.6704 0.0294 0.9466

(3) Number of projections:
To evaluate the impact of the number of projections, simulated experiments with 580, 290, 145,

and 116 views were performed. For all experiments, σ were set to 0.5, LK were set to be 3. When the
number of projection view decreases, the regularization parameter λ should be increased accordingly
to obtain high quality reconstructed results. For the reconstructions from 580, 290, 145, and 116 views,
λwere set to 3 × 10−6, 4 × 10−6, 6 × 10−6, and 8 × 10−6, the number of subset were set to 20, 10, 5, and 4,
respectively. The reconstruction results are shown in Figure 9. It can be observed that our proposed
method can suppress the noise effectively. In the case of 580 views, the reconstruction result was almost
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as good as that reconstructed from 1160 views in Figure 4c. In the cases of 290, 145, and 116 views,
our proposed method still obtains high quality reconstruction results.Sensors 2020, 20, x FOR PEER REVIEW  16 of 20 
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window is [−1000, 667] HU.

3.3. Realistic Sheep Lung Experiments

To validate the effectiveness of our proposed method for real data, an anesthetized sheep lung
was scanned at normal and low dose, respectively on a SIEMENS Somatom Sensation 64-Slice CT
Scanner in a circular cone-beam scanning mode. A scan protocol was developed for low dose studies
with ECG gating: Time point 1 for a normal X-ray dose scan (100 kV/150 mAs) before a contrast agent
injection, and time points 2–21 for low dose scans (80 kV/17 mAs) after the contrast agent injection.
All the sinograms of the central slice were extracted, which were in a fan-beam geometry. The radius
of the trajectory was 57 cm. A total of 1160 projections were uniformly collected over a 360◦ range.
For each projection, 672 detector elements were equi-angularly distributed to define a FOV of 25.05 cm
in radius. In this experiment, the reconstructed images were 768 × 768 pixels with a physical size of
50 × 50 cm. To further demonstrate the performance of our proposed method for a few views of CT
reconstruction, 580 and 290 views projection were uniformly exacted form 1160 views projection. In
our proposed algorithm, σ = 0.5, LK = 3. For the reconstruction from noisy projections with 1160, 580,
and 290 views, the parameter λ were set as 5 × 10−6, 7 × 10−6, and 2 × 10−5, the number of subset were
set to 40, 20, and 10, respectively.

The reconstruction results are presented in Figure 10. It can be seen that the FBP results look very
noisy and became worse and worse when the number of projection views decreased from 1160 to 290.
Both the SIR-TV and our SIR-STV1 method outperform the FBP algorithm in suppressing image noise.
To clearly compare the reconstruction performance of all algorithms, ROIs are extracted from Figure 10
and magnified in Figure 11. From Figure 11, especially denoted by red arrow regions, we can observe
that the SIR-TV method produces patchy artifacts obviously, while the SIR-STV1 method could avoid
the patchy artifacts effectively.
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Figure 10. Images reconstructed by the FBP (left column), SIR-TV (middle column), and SIR-STV1

(right column) methods from low dose projections with 1160 views (the first row), 580 views (the second
row, and 290 views (the third row). The display window is [−1000, 800] HU.
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4. Discussion and Conclusions

With the development of STV1 in recent years, STV1 has been applied in many medical imaging
problems, including multi-energy CT, dynamic myocardial perfusion CT, etc. Instead of penalizing the
image at every pixel, STV1 considers the available information from the neighborhood of every pixel
by penalizing the eigenvalue of structure tensor at this point. In this paper, we introduced the STV1

penalty into the SIR reconstruction framework for low dose CT reconstruction. Comparison studies
among FBP and the SIR-TV method revealed that the proposed STV1 penalty effectively removed
image noise and restrained the staircase effect of the TV penalty.

There are three parameters, the standard deviation of Gaussian convolution kernel σ, the radius
of Gaussian convolution kernel LK, and the regularization parameter λ that needs to be adjusted.
Extensive experiments in Section 3.2.4 reveal that the performance of our proposed method is not
quite sensitive to the parameters LK and σ. Therefore, to balance the reconstruction performance and
computational complexity, we chose σ = 0.5 and LK = 3 in our paper. In addition, from our experience
this choice is also suitable for a wide range of applications. For the selection of λ, a large number of λ
was manually tried to yield an optimal one in simulated experiments and realistic sheep lung data
studies on the condition with fixed LK and σ. It is known that this will require a large computation
time and cost. In the future, we would study a regularization parameter selection method to obtain an
approximate optimal regularization parameter for the presented AFISTA.

The OS-SQS method is massively parallelizable and well suited to modern computing architecture
such as graphics processing unit (GPU), which is applied to replace the gradient descent method
for minimizing the data fitting term in the original FISTA. Experimental results in Section 3.1.1
have demonstrated that the proposed AFISTA method converges much faster than FISTA. However,
the convergence behavior of the AFISTA may be affected by the number and ordering of subsets, that is
the proposed algorithms in some cases become unstable when it is too large. In the future, we would
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study how to balance the number of subsets and the convergence of the AFISTA. Meanwhile, stochastic
gradient methods are investigated to realize the random ordering of the subsets.

Another important issue is the computation time. MATLAB codes are developed on a PC with a
3.20 GHz Intel core i7 processor and a 16 GB RAM. Our proposed AFISTA algorithm includes an image
updating step and STV1-based denoising step. In brain image numerical simulation with 1160 views,
the image updating step and STV1-based denoising step in each iteration takes 2.3463 s (on average)
and 40 s (on average), respectively. GPU was employed in the projection and back-projection operation
to speed up the proposed algorithm. In order to further improve the reconstruction speed of the
AFISTA, we would use GPU in STV1-based denoising step.

In conclusion, we introduced the STV1 regularizer into SIR framework for low dose CT
reconstruction and developed an effective algorithm to minimize the objective function using AFISTA.
Both simulated data and realistic sheep data were used to validate the proposed method. From the
experiments, we have seen that the proposed SIR-STV1 have better performance in restraining the
stair effect and noise suppression than FBP and SIR-TV method. Additionally, in the future, the
proposed SIR-STV1 framework will be refined and adapted to handle other topics in CT imaging, such
as few-view reconstruction and interior CT.
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