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Automated detection and 
quantification of breast cancer 
brain metastases in an animal 
model using democratized machine 
learning tools
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Advances in digital whole-slide imaging and machine learning (ML) provide new opportunities for 
automated examination and quantification of histopathological slides to support pathologists and 
biologists. However, implementation of ML tools often requires advanced skills in computer science 
that may not be immediately available in the traditional wet-lab environment. Here, we propose a 
simple and accessible workflow to automate detection and quantification of brain epithelial metastases 
on digitized histological slides. We leverage 100 Hematoxylin & Eosin (H&E)-stained whole slide images 
(WSIs) from 25 Balb/c mice with various level of brain metastatic tumor burden. A supervised training of 
the Trainable Weka Segmentation (TWS) from Fiji was achieved from annotated WSIs. Upon comparison 
with manually drawn regions, it is apparent that the algorithm learned to identify and segment cancer 
cell-specific nuclei and normal brain tissue. Our approach resulted in a robust and highly concordant 
correlation between automated metastases quantification of brain metastases and manual human 
assessment (R2 = 0.8783; P < 0.0001). This simple approach is amenable to other similar analyses, 
including that of human tissues. Widespread adoption of these tools aims to democratize ML and 
improve precision in traditionally qualitative tasks in histopathology-based research.

Microscopic analysis of hematoxylin and eosin (H&E)-stained slides prepared from tumor tissue remains the 
gold standard for clinical cancer assessment and diagnosis and a vital tool for cancer research1,2. Even in the 
research setting this often requires highly trained pathologists which are not always available. Performing this 
task accurately is crucial, especially when histology serves as ground truth in the treatment decision process. 
Similarly, in the laboratory, accurate quantification of histological sections is an important final step for validating 
hypotheses in in vivo animal models. Traditionally however, these have been done manually and in a relatively 
quantitative manner.

The advent of high-resolution whole slide imaging systems (or digital pathology) now allows the development 
and validation of computer-assisted tissue analysis methods, with the aim of automating some aspects of the pro-
cess and of assisting pathologists and researchers in the detection, quantification, and classification of neoplastic 
disease burden3–6. However, the large amount of imaging data generated brings its challenges in terms of data 
storage and processing capability that are often beyond the scope of traditional biological research programs7. 
Specifically, machine learning (ML), “a subdomain of artificial intelligence”, enables computers to learn from a 
training dataset and extend their learned knowledge to subsequent cases for automated predictions8. ML opens 
up possibilities for automated and objective analysis of large datasets9. In biology, ML tools (e.g., deep learning, 
support vector machines and random forests) have found applications in fields such as proteomics10,11, genom-
ics12,13 and radiomics14–16. Histopathological analysis has received significant attention in recent years due to 

1Centre d’imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de 
Sherbrooke, Sherbrooke, Québec, Canada. 2Department of Laboratory Medicine and Pathobiology, University of 
Toronto, Toronto, Ontario, Canada. 3Département de Pathologie, Centre Hospitalier Universitaire de Sherbrooke, 
Québec, Canada. *email: Martin.Lepage@USherbrooke.ca

OPEN

https://doi.org/10.1038/s41598-019-53911-x
http://orcid.org/0000-0003-3981-3386
mailto:Martin.Lepage@USherbrooke.ca


2Scientific Reports |         (2019) 9:17333  | https://doi.org/10.1038/s41598-019-53911-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

emerging advances in ML tools for computer vision17–21. Despite these promises, many physicians and research-
ers, who stand to benefit from these technologies, do not have the computer science training or personnel to 
routinely implement these powerful technologies into their research program.

Consequently, a considerable effort has been made to develop image analysis platforms that depend on 
a relatively low level of technical expertise for application in digital pathology. Among the most popular are 
ImageJ22 and its distribution Fiji23, Icy24, Ilastik25 and CellProfiler26,27. Such open source software can be easily 
extended with plugins, scripts, pipelines or workflows. Based on these, researchers with software development 
skills can design more specialized and more customized analysis packages. However, they cannot handle the vis-
ualisation and processing of WSIs. OpenSlide28, Sedeen29 and QuPath30 offer an alternative to handle whole slide 
format. However, OpenSlide lacks an image analysis capability. Sedeen and QuPath both offer a comprehensive 
package (annotations, image analysis and automation) but Sedeen is still under development (the pathology 
image informatics platform, PIIP) and QuPath requires powerful computers with very high storing capacity and 
performance.

