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Abstract

Background: Predicting the details of how an epidemic evolves is highly valuable as health institutions need to
better plan towards limiting the infection propagation effects and optimizing their prediction and response
capabilities. Simulation is a cost- and time-effective way of predicting the evolution of the infection as the joint
influence of many different factors: interaction patterns, personal characteristics, travel patterns, meteorological
conditions, previous vaccination, etc. The work presented in this paper extends EpiGraph, our influenza epidemic
simulator, by introducing a meteorological model as a modular component that interacts with the rest of EpiGraph’s
modules to refine our previous simulation results. Our goal is to estimate the effects of changes in temperature and
relative humidity on the patterns of epidemic influenza based on data provided by the Spanish Influenza Sentinel
Surveillance System (SISSS) and the Spanish Meteorological Agency (AEMET).

Methods: Our meteorological model is based on the regression model developed by AB and JS, and it is tuned with
influenza surveillance data obtained from SISSS. After pre-processing this data to clean it and reconstruct missing
samples, we obtain new values for the reproduction number of each urban region in Spain, every 10 minutes during
2011. We simulate the propagation of the influenza by setting the date of the epidemic onset and the initial
influenza-illness rates for each urban region.

Results: We show that the simulation results have the same propagation shape as the weekly influenza rates as
recorded by SISSS. We perform experiments for a realistic scenario based on actual meteorological data from
2010-2011, and for synthetic values assumed under simplified predicted climate change conditions. Results show that
a diminishing relative humidity of 10% produces an increment of about 1.6% in the final infection rate. The effect of
temperature changes on the infection spread is also noticeable, with a decrease of 1.1% per extra degree.
Conclusions: Using a tool like ours could help predict the shape of developing epidemics and its peaks, and would
permit to quickly run scenarios to determine the evolution of the epidemic under different conditions. We make
EpiGraph source code and epidemic data publicly available.
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Background
Seasonal influenza may not make headlines, but together
with pneumonia, it is one of the top ten causes of death
worldwide. Influenza epidemics results in 3 to 5 million
cases of severe illness a year, which puts a high burden
on health providers and results in loss of productivity
and absenteeism, such as mentioned by the World Health
Organization in [1]. It‘s been long known that in tem-
perate climates these seasonal epidemics occur mostly in
winter, and typical hypotheses assigned the blame to peo-
ple being in closer proximity for longer periods of time, or
lowered immune systems. In general, meteorological con-
ditions affect virus transmission due to multiple effects:
virus survival rates, host contact rates and immunity, and
the transmission environment (except the case of direct
or short-range contact). While these factors may have
an influence, the solid evidence sustains the hypothesis
that the virus‘s best surviving conditions are low tem-
peratures and low absolute humidity. One of the goals
of the current research in this field is to understand this
relationship to be able to develop a more accurate sea-
sonal influenza model for both temperate and tropical
regions. As amotivation of this work, JT et al. [2] conclude
that environment factors may become more important
for a future predictive model of the effects of climate
change. In a previous paper [3], some of the authors of
this paper studied the interaction of the spatio-temporal
distribution of influenza in Spain and the meteorologi-
cal conditions during five consecutive influenza seasons.
The work uses real influenza and meteorological data in
combination with statistical models to show that there
is a relationship between the transmission of influenza
and meteorological variables like absolute humidity and
amount of rainfall. In this work we use the same data
sources (SISSS and AEMET agencies) following a differ-
ent approach: we study some of these relationships from
a simulation perspective, considering not only the exist-
ing influenza distributions but also the ones related to the
climate change.
In this work we extend EpiGraph [4], an influenza sim-

ulator, with a meteorological model (MM) starting from
the model developed by AB and JS [5]. In their paper AB
and JS analyze monthly weather and influenza mortal-
ity data collected between 1973 and 2002 throughout all
of the 359 US urban counties. Using a regression model,
they conclude that there exist correlations between both
absolute humidity and temperature with mortality. They
report a quantitative assessment of the relation between
mean daily humidity and temperature levels and mortal-
ity rates in different ranges. This is an extensive study and,
as a result, we start from the assumption that their results
are solid and appropriate to incorporate to EpiGraph in
order to produce meteorological-dependent simulations
based on real data. In this work we extend EpiGraph

