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Abstract

Recent studies suggest that binocular rivalry at stimulus onset, so called onset rivalry, differs from rivalry during
sustained viewing. These observations raise the interesting question whether there is a relation between onset rivalry
and rivalry in the presence of eye movements. We therefore studied binocular rivalry when stimuli jumped from one
visual hemifield to the other, either through a saccade or through a passive stimulus displacement, and we compared
rivalry after such displacements with onset and sustained rivalry. We presented opponent motion, orthogonal
gratings and face/house stimuli through a stereoscope. For all three stimulus types we found that subjects showed a
strong preference for stimuli in one eye or one hemifield (Experiment 1), and that these subject-specific biases did
not persist during sustained viewing (Experiment 2). These results confirm and extend previous findings obtained
with gratings. The results from the main experiment (Experiment 3) showed that after a passive stimulus jump,
switching probability was low when the preferred eye was dominant before a stimulus jump, but when the non-
preferred eye was dominant beforehand, switching probability was comparatively high. The results thus showed that
dominance after a stimulus jump was tightly related to eye dominance at stimulus onset. In the saccade condition,
however, these subject-specific biases were systematically reduced, indicating that the influence of saccades can be
understood from a systematic attenuation of the subjects’ onset rivalry biases. Taken together, our findings
demonstrate a relation between onset rivalry and rivalry after retinal shifts and involvement of extra-retinal signals in
binocular rivalry.
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Introduction

When both eyes are presented with distinctly different images, a

phenomenon called binocular rivalry arises. Instead of merging

the images of both eyes into a single binocular percept, the two

images are perceived alternately in a quasi-regular fashion (for

reviews, see [1,2,3,4]). This bistable behavior has attracted consi-

derable attention, partly because it provides a clear dissociation

between stimulus and visual awareness. Thus far, however, the

neural mechanisms underlying binocular rivalry remain poorly

understood.

Several studies have used brief or intermittent stimulus presen-

tation with varying interstimulus intervals [5,6,7,8,9,10]. These

studies revealed that perception becomes remarkably stable when

short stimulus presentations (0.5–1.2 sec) are combined with rela-

tively long interstimulus intervals (.1 s), whereas short interstim-

ulus intervals (,0.5 s) promote percept alternations with every

new stimulus presentation. The observed perceptual stabiliza-

tion was assumed to reflect temporary suppression or slowing of

the physiological processes underlying binocular rivalry. Recent

findings suggest, however, that rivalry at the beginning of a trial,

so called onset rivalry, may be different from sustained rivalry

[11,12,13,14]. For example, Mamassian & Goutcher [11] found

that contrast differences between the two stimuli cause a strong eye

bias at stimulus onset that wears off during the course of the trial

toward a more equal dominance of the two eyes. Furthermore,

Carter & Cavanagh [13] showed that this onset bias also occurs

with equiluminant stimuli but that it is highly specific to certain

locations in the visual field and that these locations differ between

subjects. These findings raise the interesting question whether

there is a relation between onset rivalry and rivalry in the presence

of eye movements. Because eye movements interrupt stimulus

viewing for the duration of the saccade and in addition cause the

retinal images to change, the implications of saccades for models of

binocular rivalry are far from trivial.

In current models, binocular rivalry typically revolves around

two mechanisms. Mutual inhibition between monocular cell

populations, which induces suppression of one percept while the

other is dominant, and slow self-adaptation of cells within each

population, which causes the dominant percept to be replaced by

the other percept after a certain period. In line with these models,

rivalry has been found to slow down if the stimulus is moving,

preventing adaptation [15]. It is implicitly assumed, however, that

these mechanisms act locally, affecting only populations of cells in

retinotopic visual areas that have their receptive fields at the

location of the stimulus. In agreement with this assumption, adap-

tation studies found that, at least for lower order stimuli such as

gratings, adaptation only occurs in retinotopically matched

locations [16,17] although the strength of the aftereffect is found

to be gaze-dependent [18].
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When a saccade causes a displacement of the visual stimulus

across the retina, however, e.g., from one hemifield to the other, a

new population of cells will be stimulated. Clearly, the cells in this

new population will have a different adaptation state than the ones

stimulated before the movement because they have experienced a

different visual history. These models therefore predict that a

rivaling stimulus that has been shifted to a new retinal location is

processed as a new stimulus and that it should make no difference

whether the retinal image shift is caused by a physical dis-

placement of the stimulus or by a saccadic eye movement. Alter-

natively, the balance between excitation and inhibition could be

under more direct, active neural control. For example, saccades

might help maintaining perceptual continuity, as suggested by

Ross & Ma-Wyatt [19], and cause less perceptual switches than

passive stimulus jumps.

To test these different possibilities, we first characterized onset

rivalry and rivalry during sustained viewing in two separate

control experiments (Experiment 1 and 2). We then studied state

changes in binocular rivalry when retinal image shifts were

produced actively by saccades or passively by displacements of

the stimulus on the projection screen (Experiment 3), and we

compared rivalry after such retinal displacements to the behavior

observed at stimulus onset and during sustained viewing. Apart

from the commonly used grating stimulus, we also used a face/

house stimulus and a motion stimulus because these different

stimulus types involve at least partly different (dorsal and ventral)

visual pathways in the brain.

We report that both active and passive retinal displacements

produced subject-specific eye/hemifield preferences that were very

similar to those seen at stimulus onset. Our data thus suggests

that these retinal image shifts trigger onset rivalry. Interestingly,

however, the behavior observed after saccades versus stimulus

jumps was not the same; saccades produced a significant atte-

nuation of the eye/hemifield preferences. We conclude therefore

that non-visual, oculomotor signals have a significant impact on

the rivalry process. This implies that state changes in binocular

rivalry are not only determined by passive adaptation processes,

but also involve active neural control components.

Methods

Subjects
Eleven adult human subjects participated in the experiments.

All subjects had normal, or corrected to normal, visual acuity.

Subjects JK, SR and JG had previous experience with the tasks.

The other subjects were inexperienced and naive as to the purpose

of the investigation.

The volunteers were informed about the experimental proce-

dures and gave informed consent in writing before the start of the

experiments. All procedures were in accordance with the

Declaration of Helsinki, and approved by the Radboud University

Medical Centre. Table 1 lists age and gender of each participant.

