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Abstract: Convenient and sensitive detection of tumor biomarkers is crucial for the early diagno-
sis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical
immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue
(MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated
with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene
oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO)
electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobi-
lize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity.
Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies
and stabilize the inner probe, conferring the sensing interface with specific recognition capacity.
Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB
after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit
of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has
good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in
human serum samples is also realized.

Keywords: electrochemically reduced graphene oxide; carbon nanotubes; methylene blue; CA19-9;
immunosensor

1. Introduction

Ultrasensitive and specific detection of tumor markers is crucial for the early diagnosis
and treatment of cancer [1,2]. Generally, abnormal presence and changes of concentrations
of tumor markers means that people have suffered from a deadly cancer [3]. Carbohydrate
antigen 19-9 (CA19-9) is a kind of carbohydrate antigen consisting of macromolecular
glycoproteins and has been shown to be closely associated with pancreatic and biliary
tract cancers [4]. Usually, the concentration of CA19-9 is significant less than 37 U/mL in
normal healthy human blood [5]. A slight increase of CA19-9 implies the possibility of
pancreatic cancer development [6]. Up to 63.2 U/mL and 92 U/mL indicate the possibility
of cholangiocarcinoma and malignant pancreatic neoplasms, respectively [7,8]. Considering
that CA19-9 has been identified as the most reliable biomarker for pancreatic and biliary
tract cancers, highly sensitive and convenient detection of CA19-9 is urgent [9].

In recent years, various methods have been developed to detect CA19-9 including
enzyme-linked immunosorbent assays (ELISA) [10], surface-enhanced Raman scattering
spectroscopy (SERS) [11], radio-immunoassay (RIA) [12], photoelectrochemistry (PEC), [13]
and chemiluminescence (CL) [14]. These methods usually require complex and tedious op-
erations, expensive instruments and professional technicians. Electrochemical immunosen-
sor has become one of the most widely analytical methods due to the advantage of low
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equipment cost, high detection sensitivity, simple instrument operation, fast response,
and online or real-time monitoring [15–17]. Electrochemical immunosensor could fall
into two categories, namely: free redox probes in solution [18,19] and immobilization
of redox probes [20,21] onto the electrode surface. Compared with the former method,
electrochemical immunosensors based on the immobilized redox probes have the ad-
vantages of reagentless detection and simple operations. Therefore, the exploitation of
various materials to design a highly sensitive electrochemical immunosensing interface
with convenient immobilization of redox probes and further biological recognitive species
is highly desirable.

Carbon nanomaterials (e.g., graphene, carbon nanotubes, carbon quantum dots) as
functional blocks (e.g., enhanced materials, electrocatalysts, carriers, or probes) have re-
ceived great attention for construction of various chemo/biosensors with high sensitiv-
ity [22–28]. Especially, graphene and its derivatives with high conductivity, larger specific
surface area, and mechanical stability could accelerate the electron transfer between elec-
troactive species and electrodes, which have become important functional materials for
the fabrication of high-performance electrochemical sensors [29–34]. Owing to the π-
conjugated two-dimensional planar structures and the oxygen-containing groups, reduced
graphene oxides could not only combine with other materials with synergistical effects in-
cluding carbon nanotubes [35], polymers [36], metal nanoparticles [37,38], and nanoporous
films [39–43], but also provide amounts of binding site for immobilization of biological
recognitive molecules, remarkably promoting the analytical performance.

Indium tin oxide (ITO)-coated glasses have the characteristics of good electrical con-
ductivity, inexpensiveness, optical transparency, easy miniaturization, and disposability,
which have been widely used as electrode substrates for the construction of electrochemi-
cal/electroluminescent sensors [44]. In this work, we report a simple and sensitive label-
free electrochemical immunosensor for quantitative determination of CA19-9 by using
an ITO electrode modified with electrochemically reduced graphene oxide and carbon
nanotubes (ErGO-CNT) nanocomposite, and further probes immobilization. ErGO-CNT
nanocomposite could be electrodeposited onto the ITO surface by a simple and controllable
electrochemical method, greatly improving the electronic conductivity. Arising from the
carboxyl group of CNT and the π-conjugated structure of ErGO-CNT, electrochemical
probe, methylene blue (MB), could be immobilized onto the ErGO-CNT via electrostatic
and π-π effects. With the linkage of polydopamine (PDA), the anti-CA19-9 antibody is able
to covalently bind to the MB/ErGO-CNT/ITO, and the immunosensor is achieved with a
wide linear range and low limit of detection. Furthermore, the proposed immunosensor
has been successful applied to the analysis of human serum.