In this paper, we present a simple user-oriented approach for the automatic quantification of breast metastatic 
disease from histological mouse brain digital images. Metastases were implanted in Balb/c mice by intracar-
diac injection of the 4T1 murine mammary epithelial cancer cells which mimic stage IV human triple negative 
breast cancer31,32. The resulting brain tumor metastases were quantified using the trainable WEKA (Waikato 
Environment for Knowledge Analysis) Segmentation (TWS) plugin from Fiji (https://imagej.net/Trainable_
Weka_Segmentation). This open source, user-friendly machine learning tool was designed to help carry out 
image segmentation using a supervised image classification approach33. Using the latter approach, a classifier 
is created from a training set of pixels manually attributed to different classes to reliably discriminate between 
classes and perform segmentation of a large number of images. The TWS plugin combines the image processing 
toolkit Fiji with machine learning algorithms from the data mining and machine learning toolkit WEKA34 to 
perform image segmentation based on pixel classification. WEKA contains a collection of tools and algorithms 
for data analysis and predictive modeling. Fiji, a distribution of Image J, is an open source image processing pack-
age providing a fast and easy access to powerful tools to explore and develop new image processing techniques23. 
Its ease of use and interactivity makes it attractive to scientists who need to perform advanced image analysis 
despite limited experience with programming. Thus, the paper serves as a proof-of-concept exercise to highlight 
to non-experts how this tool can be customized and implemented in the biological sciences. In this study, a 
training dataset was generated with representative and annotated tumor images. The algorithm was subsequently 
applied to the remainder of the dataset. Results obtained by automatic quantification were compared with manual 
segmentation.

Methods
Experimental data.  Our dataset consists of 100 digitized H&E-stained brain sections from 25 Balb/c in 
which various levels of brain metastases were present. Briefly, Balb/c mice received an intracardiac injection of 
4T1 breast cancer carcinoma cells (105 cells in 100 µL PBS) into the left ventricle, which represents a model for 
haematogenous dissemination and metastatic invasion to the brain. Brain metastases can be detected as early as 5 
days after cancer cells injection35. Eighteen days after intracardiac injection mice were sacrificed under deep anes-
thesia and brains collected for subsequent histological analysis and metastases quantification. Tissue slides were 
digitized using the Hamamatsu NanoZoomer 2.0-RS digital slide scanner (Hamamatsu Photonics, Hamamatsu 
City, Shizuoka, Japan) at a 40x magnification (i.e. 227 nm/pixel).

Image preprocessing.  Whole slide images were preprocessed because of their large size at full resolution. 
First, images were resized at a 5x magnification with the NanoZoomer NDP.view2 viewing software. Then, using 
MATLAB, brain hemispheres were extracted as left and right hemisphere (LH and RH, respectively). Each hemi-
sphere was subdivided in smaller images (tiles) containing 1024 × 1024 pixels, creating a substack of images (8–15 
tiles per hemisphere) as illustrated in Fig. 1. This strategy reduced data volume and allowed to process images in 
each substack as individual images to increase the training examples for supervised learning.

Machine learning.  The TWS plugin in Fiji (version 3.2.20) is an open source machine learning and data 
mining toolkit33 based on the Waikato Environment for Knowledge Analysis (Weka, University of Waikato, 
Hamilton, New Zealand).

Six segmentation classes were created: Normal Brain, Metastases, Ventricles, Artefact, Void, and Frame. The 
Artefact class was added since brain slide images can present artefacts related to tissue sectioning (folds, chatter) 
and staining (precipitates). The Frame class was added to account for a black frame present for tiles smaller than 
1024 × 1024 pixels when stack-loaded in the TWS plugin (Fig. 2).

We developed our application with the following features: Hessian, Laplacian, Sobel filter, Difference 
of Gaussians (edge detectors filters), Mean, Maximum, Variance, Median (pixel intensity and texture filters), 
Gaussian Blur, Anisotropic diffusion, Kuwahara (noise reduction filters) and Membrane projections (membrane 
detector)33. Default settings were kept for membrane thickness, membrane patch size, minimum sigma, and max-
imum sigma options (1, 19, 1.0 and 16.0, respectively).