Setup
Subjects were seated in a dark room at 52 cm from a projection

screen on which visual stimuli were back projected with an LCD

projector (Panasonic PT-AX100E) at 60 Hz. The total size of the

projection area was 57632 cm with a resolution of 12806720

pixels. The subject watched the screen through a front-mirror

stereoscope (HyperView, Berezin, U.S.). Head movements were

restricted with a chin support or with a bite board. Dichoptic

stimuli (Figure 1) were generated with Matlab (The MathWorks,

Inc.) using the Psychophysics Toolbox extensions [20,21]. It was

either a 464u random dot kinematogram with dots moving

coherently in opposite directions, a 464u face/house stimulus

(modified after [22]) or a circular sinusoidal grating with a dia-

meter of 4u. The motion stimulus consisted of 500 dots (0.14u
white squares) moving vertically with a speed of 2.75u per second

(1 pixel/frame). Dots had asynchronous lifetimes of 0.33 s. When

a dot died, it was redrawn at a random position within the stimulus

area. The spatial frequency of the grating was 1 cycle per degree.

Stimulus contrast was the same for images presented to the left and

right eye, with a maximal luminance of 98 cd/m2 and a back-

ground luminance of 1.3 cd/m2 (Minolta LS-100 Luminance

meter).

Each trial started with a 0.46u fixation cross, and after a fixed

delay of 1 s, a rivalrous stimulus was presented. The stimuli were

always presented directly left or right from the fixation point, such

that the center of the stimulus was located at a retinal eccentricity

of 2u. Motion, face/house and grating stimuli were tested in

separate sessions. When the left eye watched the upward motion,

the face, or the left-oblique grating, the right eye watched the

downward motion, the house, or the right-oblique grating and vice

versa. The hemifield in which the stimulus was presented also

varied between trials. This resulted in the four possible stimulus

configurations listed in Table 2 (for the motion stimulus), which

were presented in pseudorandom order.

Subjects indicated their percept by pressing one of two mouse

buttons. Button presses were recorded by the stimulus program

with a temporal resolution of 60 Hz.

In part of the experiments we measured eye movements in

two dimensions with either an infrared eye tracker (EyelinkH II,

Version 1.11, SR Reasearch, Canada; subjects DB, JG, JK and

JT) or with the scleral search coil method [23] (subjects JG and

DB). The spatial resolution of the eye tracker was in the order of

0.5 degrees (root mean square measure). The spatial resolution

of the search coil system was better than 0.3 minutes of arc.

The results of these control measurements indicated that gaze

remained centered on the fixation point when required, with

saccade amplitudes during fixation ,0.2u.

Onset and sustained rivalry
We first characterized onset rivalry and rivalry during sustained

viewing in two separate experiments. In Experiment 1 we asked

subjects to indicate their first dominant percept (e.g., upward or

Table 1. Subject characteristics.

Subject
Gender
(M/F)

Age
(Years)

Stimulus
type

DB F 24 MFG

FW M 23 MF

JB F 25 MF

JG M 39 MG

JK F 25 MFG

JT M 24 MF

JV F 33 F

MV F 28 MF

RH M 26 F

SR F 23 MFG

TG M 30 MFG

The column labeled ‘stimulus type’ indicates which stimulus types were tested
in each subject: M(otion), F(ace/house) and/or G(ratings).
doi:10.1371/journal.pone.0020017.t001

Onset Rivalry after Saccades and Stimulus Jumps
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downward motion) after stimulus onset. The stimulus remained

present until the subject responded (typically within 400–900 ms).

Each subject completed 100 trials per stimulus type, 50 in each

hemifield. In Experiment 2, the peripheral stimuli were presented

for 30 seconds, and subjects were asked to continuously indicate

their dominant percept while fixating the straight-ahead fixation

point. Stimuli were presented to the left and to the right of the

fixation point as in Experiment 1. Each subject completed 48 (JB,

JV and RH) or 80 trials (all other subjects) per stimulus type,

balanced between eyes and hemifields (c.f., Table 2) in a

pseudorandom order.

Results

Experiment 1: Initial percept
Experiments by Carter and Cavanagh [13] have indicated that

rivalrous grating stimuli produce subject-specific onset biases. The

aim of the first experiment was to quantify these biases for the

observers that took part in the present study, and to test whether

they exist also for other types of stimuli. Towards that end, we

presented peripheral stimuli while subjects maintained straight-

ahead fixation and we asked them to indicate their first dominant

percept after stimulus onset (Methods).

Figure 2A shows the responses from three representative sub-

jects when (face/house) stimuli were presented in either the left

hemifield (left column) or right hemifield (right column). Red

and green vertical lines identify onset dominance of the stimulus

presented in the right and left eye, respectively. Note that these

subjects showed one of three characteristic response patterns: FW

almost always showed right eye dominance at stimulus onset,

whereas subject JB showed an onset preference for the left eye,

regardless whether the stimulus was located in the left or the right

hemifield. For subject TG, however, there was a bias that

depended on the retinal location of the stimulus. This subject

showed a strong preference for the left eye when the stimulus was

Figure 1. Illustration of the different stimuli used in this study. Top: opponent motion stimulus, middle: face/house stimulus, bottom:
oblique grating stimulus. The arrows indicating movement direction in the motion stimulus were not present in the real stimulus. Each panel shows
the stimulus as it was presented to one eye. The stimulus was always positioned directly to the left (as shown for the motion and the grating stimuli)
or to the right (as shown for the face/house stimulus) of the fixation point.
doi:10.1371/journal.pone.0020017.g001

Table 2. Four possible configuration of the motion stimulus.

Visual hemifield
containing stimulus

Image presented
to left eye

Image presented
to right eye

1 Left Up Down

2 Left Down Up

3 Right Up Down

4 Right Down Up

For the face/house stimulus, up and down were replaced by face and house
respectively. For the grating stimulus, up and down were replaced by left- and
right-oblique, respectively.
doi:10.1371/journal.pone.0020017.t002
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located in the left visual hemifield and a strong preference for

the right eye when the stimulus was located in the right visual

hemifield. The results thus indicate a significant preference in this

subject for perceiving the image in the nasal part of the retina over

perceiving the image in the temporal part at stimulus onset.

To quantify this behavior for each subject we calculated an

index ILR that measured the preference for the left versus the right

eye, and an index INT that measured the preference for nasal

versus temporal retinal halves. The indices were defined in the

following way:

ILR~PLHzPRH{100 ð1Þ

INT~PLH{PRH ð2Þ

where PLH and PRH are the percentage of trials in which the right

eye was dominant at the beginning of a trial while the stimulus was

presented in the left or the right hemifield, respectively. The values

thus range from 2100 for complete left/nasal preference to +100

for complete right/temporal preference. Figure 2A lists the values

of IRL and INT for the three example subjects.

The scatter plot in Figure 2B shows INT as a function of ILR

for all eleven subjects (different symbols) for the three different

stimulus types (different colors). Note that the data from most

subjects are located near the end of either the horizontal or vertical

axis, indicating a strong preference for one eye or one hemiretina,

respectively. In our group of subjects, we found strong preferences

for the right eye, the left eye and the nasal retina, but not for the

temporal retina. This behavior was consistent across stimulus types

in the sense that each subject showed a qualitatively similar onset

bias for each stimulus type. Pearson’s correlations between the

motion, the face/house stimulus, and the grating stimulus ranged

between 0.84 and 0.86 for the IRL index and between 0.64 and

0.98 for the INT index. The magnitude of the onset biases,

however, was not identical. Most individuals did show significantly

different onset biases for face/house, grating and motion stimuli

(Fisher exact tests, p,0.05), but these differences were typically

small, and showed no consistent pattern across subjects.