2. Results and Discussion
2.1. Principle of CA19-9 Detection

Figure 1 illustrates the fabrication of an immunosensing interface and the reagentless
determination of CA19-9 based on the electrochemical signals of the immobilized mediator.
GO and CNT were pre-mixed to prepare the GO-CNT dispersion and underwent an
electrochemical deposition process, leading to the reduction of GO and finally forming
ErGO-CNT onto the ITO surface (ErGO-CNT/ITO). The hybrid of GO and CNT has two
advantages. On the one hand, GO could enhance the solubility and dispersibility of CNT
in an aqueous solution because of the π-π stacking interaction between the sidewalls of
CNT and the aromatic region of GO. On the other hand, incorporated CNT serving as
good electronic conductive wires is capable of promoting the electrochemical reduction
of GO, decreasing the co-deposition potential. Such obtained ErGO-CNT nanocomposite
could improve electroactive area and provide a binding site for cationic redox probe (e.g.,
MB). Due to the negative charge of carboxylated CNT and the π-conjugated structure of
ErGO-CNT, MB with a positive charge can be adsorbed at the ErGO-CNT (MB/ErGO-
CNT/ITO) through electrostatic and π-π interactions, giving rise to the electrochemical
signals. Then, polydopamine (PDA) was formed on the MB/ErGO-CNT/ITO electrode
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surface through oxidative self-polymerization of dopamine (DA) in the alkaline solution,
which could not only stabilize the inner layer of MB, but also act as the coupling agent for
the immobilization of recognitive anti-CA19-9 antibody through Michael addition or Schiff-
based reactions. After blocking the non-specific sites with bovine serum albumin (BSA),
the immunosensor, denoted as Anti-CA19-9/PDA/MB/ErGO-CNT/ITO, was obtained.
When CA19-9 specifically interacted with anti-CA19-9 on the surface of the electrode, the
electrochemical signal was reduced due to the poor electron transport efficiency of proteins,
realizing the reagentless and label-free electrochemical determination of CA19-9.
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Figure 1. Schematic illustration for the label-free electrochemical determination of CA19-9.

2.2. Characterization of GO-CNT Nanocomposite

Figure 2a shows the UV-Vis spectra of the supernatant of GO, CNT, and GO-CNT
nanocomposite. As seen, CNT without dispersants has no obvious peaks, which arises from
the precipitation of CNT after centrifugation. GO shows an obvious absorption peak at
228 nm and a shoulder peak at 300 nm, corresponding to the π→π* transitions of aromatic
C-C bond and n→π* transition of C=O bond, respectively. For the GO-CNT nanocomposite,
the absorption peak at 300 nm does not shift but that at 228 nm shifts bathochromically to
245 nm, which is due to the π-stacking interactions between the multiple aromatic regions
of GO and the sidewalls of CNT [45]. FTIR was also employed to confirm the complex
of GO and CNT. As shown in Figure 2b, a broad absorption band at 3445 cm−1 and two
absorption bands at 1723 cm−1 and 1623 cm−1 are observed at the spectrum of GO, which
is attributed to the hydroxyl, carbonyl, and carboxyl groups, respectively. By contrast,
GO-CNT nanocomposite has similar absorption bands but not observed at the spectrum
of CNT, suggesting the successful formation of GO-CNT nanocomposite. It is noteworthy
that the presence of oxygen-containing groups in GO-CNT nanocomposite could provide
abundant binding site for further immobilization of functional species.
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2.3. Characterization of ErGO-CNT/ITO Electrode

