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Abstract: In this study, we investigated whether the partial replacement of dietary fat with polyunsat-
urated fatty acids (PUFAs) ameliorated the lipopolysaccharide (LPS)-induced hepatic inflammation
in rats fed a high-fat diet. Male Sprague-Dawley rats were divided into three groups and provided
each of the following diets: (1) high-fat diet (HFD), (2) HFD with perilla oil (PO), and (3) HFD with
corn oil (CO). After 12 weeks of dietary intervention, the rats were intraperitoneally injected with LPS
(5 mg/kg) from Escherichia coli O55:B5 or phosphate-buffered saline (PBS). Following LPS stimulation,
serum insulin levels were increased, while PO and CO lowered the serum levels of glucose and in-
sulin. In the liver, LPS increased the triglyceride levels, while PO and CO alleviated the LPS-induced
hepatic triglyceride accumulation. In the LPS injected rats, the mRNA expression of genes related
to inflammation and endoplasmic reticulum (ER) stress was attenuated by PO and CO in the liver.
Furthermore, hepatic levels of proteins involved in the nuclear factor kappa-light-chain-enhancer of
activated B cells/mitogen-activated protein kinase pathways, antioxidant response, and ER stress
were lowered by PO- and CO-replacement. Therefore, the partial replacement of dietary fat with
PUFAs alleviates LPS-induced hepatic inflammation during HFD consumption, which may decrease
metabolic abnormalities.

Keywords: high-fat diet; lipopolysaccharide; polyunsaturated fatty acids; perilla oil; corn oil; inflammation

1. Introduction

Obesity is defined as the accumulation of excess body fat, which may have adverse ef-
fects on health [1]. Obesity increases the risk of various metabolic complications, including
type 2 diabetes, heart disease, and cardiovascular diseases [2,3]. In addition, nonalcoholic
fatty liver disease (NAFLD) is becoming the most common cause of chronic liver disease
due to the increasing prevalence of obesity [4]. Steatosis, a hallmark of NAFLD, occurs
when hepatic fatty acid uptake increases due to high energy intake [4]. Previous studies
have shown that it contributes to systemic insulin resistance and inflammatory responses,
which may occur in obesity [5]. The probability of developing hepatic fibrosis and hepato-
cellular carcinoma is greater in individuals with steatohepatitis. Lipopolysaccharide (LPS)
is considered a potent inducer of hepatic inflammation in experimental rodents [6,7]. LPS
is reported to be the predominant cause of hepatic neutrophil infiltration in steatohepatitis
patients [6]. To date, a few studies have examined how obese mouse models respond
to acute inflammatory stimuli. They have revealed that, in response to LPS stimulation,
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obese rodents showed increased cytokine expression and more severe liver dysfunction
and insulin resistance compared to lean subjects [7,8].

The onset of obesity is multifactorial, including genetic, environmental, dietary, and
environmental factors [2,9]; however, the most common cause of obesity is that energy
intake is greater than energy consumption. Nowadays, people tend to consume high-
fat and/or high-sugar diets and have less energy expenditure, such as lower physical
activity [9,10]. Furthermore, recently, the spread of COVID-19 throughout the world has
triggered many physical restrictions when compared with any other period in human
history, and thus individuals worldwide are at a higher risk of being overweight and
developing obesity [11]. Therefore, appropriate dietary selection, including fatty acids,
is highly recommended. The World Health Organization (WHO), China, and the United
States have recommended reducing fat intake to less than 30% of the total energy intake to
prevent obesity [12]. Moreover, the WHO recommends reducing the saturated fat intake to
less than 10% and the trans-fat intake to less than 1% of the total energy intake, respectively,
to reduce the onset risk of cardiovascular diseases [13]. Therefore, consuming alternative
and functional fat sources may be an important dietary strategy, such as replacing saturated
and/or trans-fat intake with polyunsaturated fatty acids (PUFAs) to prevent metabolic
complications [13,14].

PUFAs are fatty acids that contain more than one double bond in their backbone.
PUFAs are categorized into omega-3 (n-3) and omega-3 (n-6) PUFAs according to their
chemical structure [15]. The n-3 desaturase is not sufficient in mammalian cells, and
therefore, it cannot efficiently convert n-6 fatty acids to n-3 fatty acids; therefore, certain n-3
fatty acids are essential for mammals. The three types of n-3 fatty acids engaged in human
physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA). ALA is commonly found in plant oils, and EPA and DHA are mainly present
in fish and shellfish [15]. Although the recommended daily intake of n-3 fatty acids
varies across international organizations, consuming >250 mg n-3 fatty acids is highly
preferable [16,17]. The ratio of n-6 to n-3 fatty acids is another crucial factor. Previous
studies have revealed that an n-6/n-3 PUFA diet with a ratio of 6−10 may possess various
health benefits [18]. Unfortunately, the Western diet generally has lower n-3 fatty acids,
and the ratio of n-6/n-3 is 15/1–16.7/1. This excessive intake of n-6 PUFAs may trigger
the pathogenesis of inflammation, autoimmune diseases, cardiovascular disease, and
cancer [19,20]. Therefore, balanced dietary fatty acid supplementation is highly important
to date [21].

In a previous study, a diet rich in saturated fat was associated with higher pro-
duction of pro-inflammatory cytokines, particularly in overweight or diabetic individu-
als [22,23]. However, the anti-inflammatory capacity of PUFA-rich diets has been well doc-
umented [24,25]. Therefore, this study was conducted to investigate the preventive effect
of PUFA on LPS-induced hepatic inflammation in high-fat diet-induced obese Sprague-
Dawley rats. In the present study, we supplemented perilla oil (PO) or corn oil (CO) in a
high-fat diet to partly replace saturated fat with PUFAs. PO is a rich source of n-3 PUFAs,
such as ALA, EPA, and DHA [26]. In previous studies, PO was reported to reduce insulin
resistance [27] and regulate lipid metabolism [28], intestinal flora [29], and colitis [30]. On
the other hand, corn oil (CO) is a widely consumed edible oil that contains up to 80%
unsaturated fatty acids and is an abundant source of linoleic acid (LA, n-6).

2. Materials and Methods
2.1. Animal Experiments and Diets

All animal studies were approved by the Dankook University Institutional Animal
Care and Use Committee (IACUC, No. DKU-19-031). In total, 48 male (5-week-old)
Sprague-Dawley rats were obtained from DooYeal Biotech (Seoul, Korea). The rats were
housed in shoe-box cages in a temperature- and humidity-controlled (23 ± 2 ◦C, 55 ± 5%)
room with a 12 h light/dark cycle. The experimental animals had free access to the diet
and purified water. After acclimatization for one week, the rats were randomly assigned to
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three different diets: (1) high-fat diet (HFD), (2) HFD + perilla oil (HFD + PO), and (3) HFD
+ corn oil (HFD + CO). PO (CJ Cheil Jedang Co., Seoul, Korea) and CO (CJ Cheil Jedang
Co.) were purchased from a local market and stored at −20 ◦C. The amounts of PO and CO
added were determined to meet human requirements for n-3 and n-6 PUFAs by converting
animal intake into human intake [31,32]. The experimental diets were formulated based on
the AIN-93G diet with slight modification [33]. The constant and variable compositions
of each experimental diet are presented in Tables 1 and 2, respectively. After 12 weeks
of dietary intervention, the experimental rats were intraperitoneally injected with either
phosphate-buffered saline (PBS) or 5 mg/kg of LPS (Escherichia coli, O55:B5; Sigma-Aldrich,
St. Louis, MO, USA) under overnight fasting conditions. Next, the experimental rats were
euthanized by carbon dioxide (CO2) exposure followed by cervical dislocation. Whole
blood was collected by cardiac puncture, maintained at room temperature for 30 min,
and centrifuged (3000× g, 15 min) to obtain serum. Liver and multiple white adipose
tissue (WAT) fat pads were harvested, weighed, and snap-frozen quickly in liquid nitrogen.
Serum and tissue samples were stored in a deep freezer set at −70 ◦C for further analysis.