The default TWS Random Forest (RF) classifier was selected with the following options: maxDepth = 20; 
numFeatures = 2; numTrees = 80. Classifier options were chosen considering a balance between segmenta-
tion performance and cost in processing time (due to image size). As shown previously36 and according to our 
own visual inspection, reducing the number of trees from 200 (default value) to 80 did not affect segmentation 
performance.

The classifier was trained with tiles from LH and RH to include intrinsic variability in brain structures 
and metastases morphology. Variability in the H&E stain leads to color variations (from pink to purple) on 
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Figure 1.  Image preprocessing. Representative H&E stained brain section showing histopathological features 
for breast cancer brain metastases. Cell nuclei and cytoplasm are stained in purple and pink, respectively. (A) 
The left brain hemisphere is identified by a small incision (white arrow - (magnification 1 × ; scale bar: 1 mm)). 
(B) Each hemisphere is automatically split in smaller images of at most 1024 × 1024 pixels in size (magnification 
5 × ; scale bar: 200 µm).

Figure 2.  Image classification with supervised machine learning. The TWS graphical user interface (GUI) 
allows supervised training. (A) The classifier is trained with a set of representative images annotated with 
regions of interest (ROIs) allocated to the corresponding pre-defined classes listed in (B). In this example, ROIs 
are attributed to the Void (cyan), Normal brain (green), Frame (pink), Metastases (red) or Artefact (yellow) 
class. (C) Image magnification. Here, the manually drawn ROI belonging to the Metastases class includes cells 
nuclei and cytoplasm. For images smaller than 1024 × 1024, a black frame is created when images are loaded 
into the TWS GUI. Those pixels are attributed to the Frame (pink) class.

https://doi.org/10.1038/s41598-019-53911-x


4Scientific Reports |         (2019) 9:17333  | https://doi.org/10.1038/s41598-019-53911-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

histological brain images and may compromise the automated segmentation. To overcome that variability, 
two classifiers were trained, one for slides that had brighter eosinophilic staining, and another for images that 
are darker. The classifier performance was evaluated by comparing segmentation to the visual evaluation of a 
board-certified pathologist. The out of bag error was maintained under 5%. The classifier was trained with 72 
tiles and the training period lasted approximately 52 hours (Intel Core i7-4790 CPU @ 3.60 GHz, 4 cores, 32 Go 
RAM). Once trained, classifiers were saved and applied to the remaining data and the time needed to process a 
stack of 12 tiles (size of a subdivided hemisphere image) was 12–15 min. A script was created in Fiji to allow the 
user running a macro to select a folder (substack), run the TWS plugin, and then load and apply a classifier to all 
images contained in the stack. The results generated consisted in a stack of segmented images with index values 
corresponding to the segmented classes.

Postprocessing of segmented images.  Segmented images were refined with a final postprocessing step. 
False positive pixels (normal brain pixel misclassified as metastases) were present on some slides. We applied a 
filter in order to refine the classification and reduce misclassification of scattered pixels: metastases class objects 
with an area below five pixels were reattributed to the normal brain class. A threshold of five pixels was selected 
because misclassified pixels often appear as scattered groups of one to five pixels. Statistics for each class were 
automatically outputted to an Excel file.

Manual segmentation.  Brain metastases were manually outlined in all H&E stained brain slide digital 
images using NanoZoomer NDP.view2 viewing software free hand tool. Manual quantification served as a refer-
ence to evaluate the TWS metastases segmentation method. The relative area occupied by metastases in the RH 
and LH for each animal is the sum from all slides. All analyses were performed blinded to the experimental data.

Statistical analysis.  Statistical analysis was performed using GraphPad Prism 7.03 (GraphPad Software, 
Inc.). Pearson correlation analysis was used to asses association between automatic and manual methods. A value 
of P < 0.05 was considered significant.

Results
Image classification.  In our model, metastatic lesions typically consist of cohesive, nest-forming neoplastic 
cells showing limited eosinophilic cytoplasm and bearing large, fairly round and hyperchromatic nuclei. An angi-
ocentric tumor growth pattern was often noted.