Figure 3a shows the repetitive cyclic voltammetry (CV) curves of the bare ITO elec-
trode in a potential range from 0 to −1.0 V. In this process, electrochemical reduction of GO
occurs and cathodic peak current appears at −1.0 V, eventually resulting in the electrodepo-
sition of ErGO-CNT onto the ITO surface. It is noteworthy that above cathodic peak current
gradually decreased with the continuous scanning, further suggesting the reduction of
GO and electrodeposition of ErGO-CNT. In order to confirm the electrochemical reduction
of GO, the XPS technique was used. Figure 3b,c shows the XPS spectra of GO–CNT/ITO
and ErGO–CNT/ITO electrodes. As seen, four characteristic peaks located at 284.5, 286.3,
287.5, and 288.4 eV are ascribed to the C-C/C=C, C-O, C=O, and O-C=O, respectively.
When ErGO-CNT was deposited on the ITO electrode, the intensities of characteristic peaks
related to oxygen-containing groups of carbon decreased, indicating that the electrodepo-
sition of GO-CNTs was accompanied by the reduction of oxygen-containing functional
groups. As shown in Figure 4a,b, numerous wrinkles of GO and bundled structures of CNT
are observed, indicating the successful modification of ErGO–CNT on the ITO surface.

To examine the electrode performance of obtained ErGO-CNT/ITO, electrochemically
active surface area (ECSA) of bare ITO and ErGO-CNT/ITO electrodes were compared.
ECSA of bare ITO can be accurately calculated by using the Randles–Sevcik equation in the
presence of reversible probe (K3[Fe(CN)6]) [46].

IP = 2.69× 105 AD1/2n3/2v1/2C (1)

where A, C, n, D, and ν represent the effective surface area, the bulk concentration of
K3[Fe(CN6)], the number of electrons transferred (n = 1), the diffusion coefficient of
K3[Fe(CN6)] (6.67 × 10−6 cm2 s−1), and the scan rate, respectively. Figure 5 gives the
linear relationship (Ip-ν1/2) between the redox peak currents of 0.5 mM K3[Fe(CN)6] ob-
tained from these two electrodes (bare ITO and ErGO-CNT/ITO) and the square root of
scan rate. According to Equation 1, the ECSA of the bare ITO and ErGO-CNT/ITO were
calculated to be 0.36 and 0.45 cm2. Despite a slight increase in ECSA, ErGO-CNT/ITO
exhibits remarkable enrichment ability towards MB (Figure S1) due to the electrostatic
attraction and π-π effect, showing the great potential for the construction of reagentless
electrochemical sensors.
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2.4. Stabilization Effect of PDA

MB with a reversible redox and low-cost properties is an organic dye that belongs
to the phenothiazine family, which has been widely used as an excellent electrochemi-
cal redox probe in the field of electrochemical sensors [47]. Cationic MB was immobi-
lized onto the ErGO-CNT/ITO surface via electrostatic and π-π effects under stirring for
60 min (Figure S3), which did not change the surface morphology of ErGO-CNT/ITO
(Figure 4b,c). After self-polymerization of PDA, smooth surface was presented at the
PDA/MB/ErGO-CNT/ITO (Figure 4c,d). After self-polymerization of PDA, smooth sur-
face was presented at the PDA/M), indicating the formation of uniform PDA film. Consider-
ing the protective effect of PDA in previous reports [48,49], the stability of PDA/MB/ErGO-
CNT/ITO was investigated. Figure 6 compares the 20 consecutive CV scans of the prepared
MB/ErGO-CNT/ITO electrode and PDA/MB/ErGO-CNT/ITO electrodes. As displayed,
the MB/ErGO-CNT/ITO electrode has a pair of well-defined redox peaks, corresponding
to the signal of MB and suggesting the successful immobilization of MB. However, the
redox peak current signals of MB at the MB/ErGO-CNT/ITO decreased with an increase
of scanning cycles while those at the PDA/MB/ErGO-CNT/ITO hardly changed. This is
because the presence of PDA is able to prevent the inner MB from falling off the electrode
surface and effectively stabilize the immobilization of MB. Moreover, the effect of pH of
the supporting electrolyte on the PDA/MB/ErGO-CNT/ITO was studied. As shown in
Figure S2, the anodic peak current increases with the decrease of pH value and the anodic
current peak shifts positively, which is attributed to the proton-involved electrochemical
reaction of MB [50,51]. However, considering the stable activity of the protein under neu-
tral conditions and 91% of signal at the pH of 4.0, pH = 7.4 was chosen as the optimal
experimental condition.
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2.5. Fabrication of Immunosensor

