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Abstract
Current chemical analysis approaches for contaminants have failed to reveal their 
biotoxicity. Moreover, conventional bioassays are time consuming and exhibit poor 
repeatability. In this study, we performed the acute toxicity detection of various con-
taminants (chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), tin (Sn), 
nickel (Ni), and bisphenol A (BPA)) with four bioluminescent bacteria (Vibrio qinghaien-
sis Q67, V. fischeri, Photobacterium phosphoreum T3, and P. phosphoreum 502) using a 
rapid, flexible, and low- cost bioassay. We found that the temperature affected the 
bacterial luminescence, and freeze- dried cells exhibited sensitive toxic responses to 
contaminants. Indeed, the optimized protectants containing 12% (w/v) trehalose, 
4% sucrose, and 2% sorbitol displayed better luminescence and toxic sensitivity. 
Furthermore, freeze- dried powders of these strains were prepared and subjected to 
acute toxicity detection. The results showed that all contaminants exhibited acute 
toxicity toward Q67, but the other strains did not show obvious response to nickel 
and tin. The relative half- maximal effective concentration (EC50) values of BPA, Cr, Cd, 
Pb, As, Hg, Ni, and Sn to Q67 were 0.674, 1.313, 11.137, 5.921, 4.674, 0.911, 5.941, 
and 54.077 mg/L, respectively. In addition, the EC50 values of contaminants toward 
different strains were suggested to be statistically significant. Freeze- dried Q67 ex-
hibited toxic responses to more contaminants than the other bioluminescent strains; 
therefore, Q67 was selected to be more suitable than the other strains for single and 
mixture toxicity detection tests. Compared with other strains, Q67 was more appro-
priate for the rapid screening of the mixture toxicity of contaminants in samples as a 
nonspecific screening sensor before the use of standard analysis approaches.
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1  |  INTRODUC TION

Heavy metals and bisphenol A (BPA) are widely spread in the envi-
ronment and also found in food and food packaging materials. BPA is 
an industrial chemical that is widely used as a monomer of polycar-
bonate, an antioxidant of polyvinyl chloride (PVC), in food contact 
materials, such as plastic bottles, cups, plates, goblets, and storage 
containers (Geens et al., 2012). The increasing demand for BPA has 
resulted in its accumulation in the environment (P. Chen et al., 2021; 
Huang et al., 2012; Yang et al., 2020). In some region with pollution 
of BPA, the concentration of BPA has reached 174.6 μg/ml in the 
river (Ronderos- Lara et al., 2018) and 25 mg/L BPA in the landfill 
leachate (Schwarzbauer et al., 2002). Consequently, BPA pollution 
has become an increasingly serious issue. Heavy metals and BPA 
present in food or transferred to food via food packaging materials 
get released into the human body through daily food intake. BPA ex-
hibits obvious reproductive, immune, developmental, endocrine, and 
nervous system toxicity (Gowder, 2013). Meanwhile, heavy metals, 
such as chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mer-
cury (Hg), tin (Sn), and nickel (Ni), can accumulate in the human body, 
resulting in various diseases of the target organs (Mansour, 2014). 
Therefore, detection of these contaminants is crucial. Atomic ab-
sorption spectroscopy, gas chromatography (GC), high- performance 
liquid chromatography (HPLC), mass spectrometry (MS), and various 
combined chromatography- mass spectrometric techniques (such as 
GC- MS and LC- MS) are used as the standard analysis methods for 
such contaminants. However, the pretreatment process of samples 
as well as the analysis steps are complicated and the equipment used 
is expensive. Moreover, these methods cannot effectively reveal 
the toxicity of the sample (Gomes et al., 2017; Jia & Ionescu, 2016; 
Le et al., 2017). Additionally, conventional bioassays using animals, 
plants, zebrafish, and other aquatic or terrestrial organisms are time 
consuming, have poor repeatability, high cost, and are resistant to 
the 3R principles (replacement, reduction, and refinement) for the 
ethical use of animals in testing (Abbas et al., 2018; Kudryasheva 
& Tarasova, 2015; Riebeling et al., 2018). Compared with these 
methods, bioluminescent bacterial detection is a rapid and low- cost 
bioassay that exhibits several advantages, such as flexible testing, 
high sensitivity, real- time monitoring, less demand for samples, 
and low consumption (Bolelli et al., 2016; Pivato & Gaspari, 2006). 
Natural bioluminescent bacteria are commonly used to measure 
the acute toxicity of contaminants (Jia & Ionescu, 2016; Thouand & 
Marks, 2014). Natural bioluminescent bacteria are mainly observed 
in four genera, namely Photobacterium, Photorhabdus, Shewanella, 
and Vibrio, and most of them have been isolated from the ocean 
(Caccamo et al., 1999; G. Thouand & Marks, 2016). Photobacterium 
phosphoreum T3, P. phosphoreum 502, Vibrio fischeri (NRRL B- 11177), 
and V. qinghaiensis Q67 have been studied to date (Gérald Thouand 
& Marks, 2014; G. Thouand & Marks, 2016). V. qinghaiensis Q67 is 
widely used for acute and mixture toxicity detection as it is the only 
freshwater- isolated strain, and hence, there is no requirement to 
add high concentrations of NaCl to test the samples (Ma et al., 1999; 
Rodea- Palomares et al., 2009; Wu et al., 2018; Xu et al., 2020; Xu 

et al., 2018; Zhang et al., 2018, 2020), which is beneficial as high 
concentrations of NaCl are known to influence the toxicity of the 
contaminant (Ankley et al., 1989; Hinwood et al., 1987; Rodea- 
Palomares et al., 2009).