Experiment 2: Sustained rivalry
Previous studies have reported that the percept biases at sti-

mulus onset do not persist during sustained viewing [11,13]. The

objective of the second experiment was to verify this behavior for

our group of subjects and to estimate how fast the onset effect

wears off for the different stimulus types that we have used.

Towards that end, subjects were required to fixate straight-ahead

during 30 second trials, and continuously indicate their dominant

percept of the peripheral stimulus by pressing one of two mouse

buttons (Methods).

Figure 3 shows for three subjects (FW, JB and TG) the

probability of right and left eye dominance as function of time

during motion trials. Data in the left- and right-hand panels

are averaged across all trials in the left and right hemifield,

respectively. Note that, after the initial reaction time in which

neither button was pressed, there was first a strong bias for images

in either the left or the right eye. This bias was consistent with the

bias observed in Experiment 1 (c.f., Figure 2A): subjects FW and

JB again showed an onset preference for images in the right

(Figure 3A) and the left eye (Figure 3B), respectively, whereas

subject TG again showed a right-eye preference if stimuli were

presented in the right hemifield but a left-eye preference if stimuli

were shown in the left hemifield (Figure 3C). Accordingly, the

onset preferences as measured in Experiment 2 were strongly

correlated with the onset preferences measured in Experiment 1

(Pearson’s correlation across subjects and stimulus types: r = 0.85,

p,0.001). After the strong initial bias for either left or right eye

dominance, however, the instantaneous probabilities for left and

right eye dominance both converged on an average value of about

0.5. The data thus indicate that rivalry entered a steady state in

which both eyes were dominant for approximately 50% of the

time. In all our subjects, this steady state was reached within the

first 10 seconds of the trials.

Figure 4 compares the percentage of right eye dominance at

stimulus onset as observed in Experiment 2 with the right eye

predominance during sustained viewing. The right eye predom-

inance during sustained viewing was calculated as the total pro-

portion of time that the right eye was dominant during all but the

first two dominance states in each trial (i.e., excluding the first

dominant state for both the left and the right eye). This was done

separately for stimuli in the left and right hemifield and for each

stimulus type, resulting in 2, 4 or 6 data points per subject

Figure 2. Subject-specific onset preference. A: Data from three
typical subjects (face/house stimulus). Each colored vertical line shows
the onset response in a single trial: right eye or left eye dominance is
indicated in red and green, respectively. Trials in which the stimulus was
presented in the left or the right hemifield are presented on the left-
hand and right-hand side of the center, respectively. The first trial is
shown in the center, trial number increases outwards. Values marked ILR

and INT at the right hand side of the figure show preference indices (see
text). B: Indices quantifying the left/right and nasal/temporal preference
at trial onset. INT is plotted as a function of ILR for each subject. Colors
indicate different stimulus types. Blue: motion stimulus (9 subjects), red:
face/house stimulus (10 subjects), green: grating stimulus (5 subjects).
doi:10.1371/journal.pone.0020017.g002
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(depending on the number of stimulus types tested). For each of

the nine subjects that completed the experiments with at least two

different stimulus types (c.f., Table 1), we then calculated linear

regression coefficients and plotted the resulting regression lines. If

onset rivalry and sustained rivalry result from the same process,

the slopes are expected to be around 1.0. However, in line with

previous results by Carter & Cavanagh [13] we found that for all

nine subjects the slopes of the regression lines were small, and

significantly less than 1 (F-test, p,0.03). With a mean (6SD) slope

of the linear regression lines of 0.0860.17 across subjects, our data

strongly support the notion that sustained rivalry and onset rivalry

are independent. Pearson correlation coefficients were indeed not

statistically significant in eight of nine subjects (t-tests, p.0.05).

Note, in Figure 4, that for the majority of our subjects, the

average eye dominance in the sustained phase was close to 50%

whereas their eye/hemifield preference at trial onset was typically

biased. Only two subjects (DB and JV) showed a significant

predominance of one eye over the other in the sustained phase

(Wilcoxon rank sum test, p,0.05), but that difference in domi-

nance was not as extreme as at stimulus onset.

Experiment 3: Retinal image shifts
Methods. In Experiment 3, we quantified percept state

changes at the time of a retinal image shift. In this paradigm,

subjects watched the stimulus and during the sustained rivalry

phase (c.f., Figure 3), they either made a saccade (active shift of the

stimulus across the retina) or the stimulus jumped to another

location (passive shift). Trial duration was 20 seconds and there

were two different trial types. In the saccade trials (Figure 5A), the

stimulus was presented at the center of the screen, and the subject

watched the larger of two red fixation crosses (sized 0.46u and

0.23u) located at the edge of the stimulus. After a random period of

13–16 seconds (i.e., in the sustained rivalry phase), the fixation

Figure 3. Average eye dominance as function of time in the sustained rivalry motion task. A: subject FW. B: subject JB. C: subject TG.
Right- and left-hand panels show data from trials in which the stimulus was in the right or the left hemifield, respectively. Black line: right eye. Gray
line: left eye.
doi:10.1371/journal.pone.0020017.g003

Figure 4. Eye predominance during sustained rivalry phase as
function of eye dominance at stimulus onset. Right eye
predominance in the sustained rivalry phase (Experiment 2) is plotted
as function of right eye dominance probability at stimulus onset.
Symbols identify the same subjects as in Figure 3. Blue: motion stimulus
(9 subjects), red: face/house (10 subjects) stimulus, green: grating
stimulus (5 subjects). Black lines: linear regression lines for 9 subjects
that completed the experiment with more than one stimulus type.
doi:10.1371/journal.pone.0020017.g004

Onset Rivalry after Saccades and Stimulus Jumps

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20017



cross shrunk. This was the cue for the subject to make a saccade to

the other fixation cross located at the opposite edge of the stimulus.

In stimulus jump trials, the subject fixated a green fixation cross in

the center of the screen and the stimulus was located either to the

left or to the right of it (Figure 5B). One second after a warning

(shrinking of the fixation cross) the stimulus jumped to the other

side of the fixation cross, while the subject maintained fixation.

Because of the fixed delay between the warning and the actual

stimulus jump, subjects could anticipate the upcoming stimulus

jump, just as they could anticipate their own saccadic eye move-

ment. Subjects could identify the trial type from the location and

color of the fixation cross.