The feasibility of the immunosensor construction was verified by the electrochemical
method. Figure 7a is the CV curves of each electrode in 0.1 M KCl solution containing
2.5 mM Fe(CN)6

3–/4–. As shown, Fe(CN)6
3–/4– displays a pair of reversible redox peaks

at the PDA/MB/ErGO-CNT/ITO electrode. Then, recognitive antibody (anti-CA19-9)
can be immobilized onto the PDA/MB/ErGO-CNT/ITO electrode surface based on the
interaction between the dopaquinone structure of PDA and the –SH or –NH2 groups of
anti-CA19-9. After blocking the non-specific sites with BSA, CA19-9 was detected by
Anti-CA19-9/PDA/MB/ErGO-CNT/ITO electrode. Owning to the non-conductive steric
hindrance layer of proteins, both anti-CA19-9 and CA19-9 hinder the electron exchange of
electrochemical probes on the electrode surface, leading to the decreased redox peak signals



Molecules 2022, 27, 6778 7 of 13

and larger peak-to-peak difference. Figure 7b shows the EIS responses of each electrode
to 2.5 mM Fe(CN)6

3–/4–. Each curve consists of a semicircle in the high frequency region
and a linear part in the low frequency region, representing an electron transfer-limited
process and a diffusion-limited process, respectively. As seen, the charge transfer resistance
was increased after each modification, which was consistent with the current variation
of CV responses shown in Figure 7a. At the same time, we used the inner probe strategy
to characterize the electrode construction process. It can be seen from Figure 7c,d, the
CV and differential pulse voltammetry (DPV) signals of MB gradually decreased with
the stepwise modification. All above results demonstrate the successful construction of
the immunosensor.
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2.6. Electrochemical Determination of CA19-9

CA19-9 was detected by DPV based on the decrease of the electrochemical signal of MB
after CA19-9 binding, and the results were shown in Figure 8. As shown, after incubating
with different concentrations of CA19-9, anodic peak currents decrease with the increasing
CA19-9 concentration. This is because the formed antigen–antibody complex hinders the
access of electrolyte anions to the electrode surface and charge compensation could not
occur. The good linear relationship between anodic peak currents and the logarithm of
CA19-9 concentration could be found from 0.1 mU/mL to 100 U/mL (Figure 8b), yielding
a regressive equation of IEC = –0.321 lgCCA19-9 + 4.27 (R2 = 0.990) and the limit of detection
(LOD) of 0.54 nU/mL (S/N = 3). Analytical performance of our sensor with some other
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reported methods is provided in Table 1. As compared, our proposed sensor has a wider
linear range and a rather lower LOD.
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Table 1. Comparison of detection performance of our sensor with some other reported methods for
the determination of CA19-9.

Method Electrode Linear Range
(mU/mL)

LOD
(mU/mL) Refs.

ECL GO/HBP/ITO 2–5 × 104 0.25 [52]

ECL MWCNT–Pt–
Luminol-GCE 0.1–1 × 104 0.046 [53]

EIS CeO2/FeOx@mC500/AuE 0.1–1 × 104 0.01 [6]
DPV Au/GO-MA/GCE 0.1–1 × 105 0.032 [54]
DPV PDA/MB/GO-CNT/ITO 0.1–1 × 105 0.00054 This work

GO/HBP: GO-grafted hyperbranched/aromaticpolyamide; MWCNT–Pt–Luminol: multi-walled carbon nan-
otube/platinum/luminol nanocomposites; CeO2/FeOx@mC500: bimetallic cerium and ferric oxide nanoparticles
embedded within the mesoporous carbon matrix; Au/GO-MA: Au graphene oxide-melamine.