Bioluminescence of natural bioluminescent bacteria is due to 
the light emission via a luciferase- catalyzed reaction (Wilson & 
Hastings, 1998). Light emission occurs when the lux operon is tran-
scribed and translated in luminescent bacteria, which may be relative 
to quorum sensing or not (Flodgaard et al., 2005; Fuqua et al., 1994; 
Gray et al., 1994; Tanet et al., 2019). The lux operon mainly contains 
luxCDABEG and an extra luxF gene in some strains, such as the mem-
bers of Photobacterium. The gene luxG has been proposed to be a 
flavin reductase that generates the coenzyme FMNH2 (Nijvipakul 
et al., 2008). Genes luxA and luxB express the α and β subunits of lu-
ciferase, respectively (Fisher et al., 1996; Suadee et al., 2007). Genes 
luxC, luxD, and luxE express reductase, transferase, and synthetase, 
respectively. The three enzymes combine to form a fatty acid re-
ductase multienzyme complex that catalyzes the long- chain fatty 
aldehyde synthesis reaction (Meighen, 1991; Sitnikov et al., 1995). 
In the presence of oxygen and cofactors (such as NADH, NADPH, 
ATP, and Mg2+), FMNH2 and long- chain aldehydes were catalyzed 
into FMN, fatty acid, and water with blue- green light (450– 490 nm) 
emission (Figure 1). Toxicity bioassays using bioluminescent bac-
teria are based on the fact that the light emission of bacteria de-
creases in the presence of contaminants. The contaminant impairs 
the intracellular metabolism and high- energy cofactor supplemen-
tation for a short period of time (Bulich & Isenberg, 1981; Gérald 
Thouand & Marks, 2014) (Figure 1). The reduction in light emission 
with increasing contaminant concentration as well as the toxicity of 
the contaminants were described by relative half- maximal effective 
concentration (EC50) values of the contaminants. The contaminant 
causes a 50% decrease in the original light when its concentration is 
EC50 (Bulich & Isenberg, 1981).

The acute toxicity of metals and other toxic contaminants 
in aquatic samples using bioluminescent bacteria has been well 
studied. The acute toxicity of the same contaminant to different 
bioluminescent bacteria appears to be different (Gérald Thouand 
& Marks, 2014). In addition, the application of acute toxicity de-
tection for contaminants in food is limited as the complex com-
ponents in food affect the toxicity of the target contaminant. 
Therefore, we measured the total mixture toxicity of the con-
taminants in food samples (Gérald Thouand & Marks, 2014; G. 
Thouand & Marks, 2016). There are some studies on the acute 
toxicity of specific or nonspecific contaminants in food (Alocija & 
McLean, 2007; Pellinen et al., 2002; Wu et al., 2018). This study 
focuses on simple samples, such as water. Detection of acute tox-
icity in other samples, such as milk or food, is suggested to be non- 
specific mixture toxicity detection. Therefore, a bioluminescent 
bacterial strain that sensitively responds to many contaminants is 
suitable for detecting the toxicity of food or environmental sam-
ples. In this study, the acute toxicity of heavy metals and BPA was 
investigated using four freeze- dried natural bioluminescent bacte-
ria, and the differences in the acute toxicities of the contaminants 
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toward the four bioluminescent bacteria were compared. In fact, 
studies using the freeze- dried powder preparations of these biolu-
minescent bacteria, especially Q67, are lacking. Furthermore, the 
acute toxicities of aqueous BPA solution (organic solvent free), Ni, 
and Sn were tested using bioluminescent bacteria for the first time 
in this study. Optimized protectants containing 12% trehalose, 4% 
sucrose, and 2% sorbitol were obtained by response surface anal-
ysis. The results revealed that V. qinghaiensis Q67 exhibited sensi-
tive toxic responses to all contaminants used in this study, but the 
other strains failed to respond to some contaminants. Moreover, 
the acute toxicity of BPA was stronger than that of all other con-
taminants used in this study.

2  |  MATERIAL S AND METHODS

2.1  |  Bacterial strains

All bioluminescent bacterial strains used in this study were P. phos-
phoreum T3, V. fischeri, P. phosphoreum 502, and V. qinghaiensis 
Q67. P. phospohoreum T3 was purchased from the Institute of Soil 
Science, Chinese Academy of Sciences. V. fischeri was purchased 

from the China Center of Industrial Culture Collection (CICC 
10,483, also known as NRRL B- 11177). P. phosphoreum 502 was 
presented by Professor Weitie Lin from the South China University 
of Technology. V. qinghaiensis Q67, deposited in the China Center 
for Type Culture Collection (CCTCC No. M2010104), was kindly 
provided by Professor Jin Zhang from the Anhui University of 
Architecture.