[4], an influenza simulator, with a meteorological model
(MM) starting from the model developed by AB and JS
[5]. In their paper AB and JS analyze monthly weather
and influenza mortality data collected between 1973 and
2002 throughout all of the 359 US urban counties. Using
a regression model, they conclude that there exist corre-
lations between both absolute humidity and temperature
with mortality. They report a quantitative assessment of
the relation between mean daily humidity and tempera-
ture levels and mortality rates in different ranges. This
is an extensive study and, as a result, we start from
the assumption that their results are solid and appro-
priate to incorporate to EpiGraph in order to produce
meteorological-dependent simulations based on real data.
Regarding other influenza simulators that consider

weather conditions, PS et al. presents an agent-based sim-
ulationmodel [6] that evaluates the seasonal effects on the
influenza propagation. Although the reproductive rates
are generated synthetically without considering actual
meteorological data, this paper shows, in a similar way
than our work, the impact of changing reproductive rates
on the course of the influeza pandemic. In the article [7],
JS et al. simulate influenza transmission via a SIRS model
modulated by climate data to obtain the basic reproduc-
tion number R0. Both JS et al. [8] and ACL et al. [9, 10]
study the effects of humidity on influenza transmission
from the point of view of virus survival and conclude that
aerosol transmission ismost efficient in low humidity con-
ditions. ACL et al. [9, 10] and BX et al. [11] also conclude
that aerosol transmission is more efficient at low temper-
atures. JS et al. [8] and JM et al. [12] also deduce that virus
survival increases with decreasing the humidity values.
Epigraph simulations use real data for modelling the

population, the spatio-temporal distribution of influenza,
and the meteorological conditions. This simulator con-
sists of different components and data sources shown in
Fig. 1. The previous and novel components are repre-
sented in blue and orange colors, respectively. The simula-
tor uses input data that is obtained from different sources
including: (1) the influenza data, that contains informa-
tion about the initial individuals that are infected; (2) the
population data, that describes the individual interactions
with others; (3) the transport data, that contains informa-
tion about the movement of individuals between different
locations and (4) the climate data, that contains the mete-
orological conditions existing during the simulated time
span. This data feeds the different models implemented in
the simulator. We briefly describe the three models that
have been previously developed and presented in [4, 13].
The Epidemic model considers the propagation model

of influenza extending the SIR (as explained in [14] by
FB et al.) to include states for latent, asymptomatic, dead
and hospitalized. The infective period has different phases
which may affect the dissemination characteristics of the
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Fig. 1 Overview of the data sources, processed data, and EpiGraph components

influenza virus as AME et al. describe in [15]. Each indi-
vidual has a slightly different length for each infection
state. We adopt most of the concrete values for the model
parameters from the existing literature on flu epidemics
(see [14–17]). You can find them all in [18].
The transport component models the daily commute

of individual to neighboring cities (inter-city movement)
and the long-distance travels for several days that repre-
sent commute of workers that need to reside at different
locations or people that move at any distance for vaca-
tion purposes. The people mobility model is based on the
gravity model proposed by CV et al.[19] that uses geo-
graphical information extracted from Google using the
Google Distance Matrix API service.
The social model is an agent model that captures indi-

vidual characteristics and specifies the interaction pat-
terns based on existing interactions extracted from social
networks. These patterns determine the close contacts of
each individual during the simulation, which is a crucial
element to model the spread of the infection. We extract
interaction patterns from virtual interactions via email
or social networks (Enron and Facebook) and scale them
to approximate a physical connection of the whole net-
work within an urban area. These connections are time-
dependent to realistically capture the temporal nature of
interactions, in our case modeled depending on the day
of the week and time of day. The distribution of the
population is in terms of four group types: school-age
children and students, workers, stay-home parents, and
retirees.

In this paper, as main contribution, we introduce a
new component of the simulator (the meteorological
model), that evaluates the impact of climate parameters
on influenza propagation. This component is tuned with
influenza surveillance data obtained from SISSS to pro-
vide realistic simulations. As far as we know, this work is
the first simulator that integrate real meteorological data
to predict the spatio-temporal distribution of influenza.
We think that this contribution will help to better under-
standing the influenza propagation in real environments.
In the literature we can find different influenza sim-