After the retinal image shift (either due to a saccade or a

stimulus jump) the subject indicated state changes in his/her

percept at the moment of retinal image shift by pressing two

buttons in succession (see Figure 6, for illustration). The first

button press indicated the percept dominance state immediately

before the saccade or stimulus jump. The second button press

indicated the percept dominance state immediately after the

saccade or stimulus jump. Saccade trials and stimulus jump trials

were alternated. Each subject completed a total of 200 trials per

stimulus type. Saccades and stimulus jumps will together be

referred to as retinal image shifts or shifts for short.

From the button-press data we calculated the probabilities of left

and right eye dominance before and after the shifts, as well as

the probability to switch between perceptual states or to maintain

dominance at the moment of the shift. To compare the data from

subjects with different individual eye/hemifield preferences, all

calculations were done separately for trials in which the stimulus

was presented in the left and the right hemifield. In addition, we

calculated separate values for trials in which either the right eye or

the left eye was dominant before the shift. This resulted in four

data points per subject per stimulus type.

The resulting data were analyzed using generalized linear model

regression. Towards that end, the probabilities for right eye

dominance, r = P(image in right eye perceived dominant), were log-

transformed using the canonical link function for binomial data:

Figure 5. Illustration of the two trial types in Experiment 3. White circles indicate the subject’s gaze position. Arrows denote a saccade or
stimulus jump. Each panel shows the input for one eye only. A: Saccade trials. The subjects looked at the large, red cross until it shrunk. Then the
subject made a saccade to the other cross, thus actively changing the retinal input. B: Stimulus jump trials. The subject looked at the green fixation
cross at the center of the screen and kept fixation there during the whole trial. After a certain delay, the stimulus jumped to the opposite side,
resulting in the same retinal displacement as in A, but this time the displacement was passive.
doi:10.1371/journal.pone.0020017.g005

Figure 6. Example of eye movements. A: Saccade trial, B: stimulus
jump trial. Horizontal (black) and vertical (gray) eye movements (here
measured with a search coil) are shown as function of time. The gray
bar indicates the horizontal position of the stimulus. The black dashed
lines show the moment of the cue for the saccade or the stimulus jump,
respectively. Note that the saccade and the stimulus jump result in the
same retinal displacement. The double black line shows the moment
the subject responded with two button presses indicating the
dominance state before and after the shift, respectively. After this
response, fixation was no longer required. Data from subject JG.
doi:10.1371/journal.pone.0020017.g006

Onset Rivalry after Saccades and Stimulus Jumps
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R~ log
r

1{r

� �
ð3Þ

Note that this new variable R represents the log-odds of right eye

dominance.

The right eye dominance after a retinal image shift as a function

of the right eye dominance at stimulus onset was quantified with

the following regression equation:

Rshift~a:Ronsetzb ð4Þ

The coefficients a and b as well as the corresponding t-statistics

were estimated with a generalized linear model regression routine

implemented in Matlab (version 7.9; glmfit). Using the same

procedure, we quantified the right eye dominance after a saccade

as a function of the right eye dominance after a stimulus jump:

Rsac~a:Rstimzb ð5Þ

Interpretation of the results, however, was easier when we plotted

the difference between right eye dominance after a saccade and

stimulus conditions as a function of right eye dominance after a

stimulus jump. The regression lines quantifying this difference as

function of right eye dominance at stimulus onset were therefore

given by:

Rsac{Rstim~(a{1):Rstimzb ð6Þ

Note that Rsac – Rstim in Equation 6 represents the log-odds ratio

of right eye dominance in the saccade versus stimulus jump

condition, i.e.:

Rsac{Rstim~ log
rsac=(1{rsac)

rstim=(1{rstim)

� �
ð7Þ

Results. Figure 6 illustrates the typical pattern of eye move-

ments as observed in a saccade trial (6A) and in a stimulus jump

trial (6B). These control measurements indicated that subjects

maintained fixation on the fixation cross for the duration of the

trial and that they made saccades of the required amplitude and

direction. Saccades and stimulus jumps thus produced nearly

identical retinal image shifts. Mean (6SD) reaction time of the

saccades with respect to the shrinking of the fixation point (which

cued the subject to make a saccade to the opposite side of the

stimulus) ranged between 0.57 (60.18) and 1.05 (60.53) seconds.

As we will demonstrate below, retinal image shifts in the saccade

versus stimulus jump conditions resulted in systematic differences.

It appeared, however, that these differences could not be expressed

as a simple increase or decrease in switch probability. Under both

shift conditions, the probability to switch between percepts varied

widely among subjects, and in addition depended strongly on the

subjects’ initial dominance state (i.e., just before the retinal image

shift) and on the direction of the retinal image shift. Interestingly,

however, we found that this seemingly idiosyncratic behavior of

our subjects was systematically related to their eye/hemifield

preference at stimulus onset. To illustrate this finding, Figure 7

shows the response patterns of three different subjects in the

stimulus jump condition (face/house stimuli). As inferred from the

response patterns in Experiment 1, one of the subjects had a

systematic onset preference for stimuli in the right eye (Figure 7A,

subject FW), one for stimuli in the left eye (Figure 7B, subject JV),

and one for stimuli in the nasal hemifield (Figure 7C, subject TG).

Note that the subject with a right eye preference at stimulus onset

(Figure 7A) showed a high probability to switch to the right eye

dominance state when the left eye was dominant before the jump

(as shown by the upper bar pointing far rightward, P(switch) close

to one), but when the right eye was dominant before the jump the

probability to switch to the left eye dominance state was low (as

shown by the bottom bar pointing leftward, P(no switch) close to

one). This behavior was observed regardless of the direction of the

stimulus jump. Choice probabilities in subject JV were also

qualitatively similar for the two jump directions, but for this ‘left

eye subject’ there was a high probability to switch to the left eye

dominance state when the right eye was dominant before the shift,

Figure 7. Three examples of the switch probability after stimulus jumps. Data is displayed separately for trials with left and right dominance
before the shift, respectively. Left-hand panels show jumps from the right to the left hemifield and right-hand panels show jumps from the left to the
right hemifield. Bars show the probability of a percept switch, P(switch) or no percept switch, P(no switch) by their position relative to zero, separately
for trials in which the left eye (upper bars) or the right eye (lower bars) was dominant before the shift. Data from the face/house stimulus. A: subject
FW. B: subject JV. C: subject TG.
doi:10.1371/journal.pone.0020017.g007
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and vice versa (Figure 7B). In the ‘nasal subject’, however, the

response patterns for the two jump directions were almost opposite

(Figure 7C).