2.2  |  Reagents and contaminants

Trehalose, sucrose, monosodium glutamate, sorbitol, and NaCl 
were purchased from Aladdin (Shanghai, China). The contaminants 
used in this study were BPA, K2Cr2O7, Cd(NO3)2, ZnSO4.7H2O, 
Pb(NO3)2, As, Hg, Ni, and Sn. BPA (GC, purity >99%) was pur-
chased from Macklin (Shanghai, China). All other chemicals were 
purchased from Aladdin (Shanghai, China). As (analytical stand-
ard, 1000 μg/ml in 1.0 mol/L HNO3), Hg (analytical standard, 
1000 μg/ml in 1.0 mol/L HNO3), Ni (100 μg/ml in 1% HNO3), and 
Sn (1000 μg/ml in 3.0 mol/L HCl with trace of HNO3) were used 
as standard solutions. All these chemicals were prepared in a solu-
tion containing 0.85 or 2% NaCl (w/v), and the pH values of the 

F I G U R E  1  Light emission and decrease in natural bioluminescence in bacteria. Transcription of genes luxCDABE was triggered when 
the cell mass reached a threshold concentration in Vibrio fischeri and V. qinghaiensis Q67, while luminescence was not triggered by this 
mechanism in the other strains
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solutions were adjusted to 6.0– 7.0. The concentration of these 
contaminants ranged from 0.02 to 100 mg/L.

2.3  |  Culture medium and culture conditions

The culture medium of P. phosphoreum T3 and 502 consisted of 
tryptone (5 g/L), yeast extract (5 g/L), KH2PO4 (1 g/L), Na2HPO4 
(5 g/L), NaCl (30 g/L), and glycerol (3 ml/L), and pH was adjusted to 
7.0 using HCl and NaOH solutions. The culture medium of V. fischeri 
consisted of tryptone (5 g/L), yeast extract (0.5 g/L), NaH2PO4.
H2O (6.1 g/L), K2HPO4.3H2O (2.75 g/L), MgSO4.7H2O 0.204 (g/L), 
(NH4)2HPO4 (0.5 g/L), NaCl (30 g/L), and glycerin (3 ml/L), and pH 
was adjusted to 7.0. The culture medium of V. qinghaiensis Q67 
consisted of tryptone (5 g/L), yeast extract (5 g/L), MgCl2 (3.2 g/L), 
KBr (0.2 g/L), CaSO4 (0.1 g/L), KCl (4 g/L), NaCl (4 g/L), and glyc-
erol (3 ml/L), and pH was adjusted to 8.5 (Zhu et al., 2009). For 
solid culture medium, 1.5%– 2% (w/v) agar was added. All culture 
media were sterilized at 121°C for 20 min. These bioluminescent 
strains were cultured at 20, 23, and 27°C with or without shaking 
at 180 rpm.

2.4  |  Preparation of bioluminescent bacteria used 
for acute toxicity detection

Bioluminescent bacterial strains were first cultured on a plate for 
48– 72 hr. A single colony was transferred into a test tube containing 
5 ml medium and then cultured at the corresponding temperature 
for 14, 16, or 20 hr with shaking at 180 rpm. Then, the fresh culture 
was transferred into a 250- ml flask containing 50 ml medium and 
cultured under the same conditions described previously. Finally, 
the culture was transferred into another 250- ml flask with an initial 
optical density (OD)600 of 0.02, and then cultured under the same 
conditions to prepare the luminescent bacteria used for acute toxic-
ity detection.

The bioluminescent bacteria used for acute toxicity detection 
was prepared using three methods. Method 1: Fresh culture was di-
rectly used for acute toxicity detection. Method 2: Fresh culture was 
centrifuged at  8228 g at 4°C for 10 min to collect the cells, which 
were then washed with NaCl solution and centrifuged under the 
same conditions. Finally, the cleaned cells were suspended in a pro-
tectant according to the international standard (ISO11348- 1) (8 g/L 
C6H12O6·H2O, 20 or 8.5 g/L NaCl, 2.035 g/L MgCl2.6H2O, 0.3 g/L 
KCl, 11.9 g/L HEPES, pH 7.0). Method 3: Fresh cultured cells were 
collected and washed, then suspended in a protectant. Finally, the 
bacterial suspension was freeze- dried. To prepare the freeze- dried 
luminescent cells, the fresh cells harvested from the 50 ml culture 
were suspended in a 2.5 ml protectant solution containing treha-
lose, sucrose, sorbitol, or monosodium glutamate. Then, 100 μL of 
suspended cells were transferred into 2- ml round- bottom centrifuge 
tubes at room temperature for 15 min and the centrifuge tubes were 
stored at – 80°C for 10 h and freeze- dried at – 80°C for 12 h. The 

freeze- dried cells were resuscitated in 0.85 or 2% (w/v) NaCl solu-
tion at room temperature for 15 min, and then used for the acute 
toxicity test.

2.5  |  Analytical procedures

A multifunctional microplate reader (TECAN Infinite M200, 
Switzerland) was used to measure the bacterial biomass and lumi-
nescence. The biomass, which is characterized at OD600, was tested 
using an absorbance module. As the luminescence intensity of these 
bacteria was beyond the measurement range of this instrument 
when using a 96- well flat- bottom white plate, a 96- well flat- bottom 
black plate was used instead.