ulators although none of the following consider mete-
orological factors in the simulation. Examples of them
is the work of KK et al. [20] that presents an SIR-
based epidemic simulator that permits to parametrize
both the population characteristics and the epidemic pro-
cess. The goal of this work is to identify the turning
point (peak of the infected population) of the infection.
Although the initial approaches for modelling the infec-
tion spreading across the contact network, our work
consider a broader number of parameters and configu-
ration of the network. HE et al. [21] analyze, by means
of simulation, the relationship between social interaction
patterns at workplaces and the virus transmission patterns
during influenza pandemics. The main effort is geared
towards the flexible specification of the different aspects
involved in a simulation, such as intervention policies,
social modelling, social organization of work, etc. Sim-
Flu [22] is different from most epidemic simulators in
that it focuses on the discovery of most probable future
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influenza variants starting from virus sequences published
by the National Center for Biotechnology Information
(NCBI). This work is complementary to the goal of most
simulators, including ours, which is to understand and
predict the spreading infection patterns of a known flu
strand across a population. Their methodology is based
on observing directional changes in subtypes of influenza
over time.
JS and AK present a framework [23] to adjust an epi-

demic simulation based on real-time forecasts of infec-
tions from Google Flu Trends. The paper focuses on pre-
diction of the timing of peak infection, but other metrics
could be predicted as well. The authors of [24] simu-
late the spreading of influenza in an urban environment
consisting of several close-by towns connected by trains.
Their goal is to be able to model and simulate intervention
policies.
Epiwork [25] was a European project in FP7 whose

focus was to develop a tool framework for epidemic fore-
cast. Within this project’s framework, WB et al. describe
GLEaMviz [26], their tool for epidemic exploration which
includes a simulator of transmission based on an accu-
rate demographics of world’s population over which they
superpose a (stochastic) mobility model. DB et al. [27]
use human mobility extracted from airline flights and
local commute (based on the gravity model) to predict
the activity of the influenza virus based on Monte Carlo
analysis. SM and SM [28] study the role of population
heterogeneity and human mobility in the spread of pan-
demic influenza. In [29], the authors reconstruct con-
tact and time-in-contact matrices from surveys and other
socio-demographic data in Italy and use this matrix for
simulation.

Methods
Climate data pre-processing
Epigraph uses meteorological data provided by the
Spanish Meteorological Agency (AEMET) to generate
environment-dependent influenza simulations. The pre-
processing stage is performed to obtain clean inputs for
the meteorological model. First, the weather station near-
est to each simulated urban region is identified. Our simu-
lations consider 92 different urban regions withmore than
100,000 inhabitants. In some cases, the station is within
the city limits, while in others it is located in a nearby
area (for instance at the region‘s airport). The data from
each weather station is analyzed to reconstruct poten-
tially missing samples. Sometimes it is the case that some
station data samples are missing because the station was
not operational during a given time period. These repre-
sents just a small fraction of the overall samples, but they
have to be properly addressed. Figure 2 shows an example
of how the original missing data (shown in upper figure)
is reconstructed producing a complete samplingclearpage

(reconstructed values are shown in the lower figure in red
color). In order to add the missing samples, we have used
the reconstruct data algorithm (missdata) included in
the Matlab’s System Identification Toolbox. This tool-
box permits the construction of mathematical mod-
els for dynamic systems, starting from measured input
-output data.
The resulting data is then processed to filter non-

realistic values. Some weather stations produce abnormal
samples corresponding to non-realistic values that are too
big or too small. Figure 2 shows an example of this kind
of values around sample 41,000. We have corrected these
cases with a Matlab algorithm we implemented to detect
these peaks and correct them using an interpolation of
the values from the previous days. These two steps are
only performed once for each new meteorological input
data and the results may be used for the rest of the
process.

Modeling the dependence of the infectious agent behavior
on climate factors
This section describes how the R0s are obtained from the
meteorological conditions. In addition to the notations
introduced in the introduction, for the rest of the paper
we will use SH for the specific humidity and P∗

H2O for the
equilibrium water vapor pressure. A related value to SH is
Absolute Humidity (AH), which is the mass concentration
that describes the amount of water vapour per volume
of air. Previous studies [30, 31] suggest that AH (and by
extension SH) are one of the main factors affecting the
influenza virus transmission.
In EpiGraph we adopt the results of the regression

model used by AB and JS [5]. In their 2012 paper, they
analyzemonthly weather and influenzamortality data col-
lected between 1973 and 2002 throughout all the 359 US
urban counties. Using regression, they conclude that there
exists a strong correlation between absolute humidity and
mortality, even when controlling for temperature, when
the humidity drops below daily means of 6g/kg. Temper-
ature correlations also exist, mainly in the daily ranges
between -1.1C and 15.6C. In an earlier paper ([7]) JS et
al. study the same dataset and simulate influenza trans-
mission via a SIRS model modulated by the data to obtain
the basic reproduction number R0. They also find best-
fit parameter range combinations of R0max between 2.6
and 4, and R0min between 1.05 and 1.3. We adopt the
pair of (R0max, R0min) that was found to be the best-fit
parameter combinations they discover: R0max = 3.52,
R0min = 1.12.
From the definition of the specific humidity (SH) and

relative humidity (RH)—see RHP and DWG [32]—we
know that:

RH = SH ∗ P/(0.622 + 0.378 ∗ SH) ∗ P∗
H2O (1)
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Fig. 2 Data reconstruction example of temperature values for Alcobendas urban region (the reconstructed values are in red color). X-axis units
conrresponds to tens of thousand samples and the total number of samples displayed is 52,560 (one sample every 10 minutes for one-year span)

We also know from Buck’s equation that the equilibrium
water vapor pressure can be calculated using the formula:

PH2O(T) = 0.61121∗Exp((18.678−T/234.5)(T/(257.14+T)))

(2)

where the temperature T is measured in degrees Cel-
sius. This formula works best for values of T in the
range of -80C to 50C. From known values RH, P, and T,
and using Eqs. (1) and (2), we can calculate the specific
humidity.
From laboratory experiments by JS et al. [7] we have:

R0 = exp(a ∗ q+ b)+R0min � exp(a ∗ SH + b)+R0min (3)

where a = −180, b = log(R0max − R0min) and q is the 2-
m above-ground specific humidity, which we approximate
to SH at the given temperature. In this way, we obtain a
value for P∗

H2O in every sample (obtained every 10 min-
utes) using Eq. (2). From this value in combination with
the values of RH and P we obtain the value of SH using
Eq. (1). Finally, Eq. (3) computes the new R0 values for each
urban region.
R0s are, therefore, time-dependent values that deter-

mine, in a stochastic process, how many susceptible
individuals of an infected person’s connections could be
potentially infected. This is the dynamic component of
the infectivity of an individual with respect to the others.

The other dynamic component is the stochastic transi-
tion between infective states [4], computed with variable
probabilities.
Our model is not different for the different types /

subtypes of influenza. The values of the model param-
eters (basic reproduction numbers for each stage of the
disease) were chosen to fall in the ranges published
by AB and JS, which are based on actual data for all
types of influenza, over 30 years. We choose fixed R0s
within the ranges, although this is a parameter that can
be configured to vary. On the other hand, the eval-
uation was performed over data from the 2010-2011
influenza season over the whole territory of Spain, for
all types of influenzas that were diagnosed. We con-
sider that both the choice of R0 (based on exhaus-
tive data) and the evaluation against real reported cases
across Spain are comprehensive enough to validate our
results.

Simulator setup
Setting up the influenzamodel
The Spanish Influenza Sentinel Surveillance System
(SISSS) comprises 17 networks of sentinel physicians
(general practitioners and pediatricians) in 17 of the 19
Spanish regions, as well as the network-affiliated labora-
tories, including the National Influenza Reference Labo-
ratory (National Centre for Microbiology, World Health
Organization National Influenza Centre inMadrid). More
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than 800 sentinel physicians participated each season
covering a population under surveillance of around
one million—see [33, 34]. Sentinel physicians reported
influenza-like illness (ILI) cases—integrating virological
data collected in the same population—detected in their
reference populations on a weekly basis, following a def-
inition based on the EU-ILI, as described in [35]. For
influenza surveillance, they systematically swab (nasal
or nasopharyngeal) the first two ILI patients each week
and sent the swabs to the network-affiliated laboratories
for influenza virus detection. The information collected
by the SISSS includes data on demographics, clinical
and virological characteristics, seasonal vaccination sta-
tus, chronic conditions, and pregnancy. Data is entered
weekly by each regional sentinel network in a web-based
application [36] and analyzed by the National Centre
of Epidemiology to provide timely information on the
evolving influenza activity in Spanish regions and at the
national level. For example, during the 2011-2012 season,
651 sentinel physicians and 236 pediatricians participated
to SISSS and surveyed a total population of 1,142,189,
which represents 2.36% of the total population of Spain.
We obtained the SISSS data from the National Center

of Epidemiology, Institute of Health Carlos III of Madrid
(ISCIII). In order to produce realistic simulations, Epi-
Graph has to be properly configured. This configuration
process consists of setting up two parameters: the date of
the epidemic onset and the initial influenza-illness rates
for each urban region.
The first parameter is the time of onset of the epidemics,