Figure 3A shows a metastatic tumor located at the grey and white matter junction, as it is often the case in 
human pathology. Figure 3B is the corresponding segmented image. In that image, blue, green, and red pixels cor-
respond to voids (vessels lumen and background), normal brain tissue, and metastatic tumor cells, respectively. 
Tumor cells are accurately detected, as can be seen on Fig. 3B,D,E. However, metastatic volume is incompletely 
segmented. Figure 3E shows the segmented colour-coded areas overlaid on the original image. The classifier only 
identifies regions with denser and darker nuclei as part of the metastasis class. This suggests that nuclear features 

Figure 3.  Example of automated and manual metastases segmentation. The trained classifier was applied to 
(A) new images in order to obtain (B) segmented images colored according to predefined classes. (C) Image 
magnification. (D) Corresponding region in the classified image showing accurate identification of metastases. 
(E) Image overlay confirming co-localisation. (F) The same metastases are detected using manual segmentation 
(black lines). A small metastasis is suspected below the larger one (black arrowhead). This small tumor is not 
detected in the automatically segmented image shown in panel D. Scale bar: 100 µm.
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are preferentially exploited by the algorithm for tumor detection. This contrasts with the manual segmentation 
process which includes not only cell cytoplasm and nuclei but also intratumoral blood vessels (Fig. 3F).

We identified minor pixels misclassification related to the automatic segmentation. In Fig. 3F, one can see a 
small metastasis below the large tumor (black arrowhead), which was accurately delineated during the manual 
segmentation. The automatic classifier did not segment this lesion (Fig. 3D). This case illustrates the detection 
limits of the algorithm.

Comparison of the TWS automated segmentation and manual segmentation.  Manual and 
automatic segmentation comparisons were performed to determine the classifier accuracy. To this end, we used 
histological brain slides from Balb/c mice with varying tumor burden. Slides included in the training dataset were 
excluded from the correlation analysis. As shown in Fig. 4, results from the two approaches are strongly correlated 
with a positive linear relationship. The Pearson’s correlation coefficient is greater than 0.8 and the p-value less than 
0.0001. The areas measured manually are larger when compared with the automatic method.

Discussion
This paper presents a simple and easy workflow to implement methodology for automatic brain metastases detec-
tion from histopathological image-based quantification using an open-access and readily available TWS plugin 
from Fiji. The results help validate that these tools can be readily trained to carry out accurate lesion segmentation 
of metastatic deposits. Indeed, a very strong correlation was found between automatic and manual methods.

The tumor cell/nucleus identification and segmentation problem is not new in digital pathology and has been 
well studied. The most common methods have been reviewed elsewhere1,37,38 and include thresholding (i.e., con-
verting an intensity image into a binary image based on image pixel intensity using methods like Otsu or local 
thresholding), morphology, region growing (i.e., growing regions by connecting/classifying neighbouring pixels 
of similar intensity level) or watershed algorithms, active contour models and level sets (i.e., using splines to 
connect local maxima of the gradient image). Those image processing methods are improved by incorporating 
ML algorithms. For example, a threshold is used as an initial step for region identification (tumor vs normal 
region) then further processing such as feature extraction and classification is performed using more advanced 
ML algorithms39.

The automatic method was consistently more conservative when compared to the human annotator. This 
appears to be due to the algorithm’s focus on cell nuclei features as a major tumor recognition attribute, while 
humans circle the entire tumor area, which includes cell cytoplasm, nuclei and enclosed blood vessels. As men-
tioned previously, this can also be in small part attributed to the misclassification of some pixels when tumor cell 
nuclei are not intensely colored, making metastatic lesions difficult to distinguish even for a trained observer. Our 
study included only one observer; more observers would be required to assess intra-observer variability and to 
reduce user-induced bias. Despite these limitations, there was a strong overall correlation between human and 
machine estimates.

Metastatic histological features, including nuclear features and staining, cytoplasm, vacuolation (vessel lumen, 
oedema) and metastasis-brain parenchyma interface demarcation vary between tissues slices and within a single 
slice. As shown in Fig. 5, this can lead to atypical tumor patterns and impact on the performance of manual and 
automatic segmentation, thus explaining pixel misclassification in the former and erroneous tumor identification 
and delineation in the latter.