For the acute toxicity test, 150 μl of the contaminant solution 
(150 μl of 0.85 or 2% NaCl solution was used as a control) was added 
to a 96- well flat- bottom white plate and then 10 μL of fresh prepared 
luminescent bacteria was added. After 15 min of incubation, lumi-
nescence intensity was detected. The inhibition of luminescence in-
dicates the toxicity of the contaminant, which was calculated using 
Equation 1. Furthermore, the concentration– inhibition data were 
fitted by the logistic dose– response model (Backhaus et al., 1997; 
Chen et al., 2020). The acute toxicity of these contaminants was 
described by the EC50 value, which was calculated using a fitting 
function.

where I is the inhibition ratio of luminescence. Lc and Ls indicate the 
relative luminescence units of luminescent bacteria exposed to the 
control and contaminant chemical solutions for 15 min, respectively.

2.6  |  Statistical analysis

Statistical analysis was conducted using IBM SPSS software (version 
26.0). The differences in EC50 values between the four biolumines-
cent strains toward the same contaminant were analyzed. Statistical 
significance was set at p < .05. The quality of the developed fitting 
model was evaluated using coefficients (R2).

3  |  RESULTS

3.1  |  Culture conditions of bioluminescent bacteria

The growth and luminescence of bioluminescent bacteria are mainly 
influenced by pH, temperature, and dissolved oxygen during cultiva-
tion. Despite the oxygen participating in the luminescence reaction, 
luminescence was strong at 180 rpm shaking culture according to 
previous studies. In this study, the impact of different shaking rates 
(140, 180, and 220 rpm) on cell growth and luminescence was inves-
tigated, but no obvious differences were observed in cell growth. 

(1)I =
Lc − Ls

Lc
× 100%
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Furthermore, the luminescence intensities were 2.3, 3.1, and 
3.3 × 105 units at 140, 180, and 220 rpm after 16 h of cultivation, 
respectively. Hence, the shaking rate was confirmed at 180 rpm, ac-
cording to reference. In addition, a previous study indicated that the 
extracellular medium pH had less influence on luminescent bacte-
ria (Ma et al., 1999). In this work, the impact of different pH val-
ues (7.5, 8.0, 8.5, and 9.0) on the cell growth and luminescence of V. 
qinghaiensis Q67 was investigated, and the luminescence intensities 
were 1.7, 1.4, 1.6, and 1.9 × 105 units after 12 h of cultivation, re-
spectively. Considering the small difference, the pH of the medium 
was consistent with the value reported in references.

Because temperature affects the activities of enzymes that di-
rectly participate in the light emission reaction, this study investi-
gated the impact of temperature on the growth and luminescence 
of four natural bioluminescence bacteria. Luminescence intensity 
displayed apparent differences at different temperatures but not on 
growth among the four strains (Figure 2). The luminescence inten-
sity of P. phosphoreum T3 was much higher than that of the other 
strains. P. phosphoreum T3 and P. phosphoreum 502 showed the 
maximum luminescence intensity after 14- hr cultivation at 23°C, 
which reached the 3.04 × 107 and 9.66 × 106 unit, respectively 

(Figure 2a,b). However, when cultured at 20°C for 12 h, V. qing-
haiensis Q67 displayed the maximum luminescence intensity, which 
reached 2.97 × 105 units (Figure 2c). For V. fischeri, higher culture 
temperatures exhibited higher luminescence (Figure 2d). These re-
sults indicated that the culture temperature significantly influenced 
the luminescence intensity, but not on growth, among the four 
strains. The appropriate temperature for luminescence in P. phos-
phoreum T3, P. phosphoreum 502, V. qinghaiensis Q67, and V. fischeri 
was found to be 23, 23, 20, and 27°C, respectively.

3.2  |  Preparation of bioluminescent bacteria for 
acute toxicity detection

The preparation methods of bioluminescent bacteria using fresh 
culture, suspended fresh cells, and freeze- dried powder resulted in 
different acute toxicity results, while the latter exhibited stability 
and repeatability in toxicity detection. Indeed, the components of 
protectants could obviously affect cell viability and luminescence 
intensity. Therefore, different bacterial preparation methods and 
protectants used in freeze drying have been studied.

F I G U R E  2  Impact of temperature on the growth and luminescence of Photobacterium phosphoreum T3 (a), P. phosphoreum 502 (b), V. 
qinghaiensis Q67 (c), and V. fischeri (d)
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3.2.1  |  Impact of different preparation methods of 
bioluminescent bacteria on the acute toxicity of 
contaminants

Bioluminescent bacteria were cultured and harvested according to 
a previous study. Subsequently, the impact of three different prep-
aration methods on acute toxicity was investigated. Fresh culture 
(Method 1), fresh cells suspended in protectant solution (Method 
2), and freeze- dried powder (Method 3, here the protectant was 
15% (w/v) trehalose) were prepared and subjected to acute toxic-
ity detection. K2Cr2O7 and ZnSO4 were the standard contaminants 
used to detect the acute toxicity of water samples in ISO11348. 
Referring 20, 50% inhibition of luminescence corresponding to 3.6, 
18.71 mg/L Cr (K2Cr2O7) and 1.08, 2.17 mg/L Zn (ZnSO4.7H2O), re-
spectively, the EC70 of Cr and Zn (the contaminant concentration 
corresponding luminescence inhibited 70%) was calculated (28.78 
and 2.9 mg/L, respectively). The acute toxicities of these contami-
nants were determined. The exposure time was 30 min.