2.7. Selectivity, Reproducibility, and Stability of the Constructed Immunosensor

The selectivity of the constructed immunosensor was investigated. As shown in
Figure 9a, except for CA19-9, the other four antigens including AFP, CA125, S100, and PSA
did not change the peak current responses at the anti-CA19-9/PDA/MB/ErGO-CNT/ITO
sensor. Even though all of tumor markers were mixed with CA19-9, the peak current of the
electrode was nearly similar with that of a single CA19-9, proving the good selectivity of the
developed immunosensor. The inter-electrode reproductivity and storage stability of the
constructed immunosensor were also evaluated. The reproducibility of this immunosensor
was investigated by preparing five electrodes in the same batch and the obtained RSD value
of five different electrodes was 3.6% (Figure 9b). After 5 days of storage in a refrigerator
(4 °C), the response of the immunosensor towards CA19-9 retained about 94% of the initial
signal (Figure 9c). All these results show that the proposed immunosensor has good
selectivity, reproducibility, and stability, making a good candidate for real sample analysis.
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2.8. Determination of CA19-9 in Human Serum

In order to evaluate the practical application potential of our immunosensor, 50-time
diluted human serum with 0.01 M PBS (pH = 7.4) was employed as the analytical samples.
Table 2 shows the results of human serum samples with artificially spiking in a known
concentration of CA19-9, exhibiting satisfactory recoveries (between 95.0 and 110%) and
small RSDs (between 0.36 and 1.3%, n = 3). Moreover, the human serum sample spiked
with 10 U/mL was determined by our sensor and enzyme-linked immuno-sorbent assay
(ELISA) and the obtained results of both methods were comparable, showing the reliability
and accuracy of our immunosensor.

Table 2. Determination of CA19-9 in real samples a.

Sample Added
(mU/mL)

Found
(mU/mL)

Recovery
(%)

RSD
(%)

Serum a
0.100 0.0950 95.0 0.36
1.00 1.10 110 0.50
1000 952 95.2 1.3

a: 50-time diluted with PBS (0.01 M, pH = 7.4).

3. Materials and Methods
3.1. Chemicals and Materials

Carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), prostate spe-
cific antigen (PSA) and carcinoma antigen 125 (CA125), and CA19-9 antibody (anti-CA19-9)
were purchased from Beijing KEY-BIO Biotech Co., Ltd. (China). S100 calcium binding
protein β (S100) was ordered from Proteintech (Wuhan, China) and alpha-fetoprotein (AFP)
was bought from Nanjing OkayBio (China). NaH2PO4, Na2HPO4, KCl, and dopamine
(DA) were purchased from Aladdin Chemistry (Shanghai, China). Bovine serum albumin
(BSA) was obtained from Macklin (Shanghai, China). Multi-walled carbon nanotubes
(CNT, OD < 8 nm, length ~ 30 µm, 95%) were bought from Chengdu Institute of Organic
Chemistry, Chinese Academy of Sciences. Methylene blue trihydrate (MB) was purchased
from Tianjin Yongda Chemical Reagent Co., Ltd. (China). Human serum was provided by
Shanxi Bethune Hospital (Taiyuan, China). ITO-coated glasses (<17 Ω/square, thickness:
100 ± 20 nm) were obtained from Zhuhai Kaivo Optoelectronic Technology. To remove
impurities on the ITO surface, the electrode was first immersed in 1 M NaOH aqueous
solution overnight and then sonicated in acetone, ethanol, and deionized water for 30 min,
respectively. All aqueous solutions throughout this work were prepared in ultrapure water
(18.2 MΩ cm).
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3.2. Experiments and Instrumentations

Scanning electron microscopy (SEM) was conducted on a field-emission scanning elec-
tron microscope (S-4800, Hitachi, Tokyo, Japan). Cyclic voltammetry (CV) and differential
pulse voltammetry (DPV) measurements were performed on an Autolab PGSTAT302N
electrochemical workstation (Metrohm, Herisau, Switzerland). Above electrochemical
measurements were performed with a three-electrode system containing a bare or modified
ITO as the working electrode, Ag/AgCl (saturated KCl solution) as the reference electrode,
and a Pt wire electrode as the counter electrode. DPV measurement parameters include
step (0.005 V), modulation amplitude (0.05 V), modulation time (0.05 s), and interval time
(0.2 s). A PHI5300 electron spectrometer (PE Ltd., Waltham, MA, USA) was used to con-
duct X-Ray photoelectron spectroscopy (XPS) analysis (250 W, 14 kV, Mg Kα radiation).
Ultraviolet-Vis (UV-Vis) absorption spectra were obtained from a UV-Vis spectrometer
(UV-2450; Shimadzu, Kyoto, Japan). Fourier transform infrared spectroscopy (FTIR) data
were recorded on a Vertex 70 spectrometer (Bruker, Woodlands, TX, USA) through KBr
tablet method.