In our model, some tumors displayed an infiltrating pattern, which is somewhat less typical for epithelial sec-
ondary tumors. This invasive pattern was not consistently detected by the algorithm. Some tumors also showed a 
significant inflammatory component however, tumor infiltrating immune cells were not systematically identified 
by the algorithm (data not shown). Training data must include more of those specific cases. Validation of an 

Figure 4.  Comparison of metastases area derived from automated and manual segmentation. Pearson 
correlation analysis was performed to evaluate the quality of our automatic machine learning method against 
manual segmentation. The automatic quantification is positively and strongly correlated with the manual 
quantification of metastases (R = 0.8783; ****p < 0.0001).
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algorithm trained with immunohistochemically stained slides for keratin to detect tumor could help in resolving 
quantification issues in this setting as it would reveal specifically tumor location.

The ML algorithm was trained with a set of images reflecting the heterogeneity in our data. Increasing the 
amount of training data, especially including more atypical tumor cases, might increase the automatic segmenta-
tion efficiency. It is possible that more advanced unsupervised ML algorithms (e.g., deep learning) could increase 
performance in such cases. Other methods for image segmentation exist. On one hand, we implemented simpler 
methods (such as thresholding or region growing) in exploratory studies leading to the current work. These 
suffered from important limitations and such an unfair comparison would not make a convincing or interesting 
case for our method. On the other hand, other advanced algorithms are often more complex, require specialized 
software and/or computer hardware (e.g. GPUs) larger datasets, and are not as user-friendly as the TWS software 
used in this study, or are not already available through open-source and free software (such as ImageJ in the 
case of TWS). Optimizing a full set of methods to make a fair and thorough comparison would require in-depth 
knowledge and comprehensive optimization of each method.

Our aim was instead to develop an image analysis approach that met the usability criteria destined for a broad 
community of users40,41:

•	 User-friendly: our approach is usable by non-experts; tutorials and data to reproduce our results are available 
through a public repository (see Supplementary information).

•	 Developer-friendly: the scripts and licensing are open source.
•	 Interoperable: Fiji was developed to facilitate interactions between imaging platform. For example, it is pos-

sible to run a Fiji plugin from Matlab, CellProfiler or Icy.
•	 Modular: our pipelines can serve as basis for future work, new functionality can be added easily. In fact, Fiji 

is a pioneer in extensibility.
•	 Validated: our approach has been tested with a heterogeneous dataset (staining, tumor morphology) and can 

be validated by future users with their own and/or our data.

In our approach, the final segmentation was highly impacted by classifier performance, which in turn is 
mostly influenced by the quality and reproducibility of the training data and feature selection. The training data 
must include all the aspects and variations of the structures to be segmented. Two classifiers were trained to 
account for variations in color staining. A uniform preprocessing with a step of color stain normalisation might 
have allowed us to use a single classifier.

Cancer cell nuclear features were the major determinant selected by classifiers models for metastases seg-
mentation. Detection of the cell nucleus is relevant since their morphologic patterns change between cell-type, 

Figure 5.  Detection limits of the automated method in cases with unusual tumor invasion patterns. Panel 
(A) shows a metastatic lesion with an unusually strong angiocentric pattern of invasion. In this setting, the 
automated classifier (B) underestimates tumor volume when compared to manual segmentation (C). Arrows 
point out focal detection variability: metastasis-brain parenchyma boundaries are not clearly delineated 
(arrowhead).
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cancer type and cancer grade, and are key diagnostic features in cancer. Those patterns include shape, density, 
area (nucleus/cytoplasm ratio), intranuclear inclusion, changes in chromatin and mitotic count, and are markers 
of tumor malignancy. Nuclear grading has been shown to have a prognosis value in breast cancer and renal cell 
carcinoma42–44. Thus, our method could be easily adapted to other settings such as breast biopsies since the rele-
vance of nuclear features in grading primary breast cancer is well established (Nottingham histologic score)45,46.

We conclude that our simple and user-friendly machine learning approach allows for the automatic detection 
of small and large groups of metastatic breast cancer cells on digital histological images. This can be very useful 
in reducing image analysis time both in preclinical and clinical research settings. While further development is 
possible, such tool could enable a faster and more accurate diagnostic prediction from tumor biopsies and conse-
quently decrease the time required in patient management.

Data availability
Datasets are available for review from the corresponding author upon request.