P. phosphoreum T3 and 502 prepared by method 1 showed high 
luminescence inhibition with a high concentration of Zn, but not 
with Cr. However, the cells prepared by method 2 displayed the 
opposite results with Zn and Cr relative to method 1. Furthermore, 
the luminescent cells prepared by method 3 exhibited increased lu-
minescence inhibition with increasing concentrations of Zn and Cr 
(Figure 3a,b). For V. qinghaiensis Q67, the luminescence inhibition 
increased as the concentration of Cr increased among the three 
preparation methods, whereas a high concentration of Zn showed 
lower luminescence inhibition (Figure 3c). Moreover, Zn showed ap-
parent luminescence inhibition to V. fischeri prepared by method 3, 
and 2.17 mg/L Zn resulted in 47.98% luminescence inhibition. The 
inhibition value was close to 50%, as described in ISO11348, with 
the same concentration of Zn. However, bacteria prepared by meth-
ods 1 and 2 showed no obvious inhibition of luminescence to Zn. 
Nevertheless, Cr displayed no distinct difference in luminescence 
inhibition among the three preparation methods (Figure 3d). These 
results suggest that bioluminescent bacteria prepared by different 
approaches significantly affect the acute toxic sensitivity of cells to 
contaminants. Indeed, the freeze- dried powder was the best one 
for the preparation of bioluminescent bacteria for acute toxicity 
detection.

3.2.2  |  Protectants used in freeze- drying 
process and its optimization

Protectants used in cell freeze- drying usually include skim milk 
powder, trehalose, sucrose, glucose, sorbitol, arginine, glutamate, 
etc. (Dong et al., 2011). The skim milk powder protected cells well in 
freeze- drying processes, while it clearly influenced the acute toxic-
ity of contaminants (data not shown). Therefore, trehalose, sucrose, 
sorbitol, and monosodium glutamate were used to investigate their 
effects on cell viability and the toxicity of contaminants. The fresh-
water strain Q67, which exhibited lower osmotic pressure tolerance 

compared with other strains, was used to investigate the impact 
of protectants on the acute toxicity of the standard contaminant 
(3.6 mg/L Cr). The exposure time was 15 min. The results showed 
that Q67, freeze- dried in trehalose and sucrose, exhibited a higher 
luminescence decrease with 3.6 mg/L Cr. In contrast, monosodium 
glutamate and sorbitol obviously decreased the acute toxicity of 
3.6 mg/L Cr to Q67. Luminescence inhibition decreased when the 
sorbitol concentration exceeded 6% (w/v) (Table 1). These results 
indicated that trehalose, sucrose, and low concentrations of sorbi-
tol could protect cell survival in freeze- drying processes, whereas 
monosodium glutamate decreased the acute toxicity of Cr to Q67. In 
spite of the sorbitol decreasing acute toxicity of Cr to Q67, trehalose, 
sucrose, and low concentration sorbitol were suitable as protectants 
for this strain.

Considering that the luminescence of these freeze- dried bacte-
ria with mono protectants was low after resuscitation (Table 1) and 
to reduce the cost of trehalose, the combined protectants were opti-
mized using response surface analysis. Q67 protected with monoso-
dium glutamate did not only reveal low luminescence resuscitation 
but also displayed a decrease in acute toxicity of Cr to this strain 
(Table 1). Therefore, trehalose (4%, 8%, and 12%, w/v), sucrose (4%, 
6%, and 8%, w/v), and sorbitol (2%, 4%, and 6%, w/v) were used for 
response surface analysis to obtain the combined protectants. The 
3.6 mg/L Cr was used for the luminescence inhibition test, and the 
exposure time was 15 min. Freeze- dried cells showed higher lumi-
nescence resuscitation when trehalose and sucrose combined with 
2% (w/v) sorbitol were used as protectants. In addition, 3.6 mg/L Cr 
showed high luminescence inhibition to these cells protected with 
combined protectants (Figure 4). Beyond expectation, the optimized 
protectants increased the acute toxicity of Cr to Q67. Considering 
the luminescence resuscitation and inhibition ratio, the software 
recommended the optimal combined protectants containing treha-
lose 12%, sucrose 4%, and sorbitol 2%. The optimal protectant was 
used to prepare a freeze- dried Q67 powder. Then, acute toxicity and 
luminescence resuscitation measurements were conducted, and the 
results displayed an 80.74 ± 0.94% luminescence resuscitation ratio 
and 88.51 ± 0.56% luminescence inhibition ratio, which were close 
to the predicted values of 89.7355% and 88.0762%, respectively, by 
software. The lower luminescence resuscitation ratio may be due 
to the rapid change in temperature. However, the lower lumines-
cence resuscitation cannot limit the application of these combined 
protectants for acute toxicity detection because the luminescence 
inhibition ratio did not exhibit obvious variation relative to the pre-
dicted value.