Inspection of the raw data thus suggested that percept domi-

nance states after a retinal image shift are systematically related to

the subjects’ eye/hemifield preferences. To quantify this relation-

ship we subdivided the datasets from each subject into four subsets

according to initial state and direction of the image shift, and for

each subset we quantified the proportion of trials in which the

right eye was dominant after the shift. We then plotted for all

subjects the resulting proportions against the proportion of trials in

which their first percept corresponded with the right eye (data

from Experiment 1). We used logit axes for ordinate and abscissa

because this is appropriate for binomial variables. Figure 8A shows

the results for stimulus jump trials and Figure 8B for saccade trials.

Blue, red and green symbols denote the results for the motion,

face/house and grating stimuli, respectively. Note that there was a

robust correlation between the probability of right eye dominance

at stimulus onset and the probability of right eye dominance after a

retinal image shift. Pearson’s correlation coefficients for the

different stimulus types ranged from 0.82 to 0.91 for the stimulus

jump condition and from 0.62 to 0.83 for the saccade condition (t-

tests, p,0.01). By contrast, dominance probabilities just before the

shift were completely unrelated to the subjects’ onset preferences.

Instead they maintained a roughly-constant level of about 0.5,

indicating that the shifts indeed occurred in the sustained rivalry

phase. This is shown for the saccade and stimulus jump condition

in the insets of Figure 8A and 8B, respectively.

Solid lines in Figure 8 are generalized linear model fits to the

pooled data from all subjects (Equation 4). Note that the slopes of

these regression lines are systematically different for the two shift

conditions; they are lower in the saccade condition for each

stimulus type. This latter observation indicates that the differences

between the saccade and stimulus jump conditions also depend

systematically on the subjects’ eye/hemifield preferences. A direct

comparison between the saccade and stimulus jump conditions

thus required an analysis procedure which accounted for these

preferences. We therefore split our datasets into four subsets accor-

ding to initial dominance state and direction of the image shift (as

in Figure 8), and we plotted the difference in right eye dominance

after saccades and stimulus jumps as a function of the right eye

dominance after the stimulus jumps. The difference between right

eye dominance after saccades and stimulus jumps was expressed

as the odds ratio for right eye dominance under the two shift con-

ditions, and plotted on a logarithmic axis.

Figures 9A–C illustrate this comparison for three individual

subjects (FW, JB and TG) by plotting the odds ratio of right eye

dominance after saccades and stimulus jumps as function of the

probability of right eye dominance after stimulus jumps. Open

symbols represent data for shifts from the right to the left hemi-

field; filled symbols represent the data for shifts from the left to

the right hemifield. Solid lines are generalized linear model fits

(Equation 6) to the pooled data from the three stimulus types.

If binocular rivalry would be the same in the saccade and

stimulus jump condition, the odds ratio for right eye dominance in

the saccade versus stimulus jump condition would be 1 regardless

of the probability of right eye dominance after stimulus jumps. In

other words, all data points would lie on a horizontal line having

an ordinate value of 1.0. This is clearly not observed. For the

subject in Figure 9A, for example, one can see that the data points

tend to fall in the bottom-right corner of the graph, which means

that the subject’s percepts after stimulus jumps tend to be biased

towards images in the right eye (independent of the jump direc-

tion), and that the odds ratios for this subject (FW) are typically less

than 1. The latter implies that, in this subject, right eye dominance

after saccades is less likely than right eye dominance after stimulus

jumps. For the subject in Figure 9B, on the other hand, one can

see that the data points tend to fall in the top-left corner of the

graph, indicating that in this subject the odds for left and right eye

dominance are reversed. I.e., it appears that for this subject (JB)

Figure 8. Right eye dominance after a retinal image shift versus right eye dominance at stimulus onset. A: stimulus jump trials, B:
saccade trials. Blue: motion (9 subjects), red: face/house (10 subjects), green: grating (5 subjects). Data are shown on a logit scale. Note that four data
points have been drawn for each subject to account for the effects of prior state and shift direction as shown in Figure 7. Insets in A and B show that
before the retinal image shifts, the right eye was dominant in about 50% of the trials, regardless of the subjects’ eye/hemifield preferences at stimulus
onset.
doi:10.1371/journal.pone.0020017.g008
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images in the left eye tend to dominate after stimulus jumps, and

that the subject’s left eye becomes less frequently dominant after

saccades then after stimulus jumps. The latter follows from the fact

that in this subject the odds ratios are typically larger than 1.

Figure 9C illustrates the behavior of a subject with a nasal

hemifield preference. Note that this subject (TG) responded as a

‘right eye subject’ for shifts to the right hemifield (filled circles) and

as a ‘left eye subject’ for shift to the left hemifield (open circles).

The data thus show that the non-preferred eye/hemifield was

more likely to become dominant after a saccade than after a

stimulus jump. In fact, it appeared for all subjects that the odds

ratios were systematically related to the eye dominance observed

after stimulus jumps. More specifically, we found that if stimulus

jumps resulted in a percept bias towards images in either the left or

the right eye, this bias was typically reduced in the corresponding

saccade condition. In our analysis, this attenuation is indexed by

the negative slope of the regression lines (solid lines in Figures 9A–

C). Figure 9D shows a histogram of the slopes for all subjects that

completed the experiment with at least two stimulus types. For 8

out of 9 subjects, the slope was significantly below zero (t-tests,

p,0.05). Offsets of the regression lines (not shown) were not

significantly different from zero (t-tests, p.0.05).

Figure 10 shows the same analysis as Figure 9, but now

separately for the three stimulus types and pooled over all subjects.

The regression lines fitted to these data had a negative slope

that was significantly different from zero for all three stimulus

types (t-tests, p,0.01). Slopes (mean6SE) were 20.2860.05 for

motion (9 subjects), 20.1360.06 for face/house (10 subjects) and

20.5860.05 for gratings (5 subjects). The differences between the

face/house and the motion stimuli were not statistically significant

(t-test, p.0.2). However, the effect of saccades on the rivalry bias

was significantly stronger for the grating stimulus than for the

motion and the face/house stimulus (t-tests, p,0.001).

Discussion

We have examined binocular onset rivalry and the effect of

saccades and stimulus jumps on perceptual state changes in 11

subjects using 3 different binocular rivalry paradigms: motion

rivalry, face/house rivalry and grating rivalry. We found that the

vast majority of subjects show a significant onset bias. These onset

preferences are consistent across different stimulus types and

experimental task conditions, but they are highly idiosyncratic

across observers. Moreover, we observed a large degree of

independence between rivalry at stimulus onset and that seen

during sustained viewing. Our results thus corroborate and extend

recent experimental findings suggesting that onset rivalry and

sustained rivalry are distinct phenomena that rely on at least partly

different neural mechanisms ([10,13,14,24]. In addition, we found

that stimuli presented in the preferred eye/hemifield are also the

most likely ones to become dominant after a passive displacement

of the image on the retina. In case of an active displacement (a

saccade), however, this bias towards the preferred eye is

significantly reduced. As we will argue below, these latter findings

suggest that retinal image shifts trigger onset rivalry, and that onset

rivalry depends at least partly on extra-retinal eye movement

signals.