Table 1. Constant ingredients in the three experimental diets.

Ingredient (g/kg) Amount

Casein 220
L-cysteine 3.4

Sucrose 100
Corn starch 160

Dextrose 155
Cellulose 58

Mineral mix 1 43
Vitamin mix 2 19

Choline bitartrate 2.8
Lard 55

tert-Butylhydroquinone 0.034

Energy (kcal/g) 4.8
Fat (%) 23.9

Fat (kcal%) 45
1 AIN-93G Mineral mix [33]. 2 AIN-93 Vitamin mix [33].

Table 2. Variable ingredients in the three experimental diets.

Ingredient (g/kg) HFD HFD + PO HFD + CO

Butter 1 184 164 104
Perilla oil 0 20 0
Corn oil 0 0 80

1 Unsalted pure butter (Anchor brand, Fonterra Ltd., Hamilton, New Zealand). Abbreviations: HFD, high-fat
diet; HFD + PO, high-fat diet + perilla oil; HFD + CO, high-fat diet + corn oil.

2.2. Fatty Acid Composition Analysis of Experimental Diets

The fatty acid composition of the experimental diets was assessed by methyl esterifi-
cation of boron trifluoride (BF3)-methanol [34]. First, dietary samples (~0.1 g) were added
to a test tube, followed by hexadecanoic acid (C17:0) (0.5 mL, 1 mg/mL hexane). Then,
0.5 N NaOH-methanol (2 mL) was added, and the mixture was heated for 10 min at 110 ◦C
with a heating/stirring module (Thermo Fisher Scientific, Waltham, MA, USA) using
Reacti-Therm III. The mixture was then cooled to room temperature, with the subsequent
addition of BF3-methanol (4 mL). The mixture was heated at 110 ◦C for 1 h and then cooled.
Next, hexane (2 mL) was added, and the mixture was stirred for 1 min, and the hexane
layer was collected for lipid analysis. For detection, a gas chromatography (GC) flame
ionization detector (FID) with an Agilent Technologies 6890 N instrument was employed,
and helium was used as the carrier gas (2.7 mL/min) with an SP-2560 capillary column
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(Agilent Technologies, Santa Clara, CA, USA). The temperature of the sample injector and
detector was set to 250 ◦C, and the splitting ratio was set to 50:1. The flow rates of air
and hydrogen ionized by the flame were 450 and 40 mL/min, respectively. The initial
temperature of the oven was set to 130 ◦C for 5 min. The temperature was then increased by
4 ◦C/min up to 240 ◦C and continued for 15 min. All analyses were conducted in triplicate.
The results were evaluated by comparing with the standard fatty acid reference (Supelco
37 FAME; Sigma-Aldrich, Sigma-Aldrich, St. Louis, MO, USA).

2.3. Oral Glucose Tolerance Test (OGTT)

OGTT was conducted at weeks 3, 7, and 11. The day before the OGTT, the rats were
fasted overnight. During the fasting period, only drinking water was provided. Animals
were orally administered glucose (1 g/kg body weight) by tube feeding, and blood glucose
levels were measured by drawing blood from the tail vein and then using a blood glucose
meter (Accu-Chek; Roche Diagnostics, Basel, Switzerland). Subsequently, the rat blood
glucose levels were measured at 0, 15, 30, 60, and 120 min.

2.4. Fatty Acid Composition Analysis of Whole Blood

The fatty acid composition of whole blood was measured in three pooled samples
due to the sample volume limitations. Samples collected from two to three animals in
each group were included in any one pool. To ensure that no individual sample greatly
influenced the pooled results, the sample volume of whole blood collected from each
animal was of equal. For the analysis of the fatty acid composition, a drop of whole blood
samples was spiked on a blood-spot card pre-coated with an antioxidant mixture. The card
was purchased from OmegaQuant (Sioux Falls, SD, USA). The blood fatty acid composition
was analyzed by gas chromatography (GC) as described by Jackson et al. [35]. The fatty
acid composition was expressed as a percentage of the total identified fatty acids.

2.5. Biochemical Analyses of Serum

The serum levels of triglyceride (TG), total cholesterol (TC), high-density lipopro-
tein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase
(ALT), and alkaline phosphatase (ALP) were measured using commercial kits (Embiel,
Gunpo, Korea). To obtain the non-HDL-C level, we subtracted HDL-C levels from the
TC level. The atherogenic coefficient (AC) was calculated using the following formula:
AC = TC − HDL-C/HDL-C and the cardiac risk factor (CRF) was calculated using the
following formula: CRF = TC/HDL-C [36]. Serum glucose levels were analyzed using
a rat glucose test kit (Crystal Chem, Downers Grove, IL, USA), and serum insulin levels
were analyzed using an enzyme-linked immunosorbent assay (ELISA) reagent kit (Merco-
dia, Uppsala, Sweden). The homeostasis model assessment-estimated insulin resistance
(HOMA-IR) value was calculated as follows: HOMA-IR = fasting insulin in µU/L× fasting
glucose in mg/dL/405 [37]. Serum leptin levels were determined using the MILIPLEX
map Luminex assay (Millipore, Burlington, MA, USA).

2.6. Determination of Lipid Contents in the Liver and Adipose Tissue

Hepatic and epididymal adipose tissue (EAT) lipids were extracted using the method
described by Bligh and Dyer methods [38], with slight modifications. The concentrations
of TG and TC were determined using commercial kits (Embiel), and the results were
expressed as mg per g of tissue weight.

2.7. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from liver tissue using NucleoZoL Reagent (Macherey-Nagel,
GmbH & Co. KG, Düren, Germany) and DNA-free™ Kit (Thermo Fisher Scientific).
The isolated RNA was quantitatively analyzed using a SpectraDrop™ Micro-Volume
Microplate (SpectraMax iD3; Molecular Devices, San Jose, CA, USA). Next, cDNA was
synthesized from 1 µg of total RNA using the iScript™ cDNA Synthesis Kit (Bio-Rad
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Laboratories, Hercules, CA, USA), with the T100 Thermal Cycler (Bio-Rad Laboratories)
set to priming (25 ◦C, 5 min), reverse transcription (46 ◦C, 20 min), RT inactivation (95 ◦C,
1 min), and then diluted twice with the Ambion™ Nuclease-Free Water (Thermo Fisher
Scientific). qRT-PCR was performed using the CFX Connect Real-Time PCR Detection
System (Bio-Rad Laboratories). The primer sequences used in this study are listed in
Table 3. The cDNA sample (2 µL), 10 µM forward primer (Macrogen, Seoul, Korea)
(1 µL), 10 µM reverse primer (Macrogen) (1 µL), Ambion™ Nuclease-Free Water (5 µL),
2× PCR Master Mix (10 µL), 20× SFCGreen® I Dye (BioFACT, Daejeon, Korea) (1 µL),
and mixture at a final total volume of 20 µL were injected into each well of Multiplate™
96-Well PCR plates (Bio-Rad Laboratories). Then, a Microseal ‘B’ PCR plate sealing film
(Bio-Rad Laboratories) was affixed before the reaction. DNA denaturation (95 ◦C, 3 min)
was performed for polymerase activation by thermal cycling. Subsequently, denaturation
(95 ◦C, 10 s), annealing/extension (55 ◦C, 30 s), and the plate read were set, and go to 2 was
performed in a circular fashion (49 times). After completion of the reaction, quantitative
analysis was performed using CFX Maestro (Bio-Rad Laboratories). Glyceraldehyde
3-phosphate dehydrogenase (GAPDH), a housekeeping gene, was used as the internal
control [39]. The expression level of GAPDH did not significantly vary between the groups.
The relative mRNA level (fold change) was calculated and compared with that of the HFD
control group.