3.3  |  Application of freeze- dried bioluminescent 
bacteria for acute toxicity detection

According to previous investigations, protectants containing 12% 
trehalose, 4% sucrose, and 2% sorbitol were used to prepare these 
four freeze- dried natural bioluminescent bacteria cells. Then, 
the freeze- dried powder of bioluminescent bacteria was used to 
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determine the acute toxicity of the contaminants. The exposure time 
was 15 min.

3.3.1  |  Acute toxicity detection of heavy 
metals and BPA

All contaminants used in this work exhibited obvious luminescence 
inhibition of V. qinghaiensis Q67 (Figure 5). A high luminescence in-
hibition ratio of BPA, Cr, and Hg to Q67 appeared at a low concen-
tration of less than 2 mg/L (Figure 5a,b,f). At concentrations below 
15 mg/L, Pb, As, and Ni showed strong luminescence inhibition 
(Figure 5d,e,g). In addition, 30 mg/L Cd and 80 mg/L Sn displayed 
an 80% luminescence inhibition ratio (Figure 5c,h). Both P. phospho-
reum T3 and 502 strains exhibited sensitive responses to Cd, Pb, As, 
Hg, BPA, and Cr. Low concentrations of Cd, Pb, As, and Hg strongly 
inhibited the luminescence of these strains (Figure 5c– f). However, 
the luminescence inhibition ratio increased slowly with increasing 
concentrations of BPA and Cr in P. phosphoreum T3 and 502. The 

20 mg/L BPA and 20 mg/L Cr inhibited the 44.24% and 65.33% 
luminescence of P. phosphoreum T3, respectively, while it inhibited 
the 44.81% and 48.93% luminescence of P. phosphoreum 502, re-
spectively. In addition, the luminescence inhibition of Ni and Sn to P. 
phosphoreum T3 and 502 showed no obvious increase with increas-
ing concentration (Figure 5g,H). These results indicated that P. phos-
phoreum T3 and 502 were unavailable for the toxicity detection of 
Ni and Sn. Consequently, the application of these strains to trace 
contaminants in samples is limited because their toxic response to 
contaminants is not sensitive. V. fischeri exhibited sensitive toxic 
responses to low concentrations of Hg, and 1.2 mg/L Hg inhibited 
96.97% luminescence of V. fischeri (Figure 5f). In addition, low con-
centrations of BPA and As showed high luminescence inhibition, 
and 10 mg/L BPA and As inhibited 57.65 and 81.33%, respectively 
(Figure 5a,e). However, the luminescence inhibition slowly increased 
with increasing Cd concentration, and 100 mg/L Cd inhibited 65.17% 
luminescence (Figure 5c). Interestingly, the low concentration of Pb 
exhibited high luminescence inhibition, and 0.8 mg/L Pb inhibited 
60.60% luminescence (Figure 5d). In addition, Ni and Sn showed no 

F I G U R E  3  Toxic response of luminescence bacteria prepared by various approaches to chromium (Cr) and zinc (Zn). Acute toxicity of 
Cr and Zn to P. phosphoreum T3 (a), P. phosphoreum 502 (b), V. fischeri (c), and V. qinghaiensis Q67 (d). Method 1, Fresh culture. Method 2, 
Bacterial suspension. Method 3, Freeze- dried bioluminescent bacteria. Error bars indicate the standard deviations from three independent 
experiments
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obvious luminescence inhibition to V. fischeri, and 100 mg/L Cr and 
Sn showed 24.59% and 29.29% luminescence inhibition, respec-
tively (Figure 5g,h). These results suggest that the application of V. 
fischeri to the measurement of various contaminants is limited.

3.3.2  |  Comparing the acute toxicity of 
contaminants to different bioluminescent bacteria

The acute toxicity of the contaminant was denoted by EC50, which 
was obtained by fitting the curve. The EC50 values of each contami-
nant to luminescent bacteria are listed in Table 2. Logistic, Weibull, 
and dose– response models were used to fit the concentration– 
inhibition data. The logistic model exhibited good fitting quality to 

all concentration– inhibition data, and the value of R2 ranged from 
0.948 to 0.999. The EC50 values of each contaminant to different 
bioluminescent strains were compared, and a significant differ-
ence was demonstrated by statistical analysis (Table 2). The EC50 
values of BPA, Cr, Ni, and Sn to Q67 were 0.674, 1.313, 5.941, and 
54.077 mg/L, respectively. The EC50 of these contaminants to Q67 
was much lower than that of other luminescent bacteria, and the 
difference was significant (Table 2). In addition, the EC50 of Cd to P. 
phosphoreum T3 and 502 was 4.162 and 5.163 mg/L, respectively, 
and the EC50 of As for these strains was 0.229 and 0.252 mg/L, re-
spectively. Although V. fischeri showed high luminescence inhibition 
at lower concentrations of Pb relative to other luminescent strains, 
the inhibition did not increase as the concentration increased, while 
the others did. Furthermore, Hg showed a strong acute toxicity 