Code availability
A GitLab repository (weka4metastases), with scripts developed (WSI_2_Tiles.ijm, TWS_metastases.ijm) for this 
work and datasets to reproduce results presented in this paper, is available for revision at https://gitlab.com/
lepage-mri-group/weka4metastases. You can download material from this repository and detailed instructions 
can be found at https://gitlab.com/lepage-mri-group/weka4metastases/blob/master/Readme.md.

Received: 1 August 2019; Accepted: 6 November 2019;
Published: xx xx xxxx

References
	 1.	 Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–71 (2009).
	 2.	 Djuric, U., Zadeh, G., Aldape, K. & Diamandis, P. Precision histology: how deep learning is poised to revitalize histomorphology for 

personalized cancer care. NPJ Precis. Oncol. 1, 22 (2017).
	 3.	 Pantanowitz, L. et al. Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2, 36 (2011).
	 4.	 Al-Janabi, S., Huisman, A. & Van Diest, P. J. Digital pathology: current status and future perspectives. Histopathology 61, 1–9 (2012).
	 5.	 Pantanowitz, L., Farahani, N. & Parwani, A. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. 

Pathol. Lab. Med. Int. 23, https://doi.org/10.2147/PLMI.S59826 (2015).
	 6.	 Pantanowitz, L. et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American 

Pathologists Pathology and Laboratory Quality Center. Arch. Pathol. Lab. Med. 137, 1710–22 (2013).
	 7.	 Webster, J. D. & Dunstan, R. W. Whole-slide imaging and automated image analysis: considerations and opportunities in the 

practice of pathology. Vet. Pathol. 51, 211–23 (2014).
	 8.	 Mehryar Mohri, Afshin Rostamizadeh, and A. T. Foundations of Machine Learning. The MIT Press 20 (2012).
	 9.	 Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use 

cases. J. Pathol. Inform. 7, 29 (2016).
	10.	 Ratcliffe, L. et al. Proteomic identification and profiling of canine lymphoma patients. Vet. Comp. Oncol. 7, 92–105 (2009).
	11.	 Sun, C. S. & Markey, M. K. Recent advances in computational analysis of mass spectrometry for proteomic profiling. J. Mass 

Spectrom. 46, 443–56 (2011).
	12.	 Fakoor, R., Nazi, A. & Huber, M. Using deep learning to enhance cancer diagnosis and classification. Int. Conf. Mach. Learn. (2013).
	13.	 Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 

115, E2970–E2979 (2018).
	14.	 Parmar, C., Grossmann, P., Bussink, J., Lambin, P. & Aerts, H. J. W. L. Machine Learning methods for Quantitative Radiomic 

Biomarkers. Sci. Rep. 5, 13087 (2015).
	15.	 Dou, Q. et al. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. IEEE Trans. 

Med. Imaging 35, 1182–1195 (2016).
	16.	 Pereira, S., Pinto, A., Alves, V. & Silva, C. A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE 

Trans. Med. Imaging 35, 1240–1251 (2016).
	17.	 Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. 

Med. 3, 108ra113 (2011).
	18.	 Spanhol, F. A., Oliveira, L. S., Petitjean, C. & Heutte, L. Breast cancer histopathological image classification using Convolutional 

Neural Networks. In 2016 International Joint Conference on Neural Networks (IJCNN) 2016-Octob, 2560–2567 (IEEE, 2016).
	19.	 Yu, K.-H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. 

Commun. 7, 12474 (2016).
	20.	 Ehteshami Bejnordi, B. et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in 

Women With Breast Cancer. JAMA 318, 2199 (2017).
	21.	 Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018).
	22.	 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–5 (2012).
	23.	 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–82 (2012).
	24.	 de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–6 (2012).
	25.	 Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE 

International Symposium on Biomedical Imaging: From Nano to Macro 230–233, https://doi.org/10.1109/ISBI.2011.5872394(IEEE, 
2011).

	26.	 Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler: free, versatile software for automated biological image analysis. 
Biotechniques 42, 71–5 (2007).