which occurs during week 50 of 2010. At this time the
national average incidence values for influenza are greater
than 60 cases per 100,000 inhabitants, which is the thresh-
old determined by SISS, based on data from the 2010-2011
seasonal epidemic, to be the start of the influenza season.
In our simulation the exact date is the 13th of December
of 2010.
The second parameter values were obtained from

influenza surveillance data obtained from the SISSS corre-
sponding to the influenza season 2010-11. From this data
we obtained the reported weekly ILI rate at national and
regional level in Spain. The data for the Murcia and Gali-
cia communities are not available and we approximated
them based on the data from the nearest community.
These rates allow us to approximate the initial number
of (clinically) influenza-like-infected individuals using the
following formula, based on the study published online (in
March 2017) in the Lancet Respiratory Medicine by ACH
et al. [37].

Ntot = Nreport
Symp ∗ Attend

∗ Fpos, (4)

where Nreport are the cases that demanded medical atten-
tion, as reported by the SISSS, Fpos is the fraction of

positive cases, Symp is the percentage of symptomatic
individuals, and Attend is the percentage of those with
symptoms that see a doctor. For instance, for the reported
Nreport = 90 cases per 100,000 inhabitants in week 50,
and with values Fpos = 33% (empirical value for 2010-2011
in Spain), and Symp = 23%,Attend = 17% (values taken
from the cited study), we calculate that the total number
of infected individuals is of approximately 765 cases per
100,000 inhabitants - or 0.765% of the total population.
We use this value to set up the initial conditions of the
simulation (described in this section), but also to validate
its results. Each community has a different Nreport , which
leads to different numbers of initially infected individuals.
EpiGraph allows modeling at the level of each indi-

vidual, and thus can simulate the effect of vaccination
policies. To produce realistic results, we use different
influenza vaccination coverages by age group; for those
older than 65 we have used the vaccination ratios (per
community) provided by the Ministry of Health, Social
Services, and Equality of Spain. These values correspond
to vaccination coverages collected by the National Health
System [38]. For the rest of the population (individu-
als younger than 65) we have used the data provided by
the Spanish Statistical Office, which is based on surveys
done in each community. Given that the data are avail-
able at community level, we assume that all the urban
areas located in the same community have the same vac-
cination coverages. Table 1 shows these percentages per
community and age.
As input of the mobility model, we use 85% work-

ers and 15% students for short distance travel, and 50%
workers, 30% students, 15% retired individuals, and 5%
unemployed for long distance travel.

Calibrating the simulator
While EpiGraph accounts for many of the components
that influence the spreading of the virus, the behav-
ior of these parts and the values of the parameters
(such as the initial infectious individuals or the vac-
cination rate) are unavoidably approximate. On their
website, the World Health Organization reports that in
annual influenza epidemics, 5-15% of the population
are affected with upper respiratory tract infections [1].
We have therefore introduced a scaling factor which
adjusts the infection propagation rate of each individ-
ual to produce, for each urban region, a final infection
rate between 5% and 15% of the total population. These
values are obtained in a pre-calibration phase of Epi-
Graph for the real climate conditions—performed only
once— and are then used for all subsequent simulation
experiments. Note that this is the only data –which is
also based on real data– that we use for the calibration
process. We do not calibrate the model to an existing
epidemic curve.
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Table 1 Proportion of influenza vaccinated population by Spanish region

Age group Andalucía Aragón Asturias Balears Cantabria Castilla y León

16-64 years 21.8 20.4 23.8 18.0 22.5 27.7

>64 years 60.0 57.5 56.2 45.9 57.3 66.1

C. Valenciana Extremadura Galicia C. de Madrid Murcia Navarra

16-64 years 20.9 24.4 22.9 23.6 24.0 22.5

>64 years 50.6 50.8 52.4 58.2 49.3 60.1

Castilla la Mancha Cataluña País Vasco Rioja

16-64 years 23.4 21.7 24.2 21.4

>64 years 54.0 54.0 60.3 66.5

Once calibration is done, we use data from SISSS, which
records influenza-like-illness cases that are not confirmed
by laboratory tests, for setting the initial simulation con-
ditions of each urban area. This fact doesn’t affect the
validity of our results because the purpose is to compare
yearly/monthly numbers under different climate condi-
tions rather than know the accurate number of infected
individuals.