Concentration (%, w/v) 2 4 6 8 10 12 14 16 18

Trehalose

Luminescence × 105 0.2 0.8 1.5 1.3 1.4 1.4 1.5 1.5 1.6

Inhibition ratio (%) 40 43 62 66 62 65 67 67 58

Sucrose

Luminescence × 105 0.1 0.6 1.2 1.3 1.4 1.4 1.5 1.6 1.6

Inhibition ratio (%) 40 36 48 48 47 44 42 41 42

Sorbitol

Luminescence × 105 0.4 1.2 1.8 1.5 1.6 1.6 1.2 1.1 0.7

Inhibition ratio (%) 38 21 25 15 23 16 15 17 13

Monosodium glutamate

Luminescence × 105 0.1 0.2 0.6 0.6 0.4 0.5 0.2 0.2 0.1

Inhibition ratio (%) 11 35 43 35 39 23 36 31 21

TA B L E  1  Impact of different protectant 
on luminescence and luminescence 
inhibition. The standard contaminants and 
strain used in this work are 3.6 mg/L Cr 
and V. qinghaiensis Q67

F I G U R E  4  Effects of different protectants on luminescence resuscitation (a) and acute toxicity (b) were determined by response surface 
analysis. Concentration of sorbitol was 2% (w/v) in (a) and (b). Cr (3.6 mg/L) was used as the standard contaminant in (b)
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to all strains, and EC50 of V. qinghaiensis Q67, P. phosphoreum T3, 
P. phosphoreum 502, and V. fischeri were 0.911, 0.696, 1.358, and 
0.771 mg/L, respectively. These results suggested that Q67 exhib-
ited obvious acute toxicity to more contaminants than the other 
luminescent bacteria used in this study. V. qinghaiensis Q67 is the 
most appropriate strain for acute toxicity detection and further 
mixture toxicity studies because of its broad- spectrum response to 
contaminants.

4  |  DISCUSSION

Bisphenol A and heavy metals are not only widespread in the en-
vironment but are also limited in food. Current standard chemical 
analysis methods and conventional bioassays for contaminant de-
tection have some disadvantages, such as time consumption, high 
cost, and poor repeatability, and they fail to reveal the biotoxicity of 
contaminants. Hence, rapid acute toxicity detection of contaminants 

F I G U R E  5  Acute toxicity of BPA (a), Cr (b), Cd (c), Pb (d), As (e), Hg (f), Ni (g), and Sn (h) to four bioluminescent strains

TA B L E  2  Comparison of EC50 of contaminants to different luminescent bacteria. The EC50 result is shown as average ± standard error. 
The different letters a, b, c, and d indicate that the difference is statistically significant, but the same letter is considered not significant

Contaminant Vibrio qinghaiensis Q67 (mg/l)
Photobacterium phosphoreum 
T3 (mg/l)

Photobacterium phosphoreum 
502 (mg/l)

Vibrio fischeri 
(mg/l)

BPA 0.674 ± 0.003c 23.181 ± 0.003a 21.936 ± 0.518a 7.295 ± 0.016b

Cr 1.313 ± 0.008c 8.608 ± 0.146b 20.936 ± 0.154a /

Cd 11.137 ± 0.162b 4.162 ± 0.082d 5.634 ± 0.168c 46.827 ± 1.529a

Pb 5.921 ± 0.043a 3.488 ± 0.107c 3.937 ± 0.005b /

As 4.674 ± 0.013a 0.229 ± 0.008d 0.252 ± 0.002c 3.851 ± 0.017b

Hg 0.911 ± 0.005b 0.696 ± 0.008d 1.358 ± 0.043a 0.771 ± 0.009c

Ni 5.941 ± 0.044 / / /

Sn 54.077 ± 0.479 / / /
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in foods or environments using bioluminescent bacteria could be 
widely applied. Nonetheless, the influence of complex ingredients 
in food on target contaminants was inevitable; thus, the biolumines-
cent bacteria detected whole mixture toxicity of food. It could be 
used as a fast- screening sensor for food safety assessment before 
using high- cost standard methods (Alocija & McLean, 2007). Indeed, 
this was based on the fact that bioluminescent bacteria exhibit a 
toxic response to more contaminants. However, the contaminants in 
the food were trace and varied. Therefore, a bioluminescent bacte-
rial strain that responds sensitively to various contaminants limited 
in food should be investigated. In this study, the results indicated 
that freeze- dried V. qinghaiensis Q67 was the best one to quickly 
screen the total toxicity of various contaminants in food (Figure 5 
and Table 2). However, the application of Q67 in toxicity fast screen-
ing for foods or others needs to be validated by further studies.