Onset rivalry versus sustained rivalry
Previous studies have reported eye and hemifield asymmetries in

switch rates and dominance durations during sustained viewing

[25,26,27,28]. In our experiment, we found the biggest asymme-

tries in eye preferences at stimulus onset and after retinal image

shifts. Three subjects did not show a clear eye preference but

instead had a preference for images falling on the nasal part of the

retina. Fahle [29] argued that the longer dominance durations

he observed for stimuli presented in the temporal hemifield

Figure 9. Odds ratio of eye dominance after saccades and stimulus jumps as function of onset dominance. A–C: Odds ratio of right eye
dominance after saccades and stimulus jumps as function of right eye dominance after stimulus jumps, shown on a logit scale. Filled symbols: shift
from left to right hemifield. Open symbols: shift from right to left hemifield. Data are from subjects FW (A) JB (B) and TG (C). D: Histogram of the
regression slopes for all subjects that completed the experiment with two or three stimulus types (n = 9).
doi:10.1371/journal.pone.0020017.g009
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(projecting onto the nasal retina) could be explained by the finding

that visual hyperacuity [30], cone density [31] and cortical

magnification factor [32] are higher for the nasal retina than for

the temporal retina. However, all these statistics cannot readily

account for the asymmetries we observed in onset rivalry, since

they apply mostly to the far periphery (eccentricities .20u) while

our stimuli were presented within 4u from the fovea. Ooi and He

[33] suggested that a nasal hemifield preference could be useful in

binocular stereovision. The mechanism they suggest might also

explain the nasal preferences we found for our stimuli with small

eccentricities.

Although we have tested only two locations, our results do cor-

roborate the findings from Carter and Cavanagh [13] that strong

idiosyncratic biases localized to a certain retinal location can be

found at the onset of rivalry. They also support the conclusion that

the onset biases disappear over time to yield a more balanced

situation during sustained rivalry.

Effect of saccades
The observation that onset rivalry differs from sustained rivalry

has significant implications for rivalry in the presence of eye

movements. Previous studies have shown that eye movements by

themselves are not necessary to induce percept switches (e.g.

[34,35]), but for binocular rivalry, there appears to be a marked

positive temporal correlation between saccades and perceptual

state changes [36]. Van Dam and Van Ee [37] concluded that

retinal image shifts, rather than eye movements per se cause state

changes in binocular rivalry. Our current experiments shed new

light on these latter results. More specifically, our finding that

dominance biases at stimulus onset and after retinal image shifts

are tightly correlated, strongly suggests that retinal image shifts

trigger onset rivalry, and not percept switches as such.

Caution is warranted though because experiments by Kanai

et al. [38] suggest that changes in the fixation point, and accom-

panying change in attention, may elicit perceptual transitions.

Thus one may wonder whether the shrinking of the fixation cross

(Methods), rather than the subsequent image shifts per se, might

have triggered the onset rivalry in Experiment 3. We believe,

however, that this alternative interpretation is not tenable because

our data show that the eye dominance states after presentation

of this cue (but before the image shifts) were completely uncor-

related with the rivalry observed at stimulus onset. This was true in

both the saccade and stimulus jump condition (Figure 8, insets).

Another possible concern might be that dominance durations

prior to the image shifts were systematically different between the

saccade and stimulus jump conditions. This could be the case, for

example, if subjects typically postponed their saccade until after a

percept switch. To further test whether the saccade and stimulus

jumps might have occurred in a systematically different phase

of the (sustained) rivalry process, we therefore performed an

additional set of control experiments (subjects DB, JG, JK and JT).

This experiment was identical to Experiment 3 except that

subjects indicated their percepts continuously by pressing one of

two mouse buttons, and we measured their eye movements with

an infra red eye tracker (Methods). This way, we could determine

for each trial the dominance duration from the last perceptual

switch until the saccade or stimulus jump. Figure 11 compares for

each subject and each stimulus type the mean (6SE) duration of

the dominance state prior to the saccade and stimulus jump. Note

that no significant differences were found between the saccade and

the stimulus condition. Taken together, we think the difference

between the saccade and stimulus jump condition that we found in

Experiment 3 is indeed due to the saccade itself and not to any

systematic difference in prior state.

Note that the behavior that we observed after retinal image

shifts is clearly different from the behavior that has been obtained

in experiments with intermittent stimulus presentations at the

same location. In the latter experiments (e.g., [5,14]), short

removal periods of the stimulus (,0.5 s) resulted in a high switch

probability, independent of the prior state. With retinal image

shifts, on the other hand, the switch probabilities strongly depend

on the prior state, and on the new stimulus location. The

observation that rivalry behavior after retinal shifts is strongly

correlated with onset rivalry supports the notion that newly stimu-

lated cells after a retinal shift have a different adaptation state than

the cells stimulated before the switch (Introduction).

Interestingly, however, the perceptual consequence of passive,

stimulus-induced image shifts was not the same as that of active,

saccade-induced shifts. Indeed, saccadic eye movements not only

shift the image on the retina. They also produce transient visual

suppression [39], dynamic shifts of attention [40,41] and visual

receptive fields [42,43,44]. In view of these phenomena there are

at least two possible reasons why passive versus active shifts might

be different: first, during normal vision, the visuomotor system

ensures that we have a stable perception of visual space despite

Figure 10. Eye dominance after retinal shift as function of
onset dominance for different stimulus types. Odds ratio of right
eye dominance after saccades and stimulus jumps as function of
probability of right eye dominance after stimulus jumps, shown on a
logit scale. A: Motion (9 subjects). B: Face/house (10 subjects). C:
Gratings (5 subjects).
doi:10.1371/journal.pone.0020017.g010
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intervening saccades (See, e.g., [45] for a review). Ross & Ma-

Wyatt [19] suggested that saccades play an important role in

actively maintaining perceptual continuity.

One could argue therefore that the system tries to maintain the

same percept after saccades as this supports perceptual stability. If

true, this would predict reduced switch probabilities in the saccade

condition compared with the stimulus jump condition. On the

other hand, saccades are a normal part of visual search behavior

(e.g., [46,47]) so one could also argue that redirecting the eyes to a

new location in the visual field should emphasize on the gathering

of new information, optimally using the inputs from both eyes.

This latter notion would instead predict enhanced switch proba-

bilities in the saccade condition.

Clearly, neither of these two interpretations can account for our

results; compared with stimulus jumps, saccades produced both

increases and decreases in switch probabilities depending on the

preceding eye dominance state, the direction of the image shifts,

and last but not least, on subject-specific biases. Even so, we did

find very systematic differences between the saccade and stimulus

jump conditions except that these differences were not reflected in

the transition probabilities. What we found instead is that saccades

consistently attenuated the subject-specific eye dominance biases

after the image shifts.