Experimental setup
We have performed different tests to validate our
approach and simulator. We first validated the simulator
against influenza surveillance data, then we evaluated two
different environmental scenarios. We believe that our
simulator can be useful to predict the short- and medium-
term spread of an infection, as well as to assess the effects
that changes in climate can have over influenza epidemics
worldwide.
The first scenario involves real climate values from

AEMET and allows studying the short- and medium-term
propagation for influenza strands. For the second set of
scenarios we generate fictitious values of RH and T by
scaling the real values. Our idea is to study the effects of
the changing climate conditions on influenza propagation.
Simulations occur across the 92 largest cities in Spain,
which account for a population of 21,320,965 inhabitants.
The time span is 7 months starting from the day identi-
fied as the onset date in our data - the 13th of December
of 2010.
In our experiments we have used data from 92 weather

stations from the national network, distributed across
the country. Each weather station collects the values of
temperature, atmospheric pressure, and relative humidity
every 10 minutes during the entire 2011. These con-
sists of about 157,000 data samples per station and 14.5
million data values in total. Based on these values, we
generate the basic reproduction numbers to obtain an R0
value per urban area at every 10 minutes. With the pre-
viously determined initial influenza-like rates per region
and (year-specific) date of onset, and after calibration,

each urban region data - vaccination rates, individuals’
characteristics, initial infective individuals, and R0s values
- are loaded from files.

Results
Validation of the simulator quality
The validation of our simulator in terms of its capac-
ity to predict qualitatively similar propagation results as
those approximated from the influenza surveillance data
recorded by SISSS. The simulated values for each of the
Spanish regions are the aggregated values of all the urban
regions belonging to it.
Figure 3 shows the simulated and actual estimated

data. The simulated values are scaled to make the largest
simulated value to be the same as the maximum real
value. This allows a comparison of the evolution of the
influenza propagation for each community over time. We
can observe that although not perfect, the prediction
shows a similar evolution with those from real scenarios.
Note that the simulator considers an approximation of the
real conditions during the simulated period, but produc-
ing a better (unlikely perfect) fit between the two domains
would need to consider all the factors of the real world that
affect the flu propagation at nation-level. Some of these
are possibly unknown, others are not currently measured,
and yet others are not possible to measure.
The reason for scaling the data is that the simulated

and actual estimated data reflect the population rather
differently. On one hand, the simulated values corre-
spond to the overall number of individuals infected with
influenza across the considered urban areas. These take
into account all the individuals within the simulated areas
but only include the largest urban regions (above 100,000
inhabitants); small cities, towns, and villages are not con-
sidered. On the other hand, the influenza surveillance data
are only related to a small fraction of the existing clinical
cases: SISSS covers a representative but small percentage
of the population, in addition to the fact that there are
more cases than those reported due to people not seek-
ing medical attention. In contrast, the number of cases
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Fig. 3 Comparison of normalized values between EpiGraph (in red) and real values (in blue) for Navarra, Madridm Pais Vasco and Valencia
comunities. Real values correspond to the total number of infected Ntot, obtained by means Eq. 4 from influenza surveillance data

are collected from the complete community (including
both large and small populations). It is thus not possible
to compare the absolute values of the two data sources,
although they should be linearly related.

Effect of long-term climate changes
Figure 4 shows an example of the value of these param-
eters for the urban region of Terrasa (Barcelona) over
one year. We can observe strong variations of R0 that
are related to the changing temperature, relative humidity,
and pressure conditions.
To evaluate the effect of both real and hypotheti-

cal meteorological climate changes on the spreading
of influenza we evaluate temperature variations of �T
degrees and percentage variations of the relative humidity
pRH. �T = 0 and pRH = 1.0 correspond to the initial sce-
nario with the original climate conditions. Studies show
that climate change is producing increments in the aver-
age temperature (amplified by pollution) and, in southern
Europe, longer periods of drought. The idea is to evaluate
the impact of these changes on the influenza propagation.
In this section, we consider long-term meteorological

climate changes, that is, changes in the climate conditions
that extend to the entire simulated period of 28 weeks. In
this context, we evaluate two different scenarios, probably
not as complex as future real climate changes.
The first one corresponds to drought conditions, when

the relative humidity values (RH) are smaller than cur-
rent ones. We have considered a reduction of the relative
humidity from 90% to 50% in increments of 10% (RH val-
ues half than the original ones). According to the infection
model, influenza propagates easier for smaller RH values;
we thus expect to observe a larger effect. Figure 5 shows
the overall percentage of infected individuals per com-
munity predicted by EpiGraph. The diminishing RH has
indeed a strong impact on the number of infected individ-
uals. On average, 12.4% of the population was infected in
the base case (reduction factor equal to 1), while the aver-
age infection rate for 0.5 factor is 20.5%. We can observe
that a percental reduction of RH of 10% produces an
approximate increment of 1.6% in the final infection rate.
The second scenario evaluates the impact of an increase

of temperature on the propagation. Figure 6 shows the
final infection rate for an increment of the temperature
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Fig. 4Meteorological parameters (T, RH, P) and the obtained R0s values for a one-year simulation (2011) for Tarrasa urban area