Table 3. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) primer sequences.

Gene Primer Sequence (5′→3′)

CXCL-1 Forward
Reverse

CCACACTCAAGAATGGTCGC
GTTGTCAGAAGCCAGCGTTC

IL-1β
Forward
Reverse

AAAAATGCCTCGTGCTGTCT
TCGTTGCTTGTCTCTCCTTG

BiP Forward
Reverse

TGCCCACCAAGAAGTCTCAGA
TCAAATGTACCCAGAAGGTGATTG

CHOP Forward
Reverse

GGAGAAGGAGCAGGAGAATG
GAGACAGACAGGAGGTGATG

GAPDH Forward
Reverse

CTGTGTCTTTCCGCTGTTTTC
TGTGCTGTGCTTATGGTCTCA

Abbreviations: CXCL-1, chemokine (C-X-C motif) ligand 1; IL-1β, interleukin 1β; BiP, binding immunoglobulin
protein; CHOP, C/EBP homologous protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

2.8. Western Blot Analysis

Liver tissue was homogenized using an ultrasonic cell disruptor (Branson Sonifier®;
Branson, Danbury, CT, USA) with a mixture of ice-cold radioimmunoprecipitation assay
(RIPA) lysis buffer (ATTO, Japan) 99: Halt™ Protease and Phosphatase Inhibitor Single-Use
Cocktail 100× (Thermo Fisher Scientific) 1, followed by slow stirring at 4 ◦C (2 h) and
centrifugation at 16,000× g at 4 ◦C for 20 min. Total protein lysates were collected from
the supernatants. The protein content of the extract was determined using a Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific). Based on the obtained results, a 30 µg/µL
protein mixture was prepared by mixing sodium dodecyl sulfate (SDS) loading buffer 5×
(6 µL) and distilled water with the extract. The proteins were separated by 10–12% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto a polyvinylidene
difluoride (PVDF) membrane (Bio-Rad Laboratories). The membrane was blocked with 5%
skim milk (Becton-Dickinson, Franklin Lakes, NJ, USA) and incubated at 4 ◦C overnight
with primary antibodies, followed by incubation with the corresponding secondary an-
tibodies. The antibodies used for Western blotting are presented in Table 4. Finally, the
samples were stained with SuperSignal™ West Pico PLUS Chemiluminescent Substrate
(Thermo Fisher Scientific), scanned using Chemidoc (Davinch-Western™ Imaging system;
Davinch-K, Seoul, Korea) for graphical results, and then quantitatively analyzed using
the Image J Software v.1.8 (National Institutes of Health, Bethesda, MD, USA). β-Actin
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was used as an internal control. Finally, the protein expression level (fold change) was
calculated by comparing the HFD and control groups.

Table 4. List of antibodies for western blot analysis.

Antibody Company Catalog Number Dilution

p-IκBα Cell Signaling 2859 1:1000
t-IκBα Cell Signaling 4814 1:1000

p-NFκB Cell Signaling 3033 1:1000
t-NFκB Cell Signaling 8242 1:1000
p-JNK Cell Signaling 9251 1:500
t-JNK Cell Signaling 9252 1:1000
p-ERK Cell Signaling 4370 1:3000
t-ERK Cell Signaling 4695 1:1000
p-p38 Cell Signaling 4511 1:1000
t-p38 Cell Signaling 8690 1:1000
Nrf2 Cell Signaling 12721S 1:1000
HO-1 Cell Signaling 5853S 1:1000
BiP Cell Signaling 3183 1:1000

CHOP Cell Signaling 2895 1:1000
β-actin Santa Cruz sc-47778 1:2000

Anti-rabbit IgG Cell Signaling 7074 1:3000
Anti-mouse IgG Cell Signaling 7076 1:1000

Abbreviations: IkBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; JNK, c-Jun N-terminal kinases; ERK, extracellular
signal-regulated kinases; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase 1; BiP, binding
immunoglobulin protein; CHOP, C/EBP homologous protein.

2.9. Statistical Analysis

Values are expressed as the mean± standard deviation (SD) or Box-and-Whisker-plots.
Graphs were prepared using GraphPad Prism 5 for Windows (GraphPad Software Inc.,
San Diego, CA, USA). Data were analyzed using one- or two-way analysis of variance
(ANOVA), followed by Tukey’s post hoc test using XLSTAT 2012 for windows (Addinsoft
Inc., Paris, France). Statistical significance was set at p < 0.05. A summary of the statistical
results of the two-way ANOVA for main effects and interactions is presented in Table 5.

Table 5. Summary of statistical analysis by two-way analysis of variance (ANOVA) for main effects and interactions.

Parameter LPS Main Effect Diet Main Effect LPS X Diet Interaction

Serum glucose, insulin, and leptin levels
Glucose **** p < 0.0001 **** p < 0.0001 * p < 0.05
Insulin **** p < 0.0001 ** p < 0.01 ** p < 0.01
HOMA-IR **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
Serum leptin **** p < 0.0001 ns p = 0.328 ns p = 0.332

Serum lipid profile
Triglyceride **** p < 0.0001 *** p < 0.001 **** p < 0.0001
Total cholesterol **** p < 0.0001 **** p < 0.0001 *** p < 0.001
HDL-cholesterol **** p < 0.0001 ns p = 0.191 ns p = 0.573
Non-HDL-cholesterol **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
Atherogenic coefficient **** p < 0.0001 ** p < 0.01 * p < 0.05
Cardiac risk factor **** p < 0.0001 ** p < 0.01 * p < 0.05

Hepatic function parameters
Serum AST **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
Serum ALT **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
Serum ALP **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
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Table 5. Cont.

Parameter LPS Main Effect Diet Main Effect LPS X Diet Interaction

Relative tissue weights
Liver ns p = 0.972 ** p < 0.01 ns p = 0.134
WAT ns p = 0.610 ns p = 0.384 ns p = 0.846
EAT ns p = 0.718 ns p = 0.420 ns p = 0.412
MAT ns p = 0.102 ns p = 0.074 ** p < 0.01
RAT ns p = 0.484 ns p = 0.861 ns p = 0.523
PAT ns p = 0.319 ns p = 0.465 ns p = 0.541

Lipid contents in liver and epididymal adipose tissue
Hepatic triglyceride **** p < 0.0001 **** p < 0.0001 **** p < 0.0001
Hepatic total cholesterol **** p < 0.0001 *** p < 0.001 ns p = 0.846
EAT triglyceride ns p = 0.160 **** p < 0.0001 **** p < 0.0001
EAT total cholesterol * p < 0.05 **** p < 0.0001 **** p < 0.0001

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; ns, not significant. Abbreviations: WAT, white adipose tissue; EAT, epididymal adipose
tissue; MAT, mesenteric adipose tissue; RAT, retroperitoneal adipose tissue; PAT, perirenal adipose tissue; HOMA-IR, homeostasis model
assessment of insulin resistance; HDL, high-density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP,
alkaline phosphatase; CXCL-1, chemokine (C-X-C motif) ligand 1; IL-1β, interleukin 1β; BiP, binding immunoglobulin protein; CHOP,
C/EBP homologous protein.