3.3. Preparation of the MB/ErGO-CNT/ITO

GO was prepared by a modified Hummers method [55]. The fabrication process of
GO-CNT dispersion is as the following: 1 mg/mL GO and 0.5 mg/mL CNT was mixed
into PBS (0.2 M pH = 6.5) solution and sonicated for 1 h. The unstable CNT was removed
by centrifugation at 8000 rpm for 10 min. To deposit the ErGO-CNT on the ITO, the clean
ITO electrode (geometric area = 0.5 cm2) was soaked into the above GO-CNT dispersion
and applied 30 successive CVs scanning from 0 to –1.0 V at the scan rate of 50 mV/s. In
this process, electrochemical reduction of GO and electrodeposition of their nanocomposite
to the ITO electrode surface simultaneously occur. The obtained electrode was rinsed with
water lightly, dried at 60 ◦C and applied a constant current of –350 mA for 10 s in 0.2 M
PBS (pH = 6.5) to further reduce GO. ErGO-CNT supported by ITO electrode was finally
prepared, termed as ErGO-CNT/ITO. MB/ErGO-CNT/ITO was obtained by immersing
the ErGO-CNT/ITO electrode into a 0.01 M PBS (pH = 7.4) solution containing 1 mM MB
under stirring for 60 min.

3.4. Fabrication of Immunosensor

In order to immobilize antibodies and encapsulate MB, the MB/ErGO-CNT/ITO
electrode was first immersed in DA solution (1 mg/mL in 0.1 M PBS, pH = 8.5) for 1 h and
self-polymerization of the DA was induced to obtain the polydopamine (PDA)/MB/ErGO-
CNT/ITO electrode. After removing the residual DA, 50 µL of 100 µg/mL anti-CA19-9
in 0.01 M PBS (pH 7.4) was dropped on the above electrode surface and incubated at 4 ◦C
overnight. Loosely bounded anti-CA19-9 antibody was carefully washed off and then
50 µL of 1 wt% BSA in 0.01 M PBS (pH 7.4) was used to block nonspecific binding sites at
37 ◦C for 1 h. Finally, 50 µL of various concentrations of CA19-9 was dropped onto the
immunosensor surface and incubated at 37 ◦C for 0.5 h. After being rinsed with PBS, the
DPV curves were recorded to realize the quantitative detection of CA19-9.

4. Conclusions

In this work, a simple and sensitive label-free electrochemical immunosensor is fab-
ricated for reagentless determination of CA19-9 through ErGO-CNT nanocomposite and
surface-immobilized MB probe. ErGO-CNT could be prepared by a simple and controllable
electrodeposited method. The carboxyl group of CNT and the π-conjugated structure
of ErGO-CNT provide binding sites for the cationic MB probe, which could be further
stabilized by PDA. With the linkage of PDA, anti-CA19-9 antibody covalently binding to
the MB/ErGO-CNT/ITO endows the electrode recognized capacity. Combining with the
good conductivity of ErGO-CNT and stabilization of PDA, determination of CA19-9 was
achieved by recording the reduction of redox signals of MB after incubation with CA19-9.
Furthermore, the fabricated immunosensor exhibits convenient construction steps, high
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sensitivity, good selectivity, and has been successfully applied to the analysis in human
serum, providing an easy and efficient strategy for sensitive determination of CA19-9.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206778/s1, Figure S1: CV curves of bare ITO and
ErGO-CNT/ITO electrodes after soaking into MB solution; Figure S2: Effect of pH of supporting
electrolyte on the PDA/MB/GO-CNT/ITO electrode; Figure S3: Optimization of accumulation time
of MB.
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