Fig. 5 Effect of long-term changes of relative humidity on the influenza propagation for the different communities considered in the simulation
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Fig. 6 Effect of long-term changes in the temperature on the influenza propagation for the different communities considered in the simulation

between 0 degrees (current case) and 5 degrees Celsius.
We can observe that now there is a reduction in the
infection rate when the temperature increases. Now, an
increment of 5 degrees reduces the average infection rate
from 12.5% to 6.9%—a decrement of 1.1% per degree.
Both scenarios assume that the values of the parameters

(RH, T) change one at a time. This is a simplification, and
the idea behind this approach is to evaluate the impact of
a single parameter variation on the overall influenza out-
come. However, EpiGraph supports specifying any chang-
ing combination of climate conditions. In a more realistic
scenario both parameters would change, and the climate
specialists are those who should define what the concrete
values are.
Figure 7 shows the combined effect of temperature

and relative humidity change on the average nation-wide
infection rate. We have plotted two planes: the first one
(colored) represents the average infection rates for differ-
ent increments in the temperature values and percentile
reductions in the relative humidity; the second one (green)
displays the infection rate of the original scenario (without
climate variation) for all the coordinates and represents
the baseline case. The two planes intersect in the lower-
left point, where the temperature and RH have the origi-
nal values. Although both parameters influence the final
infection rate, relative humidity has a larger effect than
temperature.
Figure 8 shows the effect of RH and temperature varia-

tions on the infection distribution for Andalucia commu-
nity. We can observe that the variation of both parameters
changes the shape of the distribution, especially in terms
of the peak values but also - more subtly - in terms of the
propagation interval.

The maximum and minimum 95% confidence inter-
vals baseline scenario (no RH reduction nor temperature
increment) ranges between 0.28 and 0.06 for urban areas
in Castilla la Mancha and Aragón, respectively. These
results are produced by a simulator repeating the simula-
tions 30 times. Note that there already exist uncertainty
in the input data, both with respect to the number of ini-
tially infected individuals as well as from the point of view
of the epidemic model.

Effect of short-term climate changes
To evaluate the effect of short-term changes in climate
conditions, we modify RH and the temperature exactly
like described in the previous section, only for the first
week of the simulation. The rest of the simulation uses
the original climate parameters. Figures 9 and 10 show the
final infection rate for different variations of RH and tem-
perature. We can observe that the impact on the overall
percentage of infected individuals is still important, par-
ticularly for a decrease in RH of 0.2 or more and - less
evidently - for an increase in temperature of 3 degrees or
more. For smaller changes in temperature the effect is less
evident, but we believe that this is due to the fact that the
short-term simulation of temperature increase is only one
week.

Discussion
We achieve herd immunity in two ways: as result of vac-
cinating campaigns, and naturally when an individual that
was infected goes to the recovery (or dead) state, in which
case he becomes immune and starts acting as a propaga-
tion stopper. As a result, after certain threshold of infected
vs susceptible individuals, the infection rate naturally goes
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Fig. 7 Effect of long-term changes in the relative humidity (percentil reduction) and temperature (value increment in Celsius) on the influenza
propagation for the average nation-wide infection rates

down. This occurs at the inflection point in the propaga-
tion graph, specifically at about 16 weeks (in our data).
The vaccination success rate during the 2010-2011 sea-
son was approximately 50% [39]. Given the parameters
shown in Fig. 4 of [40] for herd immunity for influenza, we
consider that the R0 considered by our model takes into
consideration this type of immunity. We do not model the
level at which herd immunity starts acting as a parameter,
although this phenomenon occurs naturally in the simula-
tions. The simulator is flexible enough to support different
daily contact patterns for each individual. The probability
of an individual getting infected during an interaction also
differs (it’s a stochastic process), and thus the infection
can be transmitted to individuals pertaining to different
groups.