3. Results
3.1. Fatty Acid Profiles of Experimental Diets and Rat Whole Blood

The fatty acid composition of the experimental diets is presented in Table 6. The
saturated fatty acid (SFA) content was high in the order of HFD, HFD + PO, and HFD + CO
groups, but the MUFA content was lower in the HFD group than in the HFD + PO
and HFD + CO groups. On the other hand, the PUFA content was high in the order of
HFD + CO, HFD + PO, and HFD groups. Among them, the n-6 fatty acid content was the
highest in the HFD + CO group, whereas the n-3 fatty acid content was the highest in the
HFD + PO group. Due to the high content of n-3 fatty acids, the n-6/n-3 ratio of HFD + PO
(0.95) was considerably lower than that of HFD + CO (62.24).

Table 6. Fatty acid composition of experimental diets.

Fatty Acid (%) HFD HFD + PO HFD + CO

Palmitic acid (C16:0) 59.64 35.27 25.46
Stearic acid (C18:0) 10.32 12.44 9.36
Oleic acid (C18:1n-9c) 23.77 33.21 33.53
Elaidic acid (C18:1n-9t) 1.45 2.8 1.44
Linoleic acid (C18:2n-6c) 4.82 7.58 28.08
Linolelaidic acid (C18:2n-6t) <LLOQ 0.27 0.33
α-linolenic acid (C18:3n-3) <LLOQ 8.12 0.38
Eicosanoic acid (C20:0) <LLOQ 0.2 <LLOQ
Eicosenoic acid (C20:1n-9) <LLOQ <LLOQ 1.36
Eicosatrienoic acid (C20:3n-3) <LLOQ 0.12 0.08

SFA 69.96 47.91 34.81
MUFA 25.23 36.01 36.33
trans 1.45 3.06 1.77
PUFA 4.82 16.09 28.86
n-6 4.82 7.85 28.40
n-3 <LLOQ 8.24 0.46
n-6/n-3 NC 0.95 62.24

Abbreviations: HFD + PO, high-fat diet + perilla oil; HFD + CO, high-fat diet + corn oil; SFA, saturated fatty acids;
MUFA, monounsaturated fatty acids; TFA, trans-fatty acids; PUFA, polyunsaturated fatty acids; <LLOQ, lower
than the lower limit of quantification; NC, not calculated.

Table 7 shows the fatty acid composition of the whole blood of rats after dietary
intervention. In rats of the HFD + PO group, the concentrations of n-3 fatty acids, such
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as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA),
and docosahexaenoic acid (DHA), were markedly higher than those in the rats in the
HFD + CO group. In contrast, in the HFD + CO group, the concentrations of n-6 fatty
acids, such as linoleic acid (LA), arachidonic acid (AA), docosatetraenoic acid (DTA), and
docosapentaenoic acid (DPA), were significantly higher than those in the HFD + PO group.
Consequently, the n-6/n-3 ratio of the whole blood in the HFD + PO group was markedly
~5 times lower than that in the HFD + CO group.

Table 7. Fatty acid composition of the whole blood of rats.

Fatty Acid (%) HFD HFD + PO HFD + CO

Myristic acid (C14:0) 0.64 ± 0.32 ns 0.70 ± 0.10 0.58 ± 0.11
Palmitic acid (C16:0) 26.40 ± 1.70 ns 26.60 ± 0.20 25.73 ± 1.17
Palmitoleic acid (C16:1n-7c) 1.34 ± 0.29 a 0.82 ± 0.22 ab 0.42 ± 0.16 b

Palmitoleic acid (C16:1n-7t) 0.39 ± 0.12 a 0.19 ± 0.02 b 0.17 ± 0.05 b

Stearic acid (C18:0) 14.65 ± 0.35 b 18.57 ± 0.31 a 18.17 ± 1.67 a

Oleic acid (C18:1n-9c) 19.50 ± 1.90 a 12.93 ± 1.33 b 10.28 ± 0.69 b

Oleic acid (C18:1n-9t) 0.38 ± 0.26 ns 0.47 ± 0.12 0.40 ± 0.22
Linoleic acid (C18:2n-6c) 11.47 ± 1.53 a 7.23 ± 0.39 b 9.91 ± 0.85 a

Linoleic acid (C18:2n-6t) 0.07 ± 0.01 b 0.06 ± 0.01 b 0.10 ± 0.02 a

α-linolenic acid (C18:3n-3) 0.25 ± 0.02 b 0.37 ± 0.03 a 0.04 ± 0.02 c

γ-linolenic acid (C18:3n-6) 0.10 ± 0.07 ns 0.03 ± 0.02 0.04 ± 0.02
Eicosenoic acid (C20:1n-9) 0.23 ± 0.06 ns 0.11 ± 0.02 0.13 ± 0.08
Eicosadienoic acid (C20:2n-6) 0.31 ± 0.10 ns 0.26 ± 0.10 0.35 ± 0.07
Dihomo-y-linolenic acid (C20:3n-6) 1.15 ± 0.57 ns 0.91 ± 0.12 0.40± 0.10
Arachidonic acid (C20:4n-6) 16.70 ± 1.90 c 20.63 ± 1.45 b 26.33 ± 0.85 a

Eicosapentaenoic acid (C20:5n-3) 0.34 ± 0.07 b 1.89 ± 0.23 a 0.23 ± 0.07 b

Docosatetraenoic acid (C22:4n-6) 0.96 ± 0.09 b 0.44 ± 0.06 c 2.50 ± 0.22 a

Docosapentaenoic acid (C22:5n-3) 0.84 ± 0.10 b 2.98 ± 0.26 a 0.65 ± 0.14 b

Docosahexaenoic acid (C22:6n-3) 3.65 ± 0.88 a 4.08 ± 0.83 a 1.60 ± 0.26 b

Docosapentaenoic acid (C22:6n-6) 0.20 ± 0.01 b 0.11 ± 0.05 b 1.34 ± 0.52 a

Lignoceric acid (C24:0) 0.16 ± 0.11 b 0.33 ± 0.01 a 0.26 ± 0.04 ab

Nervonic acid (C24:1n-9) 0.12 ± 0.08 ns 0.14 ± 0.02 0.15 ± 0.05

SFA 41.84 ± 1.77 b 46.19 ± 0.18 a 44.74 ± 0.49 a

MUFA 21.95 ± 2.35 a 14.66 ± 1.55 b 11.55 ± 0.73 b

TFA 0.83 ± 0.14 ns 0.72 ± 0.12 0.67 ± 0.16
PUFA 36.01 ± 4.09 b 38.99 ± 1.58 ab 43.49 ± 0.35 a

n-6 30.95 ± 3.26 b 29.67 ± 1.34 b 40.96 ± 0.28 a

n-3 5.07 ± 0.83 b 9.32 ± 1.26 a 2.52 ± 0.11 c

n-6/n-3 6.15 ± 0.37 b 3.22 ± 0.47 c 16.25 ± 0.66 a

Values are presented as the mean ± standard deviation (n = 3 per group). Fatty acid composition of whole
blood was analyzed using pooled samples generated from 2–3 samples in each group due to the sample volume
limitations. Data were analyzed using one-way analysis of variance followed by Tukey’s post hoc comparison.
Means labeled without a common letter differ significantly (p < 0.05); ns, not significant. Abbreviations: HFD + PO,
high-fat diet + perilla oil; HFD + CO, high-fat diet + corn oil; SFA, saturated fatty acids; MUFA, monounsaturated
fatty acids; TFA, trans-fatty acids; PUFA, polyunsaturated fatty acids.