It is unlikely that this attenuation is merely due to differences in

attentional expectation because the retinal image shifts could be

anticipated under both conditions (Methods). In fact, our data

show that the influence of saccades is strongly correlated with the

magnitude of the subjects’ onset rivalry biases. The latter is shown

in Figure 12 where we plot the odds ratios of right eye dominance

after saccades and stimulus jumps (data from Experiment 3) as a

function of right eye dominance at stimulus onset (data from

Experiment 1). Correlation coefficients were 20.64, 20.52 and

20.76 for the motion, face/house and grating stimuli, respectively.

We thus conclude that the influence of saccades can be understood

from a systematic attenuation of the subjects’ onset rivalry biases.

Different stimulus types
The three different stimulus types that we have used in our

experiments are thought to trigger at least partly different path-

ways in the brain. In line with this notion, we observed that for

most subjects the dominance duration distributions recorded in

Experiment 2 were significantly different for the three stimulus

types (data not shown). In Experiment 1, quantitative differences

were observed as well, albeit not systematic among subjects.

Nevertheless, for all three stimulus types we observed the same

remarkable dissociation between onset and sustained rivalry

(Experiment 2), and a very similar influence of saccades on rivalry

biases (Experiment 3).

Figure 10 suggests that the effect of saccades on the rivalry bias

was significantly stronger for grating stimuli than for motion and

face/house stimuli, but this difference may have resulted from

pooling the data across different (numbers of) subjects, each having

different onset preferences. The analysis in Figure 12 indeed

demonstrates that the effect of saccades becomes indistinguishable

between the three stimulus types if one accounts for the subjects’

onset rivalry biases.

In a recent theoretical study, Klink et al. [14] have suggested

that top-down control over bistable stimuli could interact with

low-level mechanisms of adaptation at the early stages of sensory

processing before perceptual conflicts are resolved and perceptual

choices about bistable stimuli are made. Such an active neural

control mechanism acting at lower levels could account for the

fact that our results were very similar across stimuli that engage

different pathways in the brain.

Conclusions
Our results indicate that there is a large degree of independence

between rivalry at stimulus onset and that seen during sustained

viewing. This corroborates the hypothesis that onset rivalry and

sustained rivalry are distinct phenomena that rely on at least partly

different neural mechanisms. Conversely, rivalry at stimulus onset

and rivalry after retinal image shifts are tightly correlated, sugge-

sting that retinal image shifts such as those induced by saccades

Figure 11. Time from last perceptual switch to the retinal
image shift. Data are shown for all stimulus types (columns) and 4
subjects (rows). In each panel, the left bar show the data from saccade
trials and the right bar from the stimulus jump trials. Error bars denote
standard errors. Each subject completed 48–60 trials for each condition.
Note the similarity of dominance durations in all subjects.
doi:10.1371/journal.pone.0020017.g011

Figure 12. Right eye dominance after shifts as function of right
eye dominance at stimulus onset. Data are shown on a logit scale
with logistic regression lines. Blue: motion stimulus. Red: face/house
stimulus. Green: grating stimulus.
doi:10.1371/journal.pone.0020017.g012
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trigger onset rivalry. However, comparing rivalry during passive

versus active retinal shifts revealed that saccades do counteract a

purely retinally-driven onset rivalry in favor of perception of the

image in the non-dominant eye. Our results thus indicate that

non-visual signals have a significant impact on the (onset) rivalry

process. Existing models of binocular rivalry need to be revised to

account for these phenomena.

Author Contributions

Conceived and designed the experiments: JPK SMR JG. Performed the

experiments: JPK SMR. Analyzed the data: JPK SMR JG. Wrote the

paper: JPK JG.

References

1. Blake R (2001) A Primer on Binocular Rivalry, Including Current Controversies.
Brain and Mind 2: 5–38. Available: http://dx.doi.org/10.1023/

A:1017925416289.
2. Blake R (2005) Landmarks in the History of Binocular Rivalry. In: Alais D,

Blake R, eds. Binocular Rivalry and Perceptual Ambiguity. CambridgeMA:

MIT Press. pp 1–28.
3. Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3: 13–21.

Available: http://dx.doi.org/10.1038/nrn1701.
4. Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends in

Cognitive Sciences 10: 502–511. Available: http://www.ncbi.nlm.nih.gov/

pubmed/16997612.
5. Leopold DA, Wilke M, Maier A, Logothetis NK (2002) Stable perception of

visually ambiguous patterns. Nature Neuroscience 5: 605–609. Available:
http://www.ncbi.nlm.nih.gov/pubmed/11992115.

6. Chen X, He S (2004) Local factors determine the stabilization of monocular
ambiguous and binocular rivalry stimuli. Current Biology: CB 14: 1013–1017.

Available: http://www.ncbi.nlm.nih.gov/pubmed/15182676.

7. Kanai R, Knapen THJ, van Ee R, Verstraten FAJ (2007) Disruption of implicit
perceptual memory by intervening neutral stimuli. Vision Research 47:

2675–2683. Available: http://www.ncbi.nlm.nih.gov/pubmed/17697690.
8. Maier A, Wilke M, Logothetis NK, Leopold DA (2003) Perception of temporally

interleaved ambiguous patterns. Current Biology: CB 13: 1076–1085. Available:

http://www.ncbi.nlm.nih.gov/pubmed/12842006.
9. Pearson J, Clifford CGW (2004) Determinants of visual awareness following

interruptions during rivalry. Journal of Vision 4: 196–202. Available: http://
www.ncbi.nlm.nih.gov/pubmed/15086309.

10. Noest AJ, van Ee R, Nijs MM, van Wezel RJA (2007) Percept-choice sequences
driven by interrupted ambiguous stimuli: a low-level neural model. Journal of

Vision 7: 10. Available: http://www.ncbi.nlm.nih.gov/pubmed/17685817.

11. Mamassian P, Goutcher R (2005) Temporal dynamics in bistable perception.
Journal of Vision 5: 361–375. Available: http://www.ncbi.nlm.nih.gov/

pubmed/15929658.
12. Chong SC, Blake R (2006) Exogenous attention and endogenous attention

influence initial dominance in binocular rivalry. Vision Research 46:

1794–1803. Available: http://www.ncbi.nlm.nih.gov/pubmed/16368126.
13. Carter O, Cavanagh P (2007) Onset rivalry: brief presentation isolates an early

independent phase of perceptual competition. PLoS ONE 2: e343. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17406667.