Recently, the work in [41] suggests that RH should also
be considered (together with the temperature) as a mod-
ulating factor in the influenza propagation. Another study
that analyses this relationship can be found in [42]. This
work provides a transmission risk contour map based on
the temperature and RH humidity values. Note that our
work addresses the problem of evaluating the influenza
propagation from a different perspective. Instead of ana-
lyzing the propagation mechanisms of the virus and how
they are related to the environment conditions, we focus
on an empirical relationship between the virus’s basic
reproduction number and the outdoor specific humidity.
The R0 values used in this work are the combination of
both outdoor and indoor virus propagations, and provide
an approximation of a real scenario. Note also that the

Fig. 8 Effect of long-term parameter variation on the infection distribution shape for Andalucía. In a different RH scales are evaluated (100% in red,
90% in green, 80% in blue and 70% in black); In b different temperature offsets are evaluated (0 degrees in red, +1 degrees in green, +2 degrees in
blue and +3 degrees in black)
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Fig. 9 Effect of short-term changes in the relative humidity on the influenza propagation for the different communities considered in the
simulation: in color the average infection rates for different increments in the temperature values and percentile reductions in the relative humidity;
in green the infection rate of the scenario without climate variation

main goal of this work is to evaluate the impact of the
weather conditions on the propagation.
A possible limitation is that we only model the largest

92 urban regions in Spain; we could add more informa-
tion related to smaller cities and towns, including rural
regions. Nevertheless we don’t think this data would
make a significant difference in the results, as the infec-
tion needs a large number of hosts to explode, and / or
travel patterns between the infected areas. Small town and

village areas are arguably much less likely than cities to
fulfill these roles.
A second limitation is related to the meteorological

factors affecting the infection propagation: the number
and set of climate factors that the meteorological model
takes into account, and the choice of the model itself.
Additional parameters that specialists mention as possible
influencers in virus transmission are factors such as wind,
precipitation, or pollution.

Fig. 10 Effect of short-term changes in the temperature on the influenza propagation for the different communities considered in the simulation
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One important thing to underline is that the data that
the study [5] (whose model we adopt) is based on is
of real cases and spans 30 years. Interactions between
meteorological trends and human behavior are therefore
intrinsically reflected in the data, although the rules of
behavior change are not explicitly specified for the agents
(i.e. individuals) involved in the simulation. The case can
be made that meteorological changes were not as extreme
before 2002, and that a regression model based on new
data may change as well over time. While this is a definite
possibility, we believe that its nature will not change in a
fundamental way, such that we can still predict trends, if
not absolute values.
A third limitation is that we don’t calibrate the model

on an epidemic curve, which results in different timings
of the flu peaks in some regions, such as in Navarra and
Madrid.
Finally, to successfully simulate the flu epidemics

requires leveraging many different types of data, most
of them in large amounts, as input and calibration mea-
surements for our tool (EpiGraph). For instance, we are
using social network data from Enron and Facebook to
set up the population interaction patterns, census data to
extract the characteristics of the different types of individ-
uals, Google Maps to initialize the transportation module,
data from AEMET to run simulations that are realistic
from a meteorological viewpoint, and weekly ILI rates
obtained from the SISSS to initialize and evaluate the
simulator. This makes the implementation of EpiGraph
more realistic, a strength that can lead to more accurate
simulations.

Conclusions
We have extended our simulator EpiGraph with a meteo-
rological model that interacts with the rest of the system
to better reflect the behavior of the influenza propagation
through the entire population of Spain. To produce real-
istic results we also take into account vaccination, with
different ratios based on the individuals’ ages. The simu-
lator results are compared to real data on infection rates
and across the whole country. The results for the pre-
diction of the evolution of the influenza propagation for
each community over time are similar in shape to the real
data. After validating the simulator, we evaluate different
scenarios that reflect changes in climate conditions, and
show the predictions for variations in the relative humid-
ity and temperature. Lastly, we make EpiGraph‘s source
code publicly available at [18], to be used by the scientific
community.
As future work, an interesting, although independent,

possibility is to investigate the potential of EpiGraph to
simulate the evolution of the virus spread for different
subtypes of influenza, once the propagationmodel param-
eters (e.g. incubating period, infectious period, basic

reproduction numbers, etc.) are known, or to narrow
down the possible subtypes in early phases of an infection.
One could also investigate the impact of new meteorolog-
ical factors on the evolution of the infection.
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