3.2. Partial Replacement of Dietary Fat with PO and CO Did Not Affect the Body Weight and
Food Intake

In this study, rats were fed an experimental diet ad libitum. During the 12 weeks of
experimental periods, the body weight of all groups gradually increased due to high-fat
feeding; however, no noticeable changes in body weight and daily body weight gain were
observed among the groups (Figure 1a,b). Daily food intake, calculated by dividing the
total dietary intake by the experimental period, did not significantly differ among the
groups (Figure 1c). Thus, there were no significant changes in the food efficiency ratio
among the groups (Figure 1d). Therefore, partial replacement of high fat with PUFAs did
not affect body weight, food intake, and food efficiency in our animal experimental settings.
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Figure 1. Effects of partial replacement of dietary fat with PO or CO on the body weight and food intake of rats. Five-week-
old male Sprague-Dawley rats were fed either a high-fat diet (HFD), HFD supplemented with perilla oil (HFD + PO), or
corn oil (HFD + CO) for 12 weeks (n = 16 per group). (a) Body weight changes; (b) daily body weight gain; (c) daily food
intake; (d) food efficiency ratio (FER). Values are presented as the mean ± standard deviation. Data were analyzed using
one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post hoc test for multiple comparisons. ‘ns’
indicates p ≥ 0.05.

3.3. Partial Replacement of Dietary Fat with PO and CO Improved Glucose Metabolism

During the experimental period, we conducted an OGTT to evaluate whether the
partial replacement of dietary fat with PO and CO improves glucose utilization. In previous
studies, substituting SFA with PUFA was shown to improve glucose sensitivity in rodents
and humans [40,41]. At weeks 3, 5, and 11, blood glucose levels peaked at 30 min after
glucose administration; however, the recovery rate of blood glucose level at weeks 5 and
11 seemed to be slower than at week 3 (Figure 2a,c,e). There were no significant differences
in glucose levels among the groups at any other time point (Figure 2a,c,e). In addition, the
area under the curve (AUC) at weeks 3, 7, and 11 were not significantly different following
OGTT (Figure 2b,d,f).
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Figure 2. Effects of partial replacement of dietary fat with PO or CO on oral glucose tolerance test (OGTT). Five-week-old
male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks (n = 16 per group). (a,c,e) OGTT
at weeks 3, 7, and 11; (b,d,f) area under the curve (AUC) at weeks 3, 7, and 11 following OGTT. Values are represented by the
line or as the mean ± standard deviation. Data were analyzed using one-way ANOVA and Tukey’s multiple comparisons
post hoc test for multiple comparisons. ‘ns’ indicates p ≥ 0.05.

Fasting glucose and insulin levels are critical predictors of diabetes. Leptin is an
adipokine that plays a pivotal role in regulating glucose metabolism. Following LPS
treatment, fasting glucose levels tended to be reduced (Figure 3a), while the fasting insulin
level and insulin resistance index (HOMA-IR) were significantly elevated (Figure 3b,c).
Interestingly, in rats injected with LPS, fasting glucose and insulin levels were significantly
lower in the HFD + PO and HFD + CO groups than in the HFD group (Figure 3a,b). In
particular, HOMA-IR was considerably lower in the HFD + PO and HFD + CO groups
than in the HFD group, regardless of LPS stimulation (Figure 3c). Furthermore, following
LPS treatment, serum leptin levels were markedly reduced, whereas serum leptin levels
were not profoundly affected by the diet (Figure 3d).
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Figure 3. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on serum glucose, insulin, and
leptin levels. Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks
and then treated with PBS or LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Glucose level; (b) insulin level; (c) homeostasis
model assessment-estimated insulin resistance (HOMA-IR); (d) leptin level. Data were analyzed using two-way ANOVA
and Tukey’s multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate significant
differences at p < 0.05. Asterisk indicates a significant main effect for LPS (**** p < 0.0001). LPS, lipopolysaccharide; PBS,
phosphate-buffered saline.

3.4. Partial Replacement of Dietary Fat with PO and CO Amplified the Changes in Serum Lipids
Induced by LPS

As the blood lipid profile changes in response to dietary fat, we determined the ef-
fects of HFDs supplemented with PO or CO, combined with LPS stimulation, on serum
lipid levels. Following LPS treatment, the serum levels of TC, non-HDL-C, AC, and
CRF were remarkably increased (Figure 4b,d–f). On the other hand, HDL-C levels de-
creased in the presence of LPS (Figure 4c). Prior to LPS treatment, serum levels of TC
and non-HDL-C were significantly higher in the HFD + CO group than in the HFD group
(Figure 4b,d). Compared with the HFD group, the levels of serum TG, TC, non-HDL-C, AC,
and CRF were increased in the HFD + PO and HFD + CO groups following LPS treatment
(Figure 4a,b,d–f).
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Figure 4. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on the serum lipid profile.
Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks and then treated
with PBS or LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Serum triglyceride (TG) level; (b) serum total cholesterol (TC) level;
(c) high-density lipoprotein (HDL)-cholesterol level; (d) non-HDL-cholesterol level; (e) atherogenic coefficient; (f) cardiac
risk factor. Data were analyzed using two-way ANOVA and Tukey’s multiple comparisons post hoc test for multiple
comparisons. Means with different letters indicate significant differences at p < 0.05. Asterisk indicates a significant main
effect for LPS (**** p < 0.0001). LPS, lipopolysaccharide; PBS, phosphate-buffered saline.

3.5. Partial Replacement of Dietary Fat with PO and CO Altered the Liver Function Parameter
Changes Induced by LPS

Next, we determined the effects of HFDs supplemented with PO or CO, combined
with LPS stimulation, on hepatic function parameters (AST, ALT, and ALP) in rats. After
LPS treatment, serum levels of AST, ALT, and ALP were significantly increased by 2.39-fold,
9.97-fold, and 2.24-fold, respectively, compared with the HFD group, AST, ALT, and ALP
levels were higher in the HFD + PO and HFD + CO groups (Figure 5a–c). Without LPS
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treatment, serum AST, ALT, and ALP levels were not changed by the HFD + PO and
HFD + CO diets (Figure 5a–c).

Figure 5. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on liver function parameters in
serum. Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks and then
treated with PBS or LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Aspartate aminotransferase (AST) activity; (b) alanine
aminotransferase (ALT) activity; (c) alkaline phosphatase (ALP) activity. Data were analyzed using two-way ANOVA and
Tukey’s multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate significant
differences at p < 0.05. LPS, lipopolysaccharide; PBS, phosphate-buffered saline.

3.6. Partial Replacement of Dietary Fat with PO and CO Did Not Alter the Liver and White
Adipose Tissue Weight (WAT)

The liver and adipose tissues are the central metabolic organs. Therefore, the weights
of the liver, total WAT (the sum of the weight of EAT, mesenteric adipose tissue (MAT),
retroperitoneal adipose tissue (RAT), and perirenal adipose tissue (PAT)), and individual
WAT were measured and expressed as a percentage of the body weight. There were
no marked changes in the liver weight and WAT weight in the present study after LPS
stimulation (Figure 6a–f). Partial replacement of dietary fat with CO reduced liver weight
regardless of LPS challenge (Figure 6a). However, the WAT weights did not significantly
change with PO and CO supplementation (Figure 6b–f).
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Figure 6. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on the relative weights of liver
and white adipose tissue (WAT). Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD +
CO for 12 weeks, followed by treatment with PBS or LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Liver weight; (b) WAT
weight; (c) epididymal adipose tissue (EAT) weight; (d) mesenteric adipose tissue (MAT) weight; (e) retroperitoneal adipose
tissue (RAT) weight; (f) perirenal adipose tissue (PAT) weight. Data were analyzed using two-way ANOVA and Tukey’s
multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate significant differences at
p < 0.05. Hash indicates a significant main effect for diet (## p < 0.01). LPS, lipopolysaccharide; PBS, phosphate-buffered
saline; BW, body weight.