According to the previous study, culture conditions affected the 
growth and luminescence of these bioluminescent bacteria. In this 
study, an obvious difference in luminescence was not observed when 
the shaking rate increased. In addition, the extracellular medium pH 
showed less influence on luminescence of Q67 (Ma et al., 1999), 
and the other strains exhibited a narrow pH tolerance ranging from 
6.5 to 7.5 (Bulich & Isenberg, 1981; Tarkpea et al., 1986). Similar 
results were demonstrated by Q67 and the other strains in this 
study. Light emission is the product of an enzymatic reaction, and 
the temperature directly affects the activity of luciferase and fatty 
acid reductase. The impact of temperature on cell growth and 
luminescence was studied, and the results suggested that tem-
perature significantly influences the luminescence of these four 
strains. Therefore, many studies on lux operon cloning (especially in 
Escherichia coli) have used the luxCDABE operon of Photobacterium 
luminescens because this strain was isolated from a human wound, 
resulting in strong luminescence at 37°C (Ivask et al., 2009; Kurvet 
et al., 2011). However, the application of acute toxicity detection 
using bioluminescent bacteria is commonly performed at room tem-
perature. Consequently, strains exhibiting strong luminescence at 
room temperature are a priority for acute toxicity detection. Based 
on the results above, the luminescence of bioluminescent bacteria 
was mainly affected by temperature but not dissolved oxygen and 
extracellular pH because the activity of enzymes catalyzing the 
light emission reaction was directly influenced by temperature and 
intracellular pH. The appropriate temperature for luminescence of 
these four strains displayed differences, but all were close to room 
temperature.

The effects of different bioluminescent bacterial preparation 
methods on acute toxicity were investigated. Previous studies 
have used fresh culture (method 1) to detect the acute and chronic 
toxicity of contaminants (Froehner et al., 2002; Zhu et al., 2009). 
ISO11348 introduced method 2 (fresh cells suspended in protectant 
solution) and method 3 (freeze- dried powder) for acute toxicity 
measurements in water. In this study, the results suggested that the 
freeze- dried bioluminescent cells displayed a strong toxic response 
to contaminants. Indeed, the freeze- dried powder could retain the 

activity of cells for a long time, and the same batch of cultured cells 
might eliminate the error from different physiological luminescent 
cells (Dong et al., 2011). Furthermore, the components of pro-
tectants used in freeze- drying processes were optimized, and the 
results indicated that freeze- dried Q67 prepared with protectants 
containing 12% trehalose, 4% sucrose, and 2% sorbitol exhibited a 
strong luminescence inhibition response to standard contaminants 
and high luminescence resuscitation. The acute toxicity of standard 
contaminants (Cr) to freeze- dried Q67 was much higher than ex-
pected (Figure 4).

Considering the lower osmotic pressure tolerance of V. qin-
ghaiensis Q67 compared to other strains, this work used Q67 to 
optimize the protectant for freeze- drying processes by response 
surface analysis. In fact, application of the protectant on P. phospho-
reum T3, P. phosphoreum 502, and V. fischeri was reasonable because 
3.6 mg/L Cr displayed higher luminescence inhibition to biolumines-
cent cells prepared with this optimized protectant than with 15% 
trehalose (Figures 2 and 5). Although the toxicity of BPA in degrada-
tion was investigated using V. fischeri (Han et al., 2015), the strong 
acute toxicity of BPA to Q67 has barely been studied. Furthermore, 
the acute toxicity of six heavy metals (Hg, Cu, Zn, Cd, Ni, and Mn) to 
P. phosphoreum T3 and V. qinghaiensis Q67 was compared in a previ-
ous study (Ma et al., 1999). The results showed that the EC50 of Cd 
and Ni to T3 was much higher than that of Q67 but reversed to Hg, 
which was similar to the results of this study (Table 2). Moreover, 
acute toxicity of heavy metals to V. fischeri was investigated (Abbas 
et al., 2018), and the results showed some differences relative to 
this study. Beyond expectation, 0.8 mg/L Pb inhibited 60.60% of 
luminescence, but a decrease over this concentration (Figure 5c), 
which might be explained by hormesis (Shen et al., 2009; Zheng 
et al., 2017). All results of acute toxicity tests for these four biolumi-
nescent bacteria were different from other studies (Gérald Thouand 
& Marks, 2014). Nevertheless, this study focused on comparing the 
acute toxicity of contaminants to these four bioluminescent bacte-
ria, which were performed under the same preparation, exposure, 
and detection conditions. These results indicate that the most ap-
propriate bioluminescent bacteria strain to detect acute toxicity 
of contaminants used in this study was Q67. The mixture toxicity 
of BPA and heavy metals or other contaminants was investigated 
using Q67 in both the environment and food safety fields. This is 
a rapid and low- cost approach compared with animal experiments, 
and not against the 3R principles regarding the use of animals (Chen 
et al. (2021); Riebeling et al. (2018); and Su et al. (2018)).

5  |  CONCLUSION

The results of this study validated that the differences in the acute 
toxicity of contaminants to P. phosphoreum T3, V. fischeri, P. phos-
phoreum 502, and V. qinghaiensis Q67 were statistically significant 
(Table 2). Moreover, we found that Q67 exhibited acute toxic re-
sponses to more contaminants than the other strains. BPA exhibited 
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the strongest acute toxicity to Q67 (EC50 = 0.674 mg/L) compared 
to the other bioluminescent bacterial strains. Compared to other 
strains, V. qinghaiensis Q67 was suggested to be the better strain 
to be used as a potential biosensor for non- specific contaminants 
to facilitate the rapid screening and assessment of acute toxicity of 
samples.
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