	27.	 McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).
	28.	 Satyanarayanan, M., Goode, A., Gilbert, B., Harkes, J. & Jukic, D. OpenSlide: A vendor-neutral software foundation for digital 

pathology. J. Pathol. Inform. 4, 27 (2013).
	29.	 Martel, A. L. et al. An Image Analysis Resource for Cancer Research: PIIP-Pathology Image Informatics Platform for Visualization, 

Analysis, and Management. Cancer Res. 77, e83–e86 (2017).
	30.	 Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
	31.	 Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38, 3174–81 (1978).
	32.	 Jenkins, S. V. et al. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. 

npj Precis. Oncol. 1, 27 (2017).

https://doi.org/10.1038/s41598-019-53911-x
https://gitlab.com/lepage-mri-group/weka4metastases
https://gitlab.com/lepage-mri-group/weka4metastases
https://gitlab.com/lepage-mri-group/weka4metastases/blob/master/Readme.md
https://doi.org/10.2147/PLMI.S59826
https://doi.org/10.1109/ISBI.2011.5872394


8Scientific Reports |         (2019) 9:17333  | https://doi.org/10.1038/s41598-019-53911-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	33.	 Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 
33, 2424–2426 (2017).

	34.	 Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explor. Newsl. 11, 10 (2009).
	35.	 Soto, M. S., Serres, S., Anthony, D. C. & Sibson, N. R. Functional role of endothelial adhesion molecules in the early stages of brain 

metastasis. Neuro. Oncol. 16, 540–551 (2014).
	36.	 Oshiro, T. M., Perez, P. S. & Baranauskas, J. A. How Many Trees in a Random Forest? In 3587, 154–168 (2012).
	37.	 Irshad, H., Veillard, A., Roux, L. & Racoceanu, D. Methods for nuclei detection, segmentation, and classification in digital 

histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014).
	38.	 Xing, F. & Yang, L. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A 

Comprehensive Review. IEEE Rev. Biomed. Eng. 9, 234–63 (2016).
	39.	 Valkonen, M. et al. Metastasis detection from whole slide images using local features and random forests. Cytom. Part A 91, 555–565 

(2017).
	40.	 Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software usability. Nat. Methods 9, 666–670 (2012).
	41.	 Eliceiri, K. W. et al. Biological imaging software tools. Nat. Methods 9, 697–710 (2012).
	42.	 Yang, Q. et al. Correlation between nuclear grade and biological prognostic variables in invasive breast cancer. Breast Cancer 8, 

105–10 (2001).
	43.	 Bretheau, D. et al. Prognostic value of nuclear grade of renal cell carcinoma. Cancer 76, 2543–9 (1995).
	44.	 Ficarra, V. et al. Prognostic value of renal cell carcinoma nuclear grading: Multivariate analysis of 333 cases. Urol. Int. 67, 130–134 

(2001).
	45.	 Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: 

experience from a large study with long-term follow-up. Histopathology 19, 403–10 (1991).
	46.	 Lester, S. C. et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch. Pathol. 

Lab. Med. 133, 15–25 (2009).

Acknowledgements
The authors are grateful to the Electron Microscopy & Histology Research Core of the FMSS at the Université 
de Sherbrooke for their histology service. ML is member of the Fonds de recherche Québec – Santé – funded by 
Centre de recherche du centre hospitalier universitaire de Sherbrooke.

Author contributions
D.S. performed the experiments, analysed the data and wrote the paper; J.F. contributed to data analysis; P.D. 
reviewed the manuscript; M.R. reviewed pathology, discussed the data and reviewed the manuscript; R.L. and 
M.L. designed and supervised the research study and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53911-x.
Correspondence and requests for materials should be addressed to M.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53911-x
https://doi.org/10.1038/s41598-019-53911-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Automated detection and quantification of breast cancer brain metastases in an animal model using democratized machine lear ...
	Methods

	Experimental data. 
	Image preprocessing. 
	Machine learning. 
	Postprocessing of segmented images. 
	Manual segmentation. 
	Statistical analysis. 

	Results

	Image classification. 
	Comparison of the TWS automated segmentation and manual segmentation. 

	Discussion

	Acknowledgements

	Figure 1 Image preprocessing.
	Figure 2 Image classification with supervised machine learning.
	﻿Figure 3 Example of automated and manual metastases segmentation.
	Figure 4 Comparison of metastases area derived from automated and manual segmentation.
	Figure 5 Detection limits of the automated method in cases with unusual tumor invasion patterns.