3.7. Partial Replacement of Dietary Fat with PO and CO Mitigated the LPS-Induced Lipid
Changes in Liver and EAT

Next, we assessed the effects of dietary high fat replacement and LPS stimulation on
TG and TC levels in the liver and EAT. Prior to LPS treatment, hepatic TG levels of the
HFD + PO and HFD + CO groups did not differ from those of the HFD group; however,
the HFD + CO group had significantly lower hepatic TG levels than the HFD + PO group
(Figure 7a). In the HFD group, hepatic TG levels were significantly increased following
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LPS treatment, whereas the HFD + PO and HFD + CO groups showed significantly lower
hepatic TG levels compared with the HFD group, and the level of HFD + CO was much
lower than that of the HFD + PO group (Figure 7a). Hepatic TC levels were not changed by
either dietary or LPS treatment (Figure 7b).

Figure 7. Effects of partial replacement of dietary fat with perilla oil or corn oil and LPS stimulation on lipid contents in
liver and epididymal adipose tissue (EAT). Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO,
or HFD + CO for 12 weeks and then treated with PBS or LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Hepatic TG level;
(b) hepatic TC level; (c) TG level in EAT; (d) TC level in EAT. Data were analyzed using two-way ANOVA and Tukey’s
multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate significant differences at
p < 0.05. LPS, lipopolysaccharide; PBS, phosphate-buffered saline.

Before LPS treatment, the TG level of EAT in the HFD + PO group was not different
from that in the HFD group; however, the HFD + CO group had a significantly lower TG
level than the HFD + PO group (Figure 7c). Following LPS stimulation, EAT TG levels were
decreased in the HFD group; however, compared with the HFD group, the HFD + PO and
HFD + CO groups had higher TG levels, which was even higher in the HFD + CO group
(Figure 7c). EAT TC levels in the HFD + PO and HFD + CO groups before LPS treatment
were significantly higher than those in the HFD group (Figure 7d). In the HFD group, TC
levels in the EAT were elevated considerably after LPS treatment, but the EAT TC levels
in the HFD + PO and HFD + CO groups were significantly lower than those in the HFD
group (Figure 7d).

3.8. Partial Replacement of Dietary Fat with PO and CO Alleviated the mRNA Expression of
Genes Related to Inflammation and ER Stress in the Liver of Rats Injected with LPS

Fatty liver and ER stress are reciprocally associated with the induction of hepatic
inflammation. Therefore, we investigated the effects of HFDs supplemented with PO or
CO, followed by LPS stimulation, on the hepatic mRNA expression of pro-inflammatory
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cytokines and ER stress-related genes. Compared with the HFD group, the mRNA levels
of IL-1β and CXCL1 were significantly lower in the HFD + PO and HFD + CO groups
(Figure 8a,b). In addition, the BiP mRNA levels in the HFD + PO and HFD + CO groups
were also lower than those of the HFD group (Figure 8c); however, CHOP mRNA expres-
sion did not significantly differ among groups (Figure 8d).

Figure 8. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on the mRNA expression of
genes related to inflammation and endoplasmic reticulum (ER) stress in the liver. Five-week-old male Sprague-Dawley
rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks and were then treated with LPS (5 mg/kg) for
24 h (n = 8 per group). (a) Interleukin (IL)-1β level; (b) chemokine (C-X-C motif) ligand 1 (CXCL1) level; (c) binding
immunoglobulin protein (BiP) level; (d) C/EBP homologous protein (CHOP) level. Relative expression of each gene was
quantified by using the 2−∆∆CT method. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the reference
gene for normalization. Values are presented as the mean ± standard deviation. Data were analyzed using one-way
ANOVA and Tukey’s multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate
significant differences at p < 0.05. LPS, lipopolysaccharide.

3.9. Partial Replacement of Dietary Fat with PO and CO Suppressed the Nuclear Factor-Kappa B
(NF-κB) and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways and Increased the
Antioxidant Enzyme Expression in the Liver of LPS-Injected Rats

To elucidate the anti-inflammatory mechanism by which PO and CO exert and their
relevance to oxidative stress and ER stress, we analyzed the expression of proteins in
NF-κB/MAPK signaling pathways, antioxidation, and ER stress in the liver. The level of
p-IκBα was not significantly altered by the dietary intervention (Figure 9a,b); however, the
p-NF-κB level was significantly lower in the HFD + PO and HFD + CO groups than in
the HFD group, and the level of the HFD + CO group was much lower than that of the
HFD + PO group (Figure 9a,c). Similarly, the p-JNK level was significantly lower in the
HFD + PO and HFD + CO groups than in the HFD group, and the level of the HFD + CO
group was even lower than that of the HFD + PO group (Figure 9a,d). In the HFD + CO
group, the p-ERK level was also significantly lower than in the HFD group, but not in the
HFD + PO group (Figure 9a,e); however, the p-p38 MAPK level was significantly lower
in the HFD + PO and HFD + CO groups than in the HFD group (Figure 9a,f). Compared
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with the HFD group, the Nrf2 level in the HFD + CO group was significantly lower, but the
HO-1 level was significantly higher (Figure 9a,g,h). The HFD + PO group tended to have a
lower Nrf2 level and higher HO-1 level than the HFD group, but the differences were not
statistically significant (Figure 9a,g,h). The BiP level was not significantly changed by the
diets (Figure 9a,i); however, the CHOP level was significantly lower in the HFD + PO and
HFD + CO groups than in the HFD group, and the level of the HFD + CO group was much
lower than that of the HFD + PO group (Figure 9a,j).
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Figure 9. Effects of partial replacement of dietary fat with PO or CO and LPS stimulation on the levels of proteins related
to the nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) pathways, oxidative stress, and ER
stress in the liver. Five-week-old male Sprague-Dawley rats were fed either the HFD, HFD + PO, or HFD + CO for 12 weeks
and then treated with LPS (5 mg/kg) for 24 h (n = 8 per group). (a) Representative Western blot images; (b) phospho-
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (p-IkBα) level; (c) phospho-nuclear
factor kappa-light-chain-enhancer of activated B cells (p-NF-κB) level; (d) phospho-c-Jun N-terminal kinases (p-JNK) level;
(e) phospho-extracellular signal-regulated kinases (p-ERK) level; (f) phospho-p38 (p-p38) level; (g) nuclear factor erythroid
2-related factor 2 (Nrf2) level; (h) heme oxygenase 1 (HO-1); (i) binding immunoglobulin protein (BiP) level; (j) C/EBP
homologous protein (CHOP) level. The expression of each protein was normalized to a value for β-actin, the internal control
of protein content. Values are presented as the mean ± standard deviation. Data were analyzed using one-way ANOVA
and Tukey’s multiple comparisons post hoc test for multiple comparisons. Means with different letters indicate significant
differences at p < 0.05. LPS, lipopolysaccharide.