14. Klink PC, van Ee R, Nijs MM, Brouwer GJ, Noest AJ, et al. (2008) Early
interactions between neuronal adaptation and voluntary control determine

perceptual choices in bistable vision. Journal of Vision 8: 16.11–18. Available:

http://www.ncbi.nlm.nih.gov/pubmed/18842087.
15. Blake R, Sobel KV, Gilroy LA (2003) Visual motion retards alternations

between conflicting perceptual interpretations. Neuron 39: 869–878. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12948452.

16. Melcher D (2005) Spatiotopic transfer of visual-form adaptation across saccadic

eye movements. Current Biology: CB 15: 1745–1748. Available: http://www.
ncbi.nlm.nih.gov/pubmed/16213821.

17. van Boxtel JJ, Alais D, van Ee R (2008) Retinotopic and non-retinotopic stimulus
encoding in binocular rivalry and the involvement of feedback. J Vis 8: 17 11-10.

18. Nishida S, Motoyoshi I, Andersen RA, Shimojo S (2003) Gaze modulation of

visual aftereffects. Vision Res 43: 639–649.
19. Ross J, Ma-Wyatt A (2004) Saccades actively maintain perceptual continuity.

Nature Neuroscience 7: 65–69. Available: http://www.ncbi.nlm.nih.gov/
pubmed/14661023.

20. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10: 433–436.
21. Pelli DG (1997) The VideoToolbox software for visual psychophysics:

transforming numbers into movies. Spat Vis 10: 437–442.

22. Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and
visual awareness in human extrastriate cortex. Neuron 21: 753–759.

23. Collewijn H, van der Mark F, Jansen TC (1975) Precise recording of human eye
movements. Vision Res 15: 447–450.

24. Long GM, Toppino TC (2004) Enduring interest in perceptual ambiguity:

alternating views of reversible figures. Psychological Bulletin 130: 748–768.
Available: http://www.ncbi.nlm.nih.gov/pubmed/15367079.

25. Robboy MW, Cox IG, Erickson P (1990) Effects of sighting and sensory
dominance on monovision high and low contrast visual acuity. Clao J 16:

299–301.

26. Ooi TL, He ZJ (2001) Sensory eye dominance. Optometry 72: 168–178.

27. Chen X, He S (2003) Temporal characteristics of binocular rivalry: visual field

asymmetries. Vision Research 43: 2207–2212. Available: http://www.ncbi.nlm.

nih.gov/pubmed/12885375.

28. Handa T, Mukuno K, Uozato H, Niida T, Shoji N, et al. (2004) Effects of

dominant and nondominant eyes in binocular rivalry. Optometry and Vision

Science: Official Publication of the American Academy of Optometry 81:

377–383. Available: http://www.ncbi.nlm.nih.gov/pubmed/15181364.

29. Fahle M (1987) Naso-temporal asymmetry of binocular inhibition. Investigative

Ophthalmology & Visual Science 28: 1016–1017. Available: http://www.ncbi.

nlm.nih.gov/pubmed/3583626.

30. Fahle M, Schmid M (1988) Naso-temporal asymmetry of visual perception and

of the visual cortex. Vision Research 28: 293–300. Available: http://www.ncbi.

nlm.nih.gov/pubmed/3414016.

31. Curcio CA, Sloan KR, Jr., Packer O, Hendrickson AE, Kalina RE (1987)

Distribution of cones in human and monkey retina: individual variability and

radial asymmetry. Science 236: 579–582.

32. Rovamo J, Virsu V (1979) An estimation and application of the human cortical

magnification factor. Exp Brain Res 37: 495–510.

33. Ooi TL, He ZJ (2006) Binocular rivalry and surface-boundary processing.

Perception 35: 581–603. Available: http://www.ncbi.nlm.nih.gov/pubmed/

16836052.

34. Scotto MA, Oliva GA, Tuccio MT (1990) Eye movements and reversal rates of

ambiguous patterns. Percept Mot Skills 70: 1059–1073.

35. Toppino TC (2003) Reversible-figure perception: mechanisms of intentional

control. Perception & Psychophysics 65: 1285–1295. Available: http://www.

ncbi.nlm.nih.gov/pubmed/14710962.

36. van Dam LCJ, van Ee R (2006) The role of saccades in exerting voluntary

control in perceptual and binocular rivalry. Vision Research 46: 787–799.

Available: http://www.ncbi.nlm.nih.gov/pubmed/16309727.

37. van Dam LCJ, van Ee R (2006) Retinal image shifts, but not eye movements per

se, cause alternations in awareness during binocular rivalry. Journal of Vision 6:

1172–1179. Available: http://www.ncbi.nlm.nih.gov/pubmed/17209727.

38. Kanai R, Moradi F, Shimojo S, Verstraten FAJ (2005) Perceptual alternation

induced by visual transients. Perception 34: 803–822. Available: http://www.

ncbi.nlm.nih.gov/pubmed/16124267.

39. Burr DC, Morrone MC, Ross J (1994) Selective suppression of the

magnocellular visual pathway during saccadic eye movements. Nature 371:

511–513. Available: http://www.ncbi.nlm.nih.gov/pubmed/7935763.

40. Deubel H, Schneider WX (1996) Saccade target selection and object

recognition: evidence for a common attentional mechanism. Vision Research

36: 1827–1837. http://www.ncbi.nlm.nih.gov/pubmed/8759451.

41. Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the

programming of saccades. Vision Research 35: 1897–1916. Available: http://

www.ncbi.nlm.nih.gov/pubmed/7660596.

42. Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the

representation of visual space in parietal cortex by intended eye movements.

Science (New York, NY) 255: 90–92. Available: http://www.ncbi.nlm.nih.gov/

pubmed/1553535.

43. Umeno MM, Goldberg ME (1997) Spatial processing in the monkey frontal eye

field. I. Predictive visual responses. Journal of Neurophysiology 78: 1373–1383.

Available: http://www.ncbi.nlm.nih.gov/pubmed/9310428.

44. Nakamura K, Colby CL (2002) Updating of the visual representation in monkey

striate and extrastriate cortex during saccades. Proceedings of the National

Academy of Sciences of the United States of America 99: 4026–4031. Available:

http://www.ncbi.nlm.nih.gov/pubmed/11904446.

45. Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual

perception at the time of saccades. Trends in Neurosciences 24: 113–121.

Available: http://www.ncbi.nlm.nih.gov/pubmed/11164942.

46. Davis ET, Palmer J (2004) Visual search and attention: an overview. Spatial

Vision 17: 249–255. Available: http://www.ncbi.nlm.nih.gov/pubmed/

15559104.

47. Viviani P (1990) Eye movements in visual search: cognitive, perceptual and

motor control aspects. Reviews of Oculomotor Research 4: 353–393. Available:

http://www.ncbi.nlm.nih.gov/pubmed/7492533.

Onset Rivalry after Saccades and Stimulus Jumps

PLoS ONE | www.plosone.org 12 June 2011 | Volume 6 | Issue 6 | e20017