4. Discussion

Multiple researchers have demonstrated that SFAs initiate local inflammation and
perturb metabolic homeostasis [23,42]. In contrast, PUFA supplementation has been
reported to alleviate diet-induced inflammation, dyslipidemia, and insulin resistance
in rodents [24,25]. Recently, it has been reported that acute inflammatory stimuli during
high-fat diet consumption further exacerbate pro-inflammatory cytokine production and
morphological changes in the liver [8,43]. Therefore, we aimed to investigate whether
partial replacement of dietary fat with PUFAs alleviates LPS-induced inflammation in
high-fat diet-induced obese rats. LPS is a structural component of the outer membrane of
Gram-negative bacteria and is a very effective inflammatory inducer [44]. In a study by
Imajo et al., mice fed an HFD for 12 weeks in combination with a single injection of LPS
(0.25 mg/kg/day) showed the NASH-like aspect [6]; however, the effects of PUFA in rats
injected with LPS during HFD consumption has not yet been well understood.

To replace SFAs with PUFAs, we supplemented a high-fat diet with PO or CO, rich
sources of n-3 fatty acids and n-6 fatty acids, respectively. The doses of PO and CO used in
this study were determined based on clinical requirements. The recommendations for the
ratio of the daily intake of n-3 and n-6 fatty acids from diets established by different health
agencies are 1:2–1:10 [31]. In previous studies, PO contained 60–70% of their fatty acids as
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n-3 fatty acids, while CO contained 50–60% of their fatty acids as n-6 fatty acids [45,46]. In
this study, the percentage of fat in each diet was 23.9%, and the rate of n-3 fatty acids from
total fat in the HFD + PO diet was 8.24%, while the n-6 fatty acid percentage from total fat
in the HFD + CO diet was 28.4%. Therefore, we assumed that rats in the HFD + PO group
consumed 0.10 g/day/100 g body weight of n-3 fatty acids while the rats in the HFD + CO
group consumed 0.34 g/day/100 g body weight of n-6 fatty acids, as food intake of rats
usually is 4–5 g/day/100 g body weight [47]. The Institute of Medicine (IOM) of the US
recommends that men consume ~1.6 g/day of n-3 fatty acids and ~17 g/day of n-6 fatty
acids, respectively [48]. When the human doses are translated into rat doses based on the
body surface area, the doses in rats are ~0.02 g/day/100 g body weight of n-3 fatty acids
and ~0.17 g/day/100 g body weight of n-6 fatty acids [32]. Therefore, the content of n-3
and n-6 fatty acids added to each experimental diet seemed to be slightly higher than the
amount recommended to potential clinical implications. Consequently, the blood n-3 fatty
acid concentration of the HFD + PO group was 3.7-fold higher than that of the HFD + CO
group. On the other hand, the blood n-6 fatty acid concentration of the HFD + CO group
was 1.4-fold higher than that of the HFD + PO group. These results indicate that the blood
fatty acid profile is precisely reflected by the dietary fatty acid composition.

High energy intake from a high-fat diet is a significant cause of obesity [49]. Studies
have also reported that body weight gain and body fat composition are affected by the
fatty acid composition of dietary fat [50,51]. However, in the present study, there were
no noticeable changes in body weight gain among the groups during the feeding period.
Similarly, daily food intake was not affected by the diets, and thus, the food efficiency ratio
did not differ among the experimental groups. These confirmatory results are supported
by a study by Tian et al., suggesting that a high-fat diet combined with fish oil and perilla
oil did not cause body weight changes [29]. Therefore, it is assumed that during HFD
consumption, PUFA-rich diets may not be sufficient to alleviate weight increase.

Chronic excess energy intake has been shown to affect peripheral insulin resistance,
leading to hyperinsulinemia [52]. However, n-3 PUFA has been reported to protect against
insulin resistance in sucrose-fed rats [53]. On the other hand, it has been reported that high
doses of PO (45% calories from PO) lead to insulin resistance, thus raising the potential
risk of dysregulated glucose metabolism [54]. In our experimental settings, HFD + PO and
HFD + CO diets did not alter the ability of rats to clear excess blood glucose, as shown in
the OGTT results. Nevertheless, when rats were injected with LPS, serum insulin levels
were increased; however, PO and CO decreased fasting blood glucose and insulin levels.
According to previously reported data, the concentrations of serum glucose in male SD rats
over 17 weeks of age were 141 ± 19 (ranges from 106 to 184) [55]. Therefore, it is implied
that serum concentrations glucose was higher than normal levels in rats fed an HFD,
whereas the LPS-treated rats supplemented with PO and CO recovered serum glucose
concentrations to normal levels. Therefore, PO and CO eventually alleviated the increase
in HOMA-IR induced by LPS. HOMA-IR is an indicator for assessing beta-cell function
and insulin resistance in a steady state. A high HOMA-IR indicates that the cells require
more insulin than normal to maintain their blood sugar balance. In a previous study, a
high-fat diet was reported to elevate enterobacterial production and facilitate translocation
of LPS into the systemic circulation [44]. Dietary fatty acids and LPS have been shown
to promote insulin resistance through the activation of TLR4 [56]. The role of leptin in
lowering glucose levels in animal models of insulin deficiency has been reported [57].
In contrast, in obesity, partial reduction of plasma leptin levels has been suggested to
enhance insulin sensitivity [58]. In this study, we showed that experimental diets did
not affect serum leptin levels, whereas stimulation with LPS significantly lowered serum
leptin levels, demonstrating a close relationship between leptin and LPS-induced insulin
resistance. These results were consistent with those reported by Al-Lahham et al., which
indicated that LPS treatment suppressed leptin release from subcutaneous adipose tissue
culture from obese patients [59]. Therefore, it is hypothesized that partial replacement of
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dietary fat with PO and CO may ameliorate dysregulated glucose metabolism induced by
LPS stimulation in obesity.

Chronic overnutrition has been viewed as a significant cause of obesity and dyslipi-
demia [60]. Dyslipidemia in obesity is characterized by high TG, TC, LDL-C, and low
HDL-C levels, which significantly influence CVD risk [60]. LPS has also been reported
to influence blood lipid profiles. In a previous study, LPS exposure during pregnancy
resulted in dyslipidemia in offspring rats, and dysregulation of blood lipids in offspring
exposed to LPS was more prominent following a high-fat diet [61]. Likewise, in this study,
LPS stimulation promoted dyslipidemia due to a high-fat diet by increasing TC levels
and decreasing non-HDL-C and HDL levels; therefore, the AC and CRF were remarkably
higher in the LPS-stimulated rats. Meanwhile, in an epidemiological study, consumption
of n-3 fatty acids was shown to have a strong inverse correlation with TG and a strong
positive correlation with HDL-C [62]. However, in this study, to our surprise, PO and CO
worsened LPS-induced dyslipidemia unexpectedly by increasing TG, TC, and non-HDL-C
levels. Interestingly, the AST, ALT, and ALP levels associated with hepatic function showed
a similar pattern to the indices related to dyslipidemia. In LPS-injected rats, AST, ALT,
and ALP levels were increased, and PO and CO supplementation significantly increased
these levels. In previous studies, dietary supplementation with n-3 PUFAs revealed no
adverse effects following short-term administration [63,64]. However, Jenkinson et al.
suggested that long-term supplementation with n-3 fatty acids may have adverse effects
due to increased oxidative stress [65]. In contrast, the combined use of antioxidant fat-
soluble vitamin E with n-3 fatty acids significantly lowered the AST, ALT, TG, and LDL-C
levels [66]. Furthermore, vitamin E supplementation has been suggested to prevent PO
oxidation, thus having a beneficial impact on hepatic function parameters in rats and
reducing the risks of hepatic injury, glucose tolerance, and insulin resistance [27,65,66].
The content of vitamin E in our experimental diets was 75 IU/kg diet according to the
recommendation of the Amirian Institute of Nutrition (AIN) committee [33]. However,
dietary vitamin E requirements increase with increased consumption of dietary PUFAs
due to susceptibility to fatty acid oxidation. Indeed, in a clinical trial, people who had
taken additional n-3 fatty acids showed lower plasma α-tocopherol levels compared to
their placebo group [67]. Moreover, in dogs fed a diet enriched with fish oil for 8 weeks,
the level of plasma α-tocopherol was lowered [68]. In particular, levels of α-tocopherol
decreased in the plasma and liver of rats fed a diet rich in n-3 fatty acids, while in the heart
where n-3 fatty acids are deposited, α-tocopherol concentration increased [69]. Therefore,
we postulated that some negative results in rats fed a diet supplemented with PO and CO
in our study are presumably due to the increased demand for antioxidant activity; thus,
we carefully suggest that it would be better to take sufficient antioxidants in a diet high
in PUFA.

A previous study has shown that when people are overfed with HFD, the ratio of lean
tissue to adipose tissue is higher in people with a PUFA-enriched diet than in those who
consume high SFA, although the weight gain in both groups was almost the same [70].
However, in the present study, both HFD + PO and HFD + CO diets did not affect WAT
fat pad weights, implying that partial replacement of dietary fat with PO and CO was
insufficient to alter adiposity due to HFD. On the other hand, the liver weight tended to be
increased by LPS, whereas CO supplementation reduced the weight of the liver regardless
of LPS stimulation. The weight increase in the liver is caused by an accumulation of lipids
or a result of cell damage, hepatocellular hypertrophy, or hyperplasia [71]. Indeed, the
hepatic levels of TG were higher in rats injected with LPS; however, PO and CO lowered
the level of hepatic TG, especially when rats were injected with LPS. Consistent with our
results, LPS accelerated the progression of hepatic steatosis in rats [72]. In contrast, n-6
PUFAs have been reported to reduce liver fat in overweight individuals compared to
SFA [73]. Moreover, Kim et al. reported that PO significantly reduced hepatic TG levels
induced by HFD [74]. An increasing body of evidence has suggested that hepatic fat
accumulation is associated with insulin resistance, suggesting that the health benefits of
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PO and CO might be associated with lower hepatic fat accumulation. Interestingly, the TG
level of EAT showed an opposite pattern to that of the liver. LPS induced TG reduction in
the EAT, while PO and CO increased the TG decrease caused by LPS. Studies have reported
that, in obese conditions, enlarged adipocytes lose their ability to store energy, resulting in
the release of fatty acids, which are absorbed into the liver [75]. Thus, we assumed that
the weight decrease of EAT TG might be related to the increased lipolysis from excessive
fat storage, and the increase in hepatic TG accumulation might be related to the increased
circulating free fatty acids and uptake to the liver.

Nonalcoholic steatohepatitis is a type of NAFLD that occurs when excess fat accu-
mulation in the liver is accompanied by liver inflammation [6]. It has been well proven
in numerous cell types and animal models that PUFAs have a beneficial effect on health
by diminishing the secretion of pro-inflammatory cytokines [76–79]. On the other hand,
some studies have reported that SFAs promote inflammation by increasing the secretion
of pro-inflammatory cytokine [80–82]. Therefore, we further analyzed the mRNA levels
of inflammatory molecules and signaling pathways involved in inflammation to observe
whether PUFAs improve hepatic inflammation in an HFD and LPS-induced steatohepatitis
rat model. In this study, PO and CO significantly downregulated the mRNA expression
levels of IL-1β and CXCL1, indicating that PO and CO efficiently inhibited inflammatory
responses in the liver. Our findings were consistent with those of Xu et al., who observed
that PO extract lowered the expression of pro-inflammatory cytokines [83]. Previous
studies have reported that LPS/TLR4 downstream signaling pathways lead to gene tran-
scription of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β)
and chemokine (C-X-C motif) ligand 1 (CXCL-1) through the activation of NF-κB and
MAPK signaling pathways [84–86]. In resting states, NF-κB is sequestered in the cytosol by
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα).
Phosphorylation of the IKK complexes by TAK1 results in their proteasomal degradation
of IκBα, and liberation of NF-κB subsequently translocates from the cytosol to the nucleus
to induce gene expression [86]. Concurrently, TAK1 activates the MAPK family, including
Jun amino-terminal kinases (JNK), extracellular signal-regulated kinases (ERKs), and p38.
The phosphorylation of MAPK proteins results in activated activator protein 1 (AP-1),
which translocates to the nucleus [87]. Therefore, we concluded from these results that
PO and CO could exert effects on inhibit inflammation in rats injected with LPS during
HFD feeding, which may be partially associated with the inactivation of NF-κB/MAPK
signaling pathways.

Increased uptake of fatty acids in the liver could induce hepatic lipotoxicity by acti-
vating ER stress signaling pathways, known as the UPR [5–8]. Persistent activation of the
UPR was shown to generate reactive oxygen species, eliciting inflammatory responses [6];
therefore, reducing ER stress and concurrent oxidative stress could be a potential therapeu-
tic mechanism for preventing inflammation during HFD consumption. Many studies have
suggested that BiP and CHOP proteins, markers of elevated ER stress, are increased in the
liver due to obesity [88,89]. BiP is a molecular chaperone that plays a role in enhancing
cellular folding capacity, but its synthesis is markedly induced under conditions that lead
to the accumulation of unfolded polypeptides in the ER. CHOP is a member of the C/EBP
family of nuclear proteins caused by ER stress, which mediates apoptosis. In the present
study, PO and CO diets downregulated the mRNA expression of BiP and CHOP protein
levels in the liver, indicating that PO and CO supplementation effectively ameliorated ER
stress response. These results were consistent with a study by Bae et al., who reported that
PO consumption attenuates ER stress markers [90]. In the present study, we also analyzed
the protein expression of Nrf2 and HO-1 to investigate whether PO and CO could improve
antioxidant potential. Nrf2 is a crucial transcription factor found primarily in the liver. In
response to oxidative stress, Nrf2 is translocated to the nucleus to induce transcription
of various antioxidant and detoxification-related genes [91]. HO-1 is an enzyme that cat-
alyzes heme degradation to produce biliverdin, which possesses antioxidant properties. In
our study, the livers of PO-and CO-supplemented rats had lower Nrf2 and higher HO-1
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levels. We assumed that increased HO-1 implies greater antioxidant capacity, and the
lowered Nrf2 might be possibly due to the reduced oxidative stress stimuli. Therefore,
these results indicate that hepatic ER stress and antioxidant capacity were increased by the
HFD + PO and HFD + CO diets in rats injected with LPS, which may be associated with
the anti-inflammatory effects of PO and CO.

5. Conclusions

In conclusion, partial replacement of PO and CO improved insulin resistance, hepatic
steatosis, and hepatic inflammation induced by LPS in rats fed an HFD. Furthermore,
the anti-inflammatory effects of PO and CO were partially mediated by the inhibition
of NF-κB/MAPK signaling pathways, ER stress, and an increase in antioxidant capacity.
Therefore, it is assumed that supplementation with PO and CO could be an effective
strategy to alleviate the metabolic dysregulation caused by hepatic inflammation during
HFD consumption. The results of this study can be used as the basis for future clinical
trials, and it is expected that the effects of PO and CO in regulating physiological activity
could become clearer through additional clinical studies.
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